Impacts of Beech Bark Disease and Climate Change on American Beech
Abstract
:1. Introduction
2. Natural History of the American Beech
3. Beech Bark Disease
4. The Impacts of Climate Change on American Beech
5. Impacts of Climate Change on BBD-Infested American Beech: Lessons and Projections from Studies in American and European Beech
6. Impacts of Climate Change on BBD-Infested American Beech: Applied Examples from Other Pathogen-Host Models
7. Considerations for Beech Forest Management
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Coe, N. Life as Beech, Survival in the New England Forest. In Nature and Culture in the Northern Forest; University of Iowa Press: Iowa, IA, USA, 2010; pp. 49–58. [Google Scholar]
- Huntley, B.; Bartlein, P.J.; Prentice, I.C. Climatic control of the distribution and abundance of beech (Fagus L.) in Europe and North America. J. Biogeogr. 1989, 16, 551–560. [Google Scholar] [CrossRef]
- Lassoie, J.; Luzadis, V.; Grover, D. Forest Trees of the Northeast; Cornell Cooperative Extension: Ithaca, NY, USA, 1996. [Google Scholar]
- Tubbs, C.; Houston, D.R. Fagus grandifolia: American Beech. In Silvics of North America; United States Department of Agriculture: Washington, DC, USA, 1990; pp. 335–342. [Google Scholar]
- GECSC: Tree Species Distribution Maps for North America. Available online: https://esp.cr.usgs.gov/data/little (accessed on 1 May 2017).
- Williams-Linera, G.; Devall, M.S.; Alvarez-Aquino, C. A relict population of Fagus grandfolia var. mexicana at the Acatlan Volcano, Mexico: Structure, litterfall, phenology and dendroecology. J. Biogeogr. 2000, 27, 1297–1309. [Google Scholar]
- Busby, P.E.; Motzkin, G.; Hall, B. Distribution and dynamics of American beech in Coastal Southern New England. Northeast. Nat. 2009, 16, 159–176. [Google Scholar] [CrossRef]
- Parker, J. Cold resistance in woody plants. Bot. Rev. 1963, 29, 123–201. [Google Scholar] [CrossRef]
- Sakai, A.; Weiser, C.J. Freezing resistance of trees in North America with reference to tree regions. Ecology 1973, 54, 118–126. [Google Scholar] [CrossRef]
- Fang, J.; Lechowicz, M.J. Climatic limits for the present distribution of beech (Fagus L.) species in the world. J. Biogeogr. 2006, 33, 1804–1819. [Google Scholar] [CrossRef]
- Hershey, R.; Befort, W. Aerial Photo Guide to New England Forest Cover Types; USDA Forest Service: San Francisco, CA, USA, 1993.
- Burns, R. Silvicultural Systems for the Major Forest Types of the United States; United States Department of Agriculture: Washington, DC, USA, 1983.
- Outcalt, K. Magnolia grandiflora: Southern Magnolia. In Silvics of North America; United States Department of Agriculture: Washington, DC, USA, 1990. [Google Scholar]
- Ling, K.A.; Power, S.A.; Ashmore, M.R. A survey of the health of Fagus sylvatica in Southern Britain. J. Appl. Ecol. 2004, 30, 295–306. [Google Scholar] [CrossRef]
- Burns, R.; Honkala, B. Summary of Tree Characteristics. In Silvics of North America; United States Department of Agriculture: Washington, DC, USA, 1990. [Google Scholar]
- Held, M.E. Pattern of beech regeneration in the East-Central United States. Bull. Torrey Bot. Club 1983, 110, 55–62. [Google Scholar] [CrossRef]
- Jones, R.H.; Raynal, D.J. Root sprouting in American beech: Production, survival, and the effect of parent tree vigor. Can. J. For. Res. 1987, 17, 539–544. [Google Scholar] [CrossRef]
- Hane, E.N. Indirect effects of beech bark disease on sugar maple seedling survival. Can. J. For. Res. 2003, 33, 807–813. [Google Scholar] [CrossRef]
- Houston, D.R. Beech Bark Disease: 1934 to 2004: What’s New Since Ehrlich? In Proceedings of the Beech Bark Disease Symposium, New York, NY, USA, 16–18 June 2004. [Google Scholar]
- McCullough, D.G.; Heyd, R.L.; O’Brien, J.G. Biology and Management of Beech Bark Disease; Michigan State University: East Lansing, MI, USA, 2005. [Google Scholar]
- Bucher, E.H. The Causes of Extinction of the Passenger Pigeon. In Current Ornithology; Power, D.M., Ed.; Springer: New York, NY, USA, 1992; pp. 1–36. [Google Scholar]
- Forbush, E. Birds of Massachusetts and Other New England States; Massachusetts Department of Agriculture: Boston, MA, USA, 1927.
- Garneau, D.E.; Lawler, M.E.; Rumpf, A.S.; Weyburne, E.S.; Cuppernull, T.M.; Boe, A.G. Potential effects of beech bark disease on small mammals and invertebrates in Northeastern US forests. Northeast. Nat. 2012, 19, 391–410. [Google Scholar] [CrossRef]
- Houston, D.R. Major new tree disease epidemics: Beech bark disease. Annu. Rev. Phytopathol. 1994, 32, 75–87. [Google Scholar] [CrossRef]
- Houston, D.R. American Beech Resistance to Cryptococcus fagisuga; USDA Forest Service: Washington, DC, USA, 1983.
- Kasson, M.T.; Livingston, W.H. Relationships among beech bark disease, climate, radial growth response and mortality of American beech in northern Maine, USA. For. Pathol. 2012, 42, 199–212. [Google Scholar] [CrossRef]
- Houston, D.R.; O’Brien, J.T. Beech Bark Disease; U.S. Department of Agriculture Forest Service: Washington, DC, USA, 2003.
- Ehrlich, J. The beech bark disease. A Nectria disease of Fagus, following Cryptococcus fagi (BAER.). Can. J. For. Res. 1934, 10, 593–692. [Google Scholar] [CrossRef]
- Houston, D.R. Temporal and spatial shift within the Nectria pathogen complex associated with beech bark disease of Fagus grandifolia. Can. J. For. Res. 1993, 24, 960–968. [Google Scholar] [CrossRef]
- Morris, A.B.; Small, R.L.; Cruzan, M.B. Investing the relationship between Cryptococcus fagisuga and Fagus Grandifolia in Great Smoky Mountains National Park. Southeast. Nat. 2002, 1, 415–424. [Google Scholar] [CrossRef]
- Wainhouse, D. Dispersal of first instar larvae of the felted beech scale, Cryptococcus fagisuga. J. Appl. Ecol. 1980, 17, 523–532. [Google Scholar] [CrossRef]
- Shigo, A.L. The beech bark disease today in the Northeastern U.S. J. For. 1972, 70, 286–289. [Google Scholar]
- Shigo, A.L. Organism interactions in the beech bark disease. Phytopathology 1964, 54, 263–269. [Google Scholar]
- Lohman, M.L.; Watson, A.J. Identity and host relations of Nectria species associated with diseases of hardwoods in the eastern states. Lloydia 1943, 6, 77–108. [Google Scholar]
- Castlebury, L.A.; Rossman, A.Y.; Hyten, A.S. Phylogenetic relationships of Neonectria/Cylindrocarpon on Fagus in North America. Can. J. Bot. 2006, 84, 1417–1433. [Google Scholar] [CrossRef]
- Houston, D.R.; Mahoney, E.M. Beech bark disease: Association of Nectria ochroleuca in W.Va., Pa., and Ontario. Phytopathol. Abstr. 1987, 77, 1615. [Google Scholar]
- Jung, T. Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. For. Pathol. 2009, 39, 73–94. [Google Scholar] [CrossRef]
- Morin, R.S.; Liebhold, A.M.; Tobin, P.C.; Gottschalk, K.W.; Luzader, E. Spread of beech bark disease in the eastern United States and its relationship to regional forest composition. Can. J. For. Res. 2007, 37, 726–736. [Google Scholar] [CrossRef]
- Beech Bark Disease. Available online: http://forestinvasives.ca/Meet-the-Species/Pathogens/Beech-Bark-Disease#70229-impacts (accessed on 17 April 2017).
- Krabel, D.; Petercord, R. Genetic diversity and bark physiology of the European beech (Fagus sylvatica): A coevolutionary relationship with the beech scale (Cryptococcus fagisuga). Tree Physiol. 2000, 20, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Köhler, G.; Pašalić, E.; Weisser, W.W.; Gossner, M.M. Beech forest management does not affect the infestation rate of the beech scale Cryptococcus fagisuga across three regions in Germany. Agric. For. Entomol. 2015, 17, 197–204. [Google Scholar] [CrossRef]
- Houston, D.R. Beech bark disease: The result of an invasive causal complex. In Ecology of Invasive Species; Yale University: New Haven, CT, USA, 1999; pp. 16–17. [Google Scholar]
- McLachlan, J.S.; Clark, J.S.; Manos, P.S. Molecular indicators of tree migration capacity under rapid climate change. Ecology 2005, 86, 2088–2098. [Google Scholar] [CrossRef]
- Pearson, R.G. Climate change and the migration capacity of species. Trends Ecol. Evol. 2006, 21, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Gavin, D.G.; Peart, D.R. Effects of beech bark disease on the growth of American Beech (Fagus grandifollia). Can. J. For. Res. 1993, 23, 1566–1575. [Google Scholar] [CrossRef]
- Morin, R.S.; Liebhold, A.M. Invasions by two non-native insects alter regional forest species composition and successional trajectories. For. Ecol. Manag. 2015, 341, 67–74. [Google Scholar] [CrossRef]
- Krasny, M.E.; DiGregorio, L.M. Gap dynamics in Allegheny northern hardwood forests in the presence of beech bark disease and gypsy moth disturbances. For. Ecol. Manag. 2001, 144, 265–274. [Google Scholar] [CrossRef]
- Evans, C.A.; Ayres, M.P.; Twery, M.J.; Houston, D.R. Using Models to Identify Forests at Risk of Major Structure and Compositional Change due to Beech Bark Disease. In Proceedings of the Beech Bark Disease Symposium, New York, NY, USA, 16–18 June 2004. [Google Scholar]
- Geßler, A.; Keitel, C.; Kreuzwieser, J.; Matyssek, R.; Seiler, W.; Rennenberg, H. Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 2007, 21, 1–11. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Andrews, J.A. Soil respiration and the global carbon cycle. Biogeochemistry 2000, 48, 7–20. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.F. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 2000, 48, 21–51. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Fitzhugh, R.D.; Driscoll, C.T.; Groffman, P.M.; Tierney, G.L.; Fahey, T.J.; Hardy, J.P. Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry 2001, 56, 215–238. [Google Scholar] [CrossRef]
- Groffman, P.; Hardy, J.P.; Fashu-Kanu, S.; Driscoll, C.T.; Cleavitt, N.L.; Fahey, T.J.; Fisk, M.C. Snow depth, soil freezing and nitrogen cycling in a Northern Hardwood forest landscape. Biogeochemistry 2011, 102, 223–238. [Google Scholar] [CrossRef]
- Groffman, P.M.; Driscoll, C.T.; Fahey, T.J.; Hardy, J.P.; Fitzhugh, R.D.; Tierney, G.L. Colder soils in a warmer world: A snow manipulation study in a Northern Hardwood forest ecosystem. Biogeochemistry 2001, 56, 135–150. [Google Scholar] [CrossRef]
- Tierney, G.L.; Fahey, T.J.; Groffman, P.M.; Hardy, J.P.; Fitzhugh, R.D.; Driscoll, C.T. Soil freezing alters fine root dynamics in a Northern Hardwood forest. Biogeochemistry 2001, 56, 175–190. [Google Scholar] [CrossRef]
- Rustad, L.E.; Boyer, E.W.; Christopher, S.F.; Driscoll, C.T.; Fernandez, I.J.; Groffman, P.M.; Houle, D.; Kiekbusch, J.; Magill, A.H.; Mitchell, M.J.; et al. Consequences of climate change for biogeochemical cycling in forests of northeastern North America. Can. J. For. Res. 2009, 39, 264–284. [Google Scholar]
- Prasad, A.M.; Iverson, L.R.; Matthews, S.; Peters, M. A Climate Change Atlas for 134 Forest Tree Species of the Eastern United States; Northern Research Station, USDA Forest Service: Delaware, OH, USA, 2007.
- Polle, A.; Morawe, B. Seasonal changes of the antioxidative systems in foliar buds and leaves of field-grown beech trees (Fagus sylvatica, L.) in a stressful climate. Bot. Acta 1995, 108, 314–320. [Google Scholar] [CrossRef]
- Kramer, K.; Degen, B.; Buschbom, J.; Hickler, T.; Thuiller, W.; Sykes, M.; de Winter, W. Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—Range, abundance, genetic diversity and adaptive response. For. Ecol. Manag. 2010, 259, 2213–2222. [Google Scholar] [CrossRef]
- Houston, D.B.; Houston, D.R. Allozyme genetic diversity among Fagus grandifolia trees resistant or susceptible to beech bark disease in natural populations. Can. J. For. Res. 2000, 30, 778–789. [Google Scholar] [CrossRef]
- Mason, M.E.; Koch, J.L.K.; Loo, J. Comparisons of protein profiles of beech bark disease resistant and susceptible American Beech (Fagus grandifolia). Proteome Sci. 2013, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Koch, J.L.; Carey, D.W.; Mason, M.E.; Nelson, C.D. Assessment of beech scale resistance in full- and half-sibling American beech families. Can. J. For. Res. 2010, 40, 265–272. [Google Scholar] [CrossRef]
- Kubisiak, T.; Carey, D.W.; Koch, J.L. Charcterization of ten EST-based Polymorphic SSR Loci Isolated from American Beech, Fagus grandifolia Ehrh; USDA Forest Service, Southern Research Station, Southern Institute of Forest Genetics: Washington, DC, USA, 2010.
- Latty, E.F.; Canham, C.D.; Marks, P.L. Beech bark disease in northern hardwood forests: The importance of nitrogen dynamics and forest history for disease severity. Can. J. For. Res. 2003, 33, 257–268. [Google Scholar] [CrossRef]
- Wargo, P.M. Amino nitrogen and phenolic constituents of bark of American Beech, Fagus grandifolia, and infestation by beech scale, Cryptococcus fagisuga. For. Pathol. 1988, 18, 279–290. [Google Scholar] [CrossRef]
- Dukes, J.S.; Pontius, J.; Orwig, D.; Garnas, J.R.; Rodgers, V.; Brazee, N.; Cook, B.; Theoharides, K.; Stange, E.; Harrington, R.; et al. Response of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: What can we predict? Can. J. For. Res. 2009, 39, 231–248. [Google Scholar] [CrossRef]
- Gove, J.H.; Houston, D.R. Monitoring the growth of American beech affected by beech bark disease in Maine using the Kalman filter. Environ. Ecol. Stat. 1996, 3, 167–187. [Google Scholar] [CrossRef]
- Taylor, A.R. Putting healthy beech on the map. Atl. For. Rev. 2013, 20, 38–41. [Google Scholar]
- Forrester, J.A.; Runkle, J.R. Mortality and Replacement patterns of an old-growth Acer fagus woods in the Holden Arboretum, Northeastern Ohio. Am. Midl. Nat. 2000, 144, 227–242. [Google Scholar] [CrossRef]
- Paradis, A.; Elkinton, J.; Hayhoe, K.; Buonaccorsi, J. Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America. Mitig. Adapt. Strateg. Glob. Chang. 2007, 13, 541–554. [Google Scholar] [CrossRef]
- Logan, J.A.; Macfarlane, W.W.; Willcox, L. Whitebark pine vulnerability to climate-driven mountain pine beetle disturbance in the Greater Yellowstone ecosystem. Ecol. Appl. 2010, 20, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Dantec, C.F.; Ducasse, H.; Capdevielle, X.; Fabreguettes, O.; Delzon, S.; Deprez-Loustau, M.-L. Escape of spring frost and disease through phenological variations in oak populations along elevation gradients. J. Ecol. 2015, 103, 1044–1056. [Google Scholar] [CrossRef]
- Mitton, J.B.; Ferrenberg, S.M. Mountain pine beetle develops an unprecedented summer generation in response to climate warming. Am. Nat. 2012, 179, E163–E171. [Google Scholar] [CrossRef] [PubMed]
- Bentz, B.J.; Powell, J.A. Mountain pine beetle seasonal timing and constraints to bivoltinism. Am. Nat. 2014, 184, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Seitler, K.; Coe, N. cDNA primers for quantitative analysis of protective compounds implicated in beech bark disease resistance in American beech, Fagus grandifolia. Conserv. Genet. Resour. 2015, 7, 689–691. [Google Scholar] [CrossRef]
- Koch, J.L.; Carey, D.W. The Genetics of Resistance of American Beech to Beech Bark Disease: Knowledge through 2004. In Proceedings of the Beech Bark Disease Symposium, New York, NY, USA, 16–18 June 2004. [Google Scholar]
- Koch, J.L.; Mason, M.E.; Carey, D.W. Screening for Resistance to Beech Bark Disease: Improvements and Results from Seedlings and Grafted Filed Selections; General Technical PSW-GTR-240; U.S. Department of Agriculture: Washington, DC, USA, 2012.
- Houston, D.R. A Technique to Artificially Infest Beech Bark Disease with the Beech Scale, Cryptococcus fagisuga (Lindinger); USDA Forest Service Research Paper NE-507; USDA Forest Service: Washington, DC, USA, 1982.
- Londsdale, D. Wood and Bark Anatomy of Young Beech in Relation to Cryptococcus Attack. In Proceedings of the IUFRO Beech Bark Disease Working Party Conference, Hamden, CT, USA, 26 September–8 October 1982. [Google Scholar]
- Griffin, J.M.; Lovett, G.M.; Arthur, M.A.; Weathers, K.C. The distribution and severity of beech bark disease in the Catskill Mountains, N.Y. Can. J. For. Res. 2003, 33, 1754–1760. [Google Scholar] [CrossRef]
- Twery, M.J. Effects of Species Composition and Site Factors on the Severity of Beech Bark Disease in Western Massachusetts and the White Mountains of New Hampshire: A Preliminary Report. In Proceedings of the I.U.F.R.O. Beech Bark Disease Working Party Conference, Hamden, CT, USA, 26 September–8 October 1982. [Google Scholar]
- Development of an American Beech Breeding Program—Managing with Disturbance—Northern Research Station—USDA Forest Service. Available online: https://www.nrs.fs.fed.us/disturbance/invasive_species/beech_breeding (accessed on 17 April 2017).
- Koch, J.L.; Carey, D.W. A technique to screen American Beech for resistance to the beech scale insect (Cryptococcus fagisuga Lind.). J. Vis. Exp. 2014. [Google Scholar] [CrossRef] [PubMed]
- Lindner, M. Developing adaptive forest management strategies to cope with climate change. Tree Physiol. 2000, 20, 299–307. [Google Scholar] [CrossRef]
- Bouriaud, O.; Bréda, N.; Moguédec, G.L.; Nepveu, G. Modelling variability of wood density in beech as affected by ring age, radial growth and climate. Trees 2004, 18, 264–276. [Google Scholar] [CrossRef]
- Cescatti, A.; Piutti, E. Silvicultural alternatives, competition regime and sensitivity to climate in a European beech forest. For. Ecol. Manag. 1998, 102, 213–223. [Google Scholar] [CrossRef]
- Houston, D.R.; Parker, E.J.; Perrin, R.; Lang, K.J. Beech bark disease: A comparison of the disease in North America, Great Britain, France, and Germany. Eur. J. For. Pathol. 1979, 9, 199–211. [Google Scholar] [CrossRef]
- Cicák, A.; Mihál, L. T-disease—A little investigated phenomenon of the beech (Fagus sylvatica L.) necrotic damage. J. For. Sci. 2001, 47, 38–41. [Google Scholar]
- Farrar, A.; Ostrofsky, W.D. Dynamics of American Beech regeneration 10 years following harvesting in a beech bark disease—Affected stand in Maine. J. Appl. For. 2006, 23, 192–196. [Google Scholar]
- Hamelin, P.L. VT ANR Management Guidelines for Optimizing Mast Yields in Beech Mast Production Areas; Vermont Fish & Wildlife Department: Waterbury, VT, USA, 2011.
- Kearney, A.; McCullough, D.; Walters, M. Impact of beech bark disease on understory composition in Michigan. In Beech Bark Disease; Michigan State University: East Lansing, MI, USA, 2005; pp. 58–59. [Google Scholar]
- Cale, J.A.; Letkowski, S.K.; Teale, S.A.; Castello, J.D. Beech bark disease: An evaluation of the predisposition hypothesis in an aftermath forest. For. Pathol. 2012, 42, 52–56. [Google Scholar] [CrossRef]
- Cale, J.A.; Teale, S.A.; Johnston, M.T.; Boyer, G.L.; Perri, K.A.; Castello, J.D. New ecological and physiological dimensions of beech bark disease development in aftermath forests. For. Ecol. Manag. 2015, 336, 99–108. [Google Scholar] [CrossRef]
- Leak, W.B. Fifty-year impacts of the beech bark disease in the Bartlett experimental forest, New Hampshire. North. J. Appl. For. 2006, 23, 141–143. [Google Scholar]
Possible Mechanisms of Resistance | Environmental Factors |
---|---|
Structural (endogenous to host) Stone cell layers of cortex may provide structural barrier(s) to scale stylet [80] | Structural (exogenous to host) Forest type and forest dynamics [81] Forest structure [38] Species composition and site factors [82] |
Nutritional access (pathogen perspective) Nutrition partitioning allows tree to discourage infestation [40] Higher bark nitrogen may provide more desirable habitat for the beech scale [65,66] | Nutritional availability (host perspective) Nutrients and water [26] Drought conditions [14] |
Differential gene expression Differential gene expression in disease resistant versus BBD-susceptible beech trees [62,76] | Location attributes Stand-level [28] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stephanson, C.A.; Ribarik Coe, N. Impacts of Beech Bark Disease and Climate Change on American Beech. Forests 2017, 8, 155. https://doi.org/10.3390/f8050155
Stephanson CA, Ribarik Coe N. Impacts of Beech Bark Disease and Climate Change on American Beech. Forests. 2017; 8(5):155. https://doi.org/10.3390/f8050155
Chicago/Turabian StyleStephanson, Christopher Alexander, and Natalie Ribarik Coe. 2017. "Impacts of Beech Bark Disease and Climate Change on American Beech" Forests 8, no. 5: 155. https://doi.org/10.3390/f8050155
APA StyleStephanson, C. A., & Ribarik Coe, N. (2017). Impacts of Beech Bark Disease and Climate Change on American Beech. Forests, 8(5), 155. https://doi.org/10.3390/f8050155