Evaluation of a New Temporary Immersion Bioreactor System for Micropropagation of Cultivars of Eucalyptus, Birch and Fir
Abstract
:1. Introduction
2. Results
2.1. Effect of the TIB on Appearance, Multiplication Rate, and Fresh Weight of Explants
2.2. Acclimatization of in Vitro-Cultured Betula pendula and pubescens to Ex Vitro Conditions
2.3. Effect of the TIB on Fresh Weight of Embryogenic Tissue and Maturation Frequency of Somatic Embryos
3. Materials and Methods
3.1. Description of the TIB System
3.2. Plant Material and Growth Conditions
3.3. Experimental Setup and Statistical Analysis
3.4. Acclimatization of in Vitro Plants of B. pendula and B. pubescens to Ex Vitro Conditions
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Etienne, H.; Berthouly, M. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult. 2002, 69, 215–231. [Google Scholar] [CrossRef]
- Aidun, C.; Egertsdotter, E. Fluidics-based automation of clonal propagation via somatic embryogenesis: Se-fluidics system. In Proceedings of the Iufro Working Party 2.09.02: “Somatic embryogenesis of trees” Conference on “Integrating Vegetative Propagation, Biotechnologies and Genetic Improvement for Tree Production and Sustainable Forest Management”, Brno, Czech Republic, 25–28 June 2012; pp. S3–S3. [Google Scholar]
- Batish, D.R.; Singh, H.P.; Kohli, R.K.; Kaur, S. Eucalyptus essential oil as a natural pesticide. For. Ecol. Manag. 2008, 256, 2166–2174. [Google Scholar] [CrossRef]
- Mokotedi, M.E.; Watt, M.; Pammenter, N. Analysis of differences in field performance of vegetatively and seed-propagated eucalyptus varieties II: Vertical uprooting resistance. South. For. 2010, 72, 31–36. [Google Scholar]
- Meier-Dinkel, A. Micropropagation of birches (Betula spp.). In High-Tech and Micropropagation II; Springer: Berlin, Germany, 2012; pp. 40–79. [Google Scholar]
- Hynynen, J.; Niemistö, P.; Viherä-Aarnio, A.; Brunner, A.; Hein, S.; Velling, P. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern europe. Forestry 2010, 83, 103–119. [Google Scholar] [CrossRef]
- Lelu-Walter, M.-A.; Thompson, D.; Harvengt, L.; Sanchez, L.; Toribio, M.; Pâques, L.E. Somatic embryogenesis in forestry with a focus on Europe: State-of-the-art, benefits, challenges and future direction. Tree Genet. Genomes 2013, 9, 883–899. [Google Scholar] [CrossRef]
- Find, J.; Grace, L.; Krogstrup, P. Effect of anti-auxins on maturation of embryogenic tissue cultures of Nordmanns fir (Abies nordmanniana). Physiol. Plant. 2002, 116, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, L.B.; Christensen, C.J.; Ingerslev, M. Leaching versus input of nitrogen, potassium and magnesium in different fertilizer regimens in christmas tree stands of Abies nordmanniana in Denmark. Scand. J. For. Res. 2006, 21, 130–142. [Google Scholar] [CrossRef]
- Vooková, B.; Kormutak, A. Study of abies somatic embryogenesis and its application. Dendrobiology 2014, 71, 149–157. [Google Scholar] [CrossRef]
- Kroin, J. Propagate plants from cuttings using dry-dip rooting powders and water based rooting solutions. Comb. Proc. Intl. Plant Prop. Soc. 2008, 58, 360–372. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Mc Alister, B.; Finnie, J.; Watt, M.; Blakeway, F. Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). In Liquid Culture Systems for In Vitro Plant Propagation; Springer: Berlin, Germany, 2005; pp. 425–442. [Google Scholar]
- Chakrabarty, D.; Dewir, Y.; Hahn, E.; Datta, S.; Paek, K. The dynamics of nutrient utilization and growth of apple root stock ‘M9 EMLA’ in temporary versus continuous immersion bioreactors. Plant Growth Regul. 2007, 51, 11–19. [Google Scholar] [CrossRef]
- Kevers, C.; Franck, T.; Strasser, R.J.; Dommes, J.; Gaspar, T. Hyperhydricity of micropropagated shoots: A typically stress-induced change of physiological state. Plant Cell Tissue Organ Cult. 2004, 77, 181–191. [Google Scholar] [CrossRef]
- Welander, M.; Zhu, L.-H.; Li, X.-Y. Factors influencing conventional and semi-automated micropropagation. Propag. Ornam. Plants 2007, 7, 103–111. [Google Scholar]
- Marga, F.; Vebret, L.; Morvan, H. Agar fractions could protect apple shoots cultured in liquid media against hyperhydricity. Plant Cell Tissue Organ Cult. 1997, 49, 1–5. [Google Scholar] [CrossRef]
- Preece, J.E.; Read, P.E. The Biology of Horticulture: An Introductory Textbook; John Wiley & Son: Hoboken, NJ, USA, 1993. [Google Scholar]
- Escalona, M.; Lorenzo, J.; González, B.; Daquinta, M.; González, J.; Desjardins, Y.; Borroto, C. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep. 1999, 18, 743–748. [Google Scholar] [CrossRef]
- Zhu, L.-H.; Li, X.-Y.; Welander, M. Optimisation of growing conditions for the apple rootstock M26 grown in RITA containers using temporary immersion principle. In Liquid Culture Systems for In Vitro Plant Propagation; Springer: Berlin, Germany, 2005; pp. 253–261. [Google Scholar]
- Yan, H.; Liang, C.; Li, Y. Improved growth and quality of Siraitia grosvenorii plantlets using a temporary immersion system. Plant Cell Tissue Organ Cult. (PCTOC) 2010, 103, 131–135. [Google Scholar] [CrossRef]
- Mamun, N.H.; Egertsdotter, U.; Aidun, C.K. Bioreactor technology for clonal propagation of plants and metabolite production. Front. Biol. 2015, 10, 177–193. [Google Scholar] [CrossRef]
- Mallon, R.; Covelo, P.; Vieitez, A.M. Improving secondary embryogenesis in Quercus robur: Application of temporary immersion for mass propagation. Trees 2012, 26, 731–741. [Google Scholar] [CrossRef]
- Perez, M.; Bueno, M.A.; Escalona, M.; Toorop, P.; Rodriguez, R.; Canal, M.J. Temporary immersion systems (RITA®) for the improvement of cork oak somatic embryogeneic culture proliferation and somatic embryo production. Trees 2013, 27, 1277. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Businge, E.; Trifonova, A.; Schneider, C.; Rödel, P.; Egertsdotter, U. Evaluation of a New Temporary Immersion Bioreactor System for Micropropagation of Cultivars of Eucalyptus, Birch and Fir. Forests 2017, 8, 196. https://doi.org/10.3390/f8060196
Businge E, Trifonova A, Schneider C, Rödel P, Egertsdotter U. Evaluation of a New Temporary Immersion Bioreactor System for Micropropagation of Cultivars of Eucalyptus, Birch and Fir. Forests. 2017; 8(6):196. https://doi.org/10.3390/f8060196
Chicago/Turabian StyleBusinge, Edward, Adelina Trifonova, Carolin Schneider, Philipp Rödel, and Ulrika Egertsdotter. 2017. "Evaluation of a New Temporary Immersion Bioreactor System for Micropropagation of Cultivars of Eucalyptus, Birch and Fir" Forests 8, no. 6: 196. https://doi.org/10.3390/f8060196