Contributions of China’s Wood-Based Panels to CO2 Emission and Removal Implied by the Energy Consumption Standards
Abstract
:1. Introduction
2. Methodology and Data
2.1. System Dynamic Structure and Functional Unit
2.2. CO2 Emission and Energy Consumption Standard
2.3. CO2 Stock and Calculation Model
2.3.1. IPCC Methodology
2.3.2. Selection of Parameters and Data Sources
3. Results
3.1. CO2 Emissions
3.2. CO2 Stock Changes
3.3. Annual CO2 Fluxes and Contributions
4. Discussion
4.1. Methodological and Data Constraints
4.2. Potential of China’s Wood-Based Panels in Reducing CO2 Emissions of On-Site Manufacture
4.3. Ways to Enhance CO2 Removal Contributions of China’s Wood-Based Panels
4.4. Nature of Cleaner Production Technologies in China’s Wood-Based Panel Industry
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AFA | Atmospheric flow approach |
C | Carbon |
COP | Conference of the parties |
GDP | Gross domestic product |
GHG | Greenhouse gas |
HWP | Harvested wood products |
IPCC | Intergovernmental panel on climate change |
LY/T 1529–1999 | Total energy consumption in plywood production |
LY/T 1451–1999 | Comprehensive energy consumption for hard fiberboard production on the wet process |
LY/T 1530–1999 | Total energy consumption in particleboard production |
LY/T 1529–2012 | Comprehensive energy consumption of plywood production |
LY/T 1451–2008 | Overall energy consumption for fiberboard production |
LY/T 1530–2011 | Comprehensive energy consumption of particleboard production |
MDF | Medium-density fiberboard |
Mt | Million ton |
PA | Production approach |
SCA | Stock change approach |
References
- Shrestha, R.M.; Rajbhandari, S. Energy and environmental implications of carbon emission reduction targets: Case of Kathmandu Valley, Nepal. Energy Policy 2010, 38, 4818–4827. [Google Scholar] [CrossRef]
- Li, S.; Fang, H.; Liu, C. Report on Low-Carbon Economy Development in China; Science Press: Beijing, China, 2011. [Google Scholar]
- Schelhaas, M.J.; Cienciala, E.; Lindnner, M.; Nabuurs, G.J.; Zianchi, G. Selection and Quantification of Forestry Measures Targeted at the Kyoto Protocol and the Convention on Biodiversity; Alterra (Alterra-Rapport 1508): Wageningen, The Netherlands, 2007. [Google Scholar]
- Jochem, D.; Janzen, N.; Weimar, H. Estimation of own and cross price elasticities of demand for wood-based products and associated substitutes in the German construction sector. J. Clean. Prod. 2016, 137, 1216–1227. [Google Scholar] [CrossRef]
- The State Forestry Administration of the People’s Republic of China. China Forestry Statistical Yearbook; Chinese Forestry Press: Beijing, China, 2016; Available online: http://www.lknet.ac.cn/ (accessed on 12 December 2016).
- Zhang, X.; Yang, H. The dynamic evolution of China’s wood-based panel industry based on global equilibrium. For. Econ. 2015, 1, 62–74. [Google Scholar]
- Karjalainen, T.; Pussinen, A.; Liski, J.; Mohren, G.M.J. An approach towards an estimate of the impact of forest management and climate change on the European forest sector carbon budget: Germany as a case study. For. Ecol. Manag. 2002, 162, 87–103. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.; Hong, Y. Classification, production, and carbon stock of harvested wood products in China from 1961 to 2012. Bioresources 2014, 9, 90–95. [Google Scholar] [CrossRef]
- Bergman, R.; Puettmann, M.; Taylor, A.; Skog, K.E. The carbon impacts of wood products. For. Prod. J. 2014, 64, 220–231. [Google Scholar] [CrossRef]
- Wilson, J.B. Life-cycle inventory of medium density fiberboard in terms of resources, emissions, energy and carbon. Wood Fiber Sci. 2010, 42, 107–124. [Google Scholar]
- Intergovernmental Panel on Climate Change. 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014; Available online: http://www.ipcc-nggip.iges.or.jp/public/kpsg/index.html (accessed on 10 March 2016).
- Heath, L.S.; Maltby, V.; Miner, R.; Skog, K.E.; Smith, J.E.; Unwin, J.; Upton, B. Carbon and carbon profile of the U.S. forest products industry value chain. Environ. Sci. Technol. 2010, 44, 3999. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Cao, W.; Chen, Y.; Yang, H. Carbon balance and contribution of HWP in China based on the production approach of the intergovernmental panel on climate change. Int. J. Environ. Res. Public Health 2016, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Shen, J.; Wang, Y. Study on environmental impact assessment of wood-based panel based on LCA method. In Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering, Wuhan, China, May 2011; pp. 1–4. [Google Scholar]
- Syahirah, J. Environmental impact Assessment of Raw Material Input and Production Process on Malaysian Wood-Based Panel Products. Master’s Thesis, Universiti Teknologi MARA, Kuala Lumpur, Malaysia, 2015. [Google Scholar]
- Laurent, A.; Olsen, S.I.; Hauschile, M.S. Carbon footprint as environmental performance indicator for the manufacturing industry. Cirp. Ann.-Manuf. Technol. 2010, 59, 37–40. [Google Scholar] [CrossRef]
- Wilson, J.B. Life-cycle inventory of particleboard in terms of resources, emissions, energy and carbon. Wood Fiber Sci. 2010, 42, 90–106. [Google Scholar]
- Wilson, J.B.; Sakimoto, E.T. Gate-to-gate life-cycle inventory of softwood plywood production. Wood Fiber Sci. 2005, 37, 58–73. [Google Scholar]
- Garcia, R.; Freire, F. Environmental assessment of wood-based panels: A comparison of life-cycle-based tools. Int. J. Sustain. Constr. 2012, 1, 2182–2743. [Google Scholar]
- Bergman, R.D.; Kaestner, D.; Taylor, A.M. Life cycle impacts of north American wood panel manufacture. Wood Fiber Sci. 2016, 48, 40–53. [Google Scholar]
- Robson, D.; Sadler, P.; Newman, G. Carbon sequestered in UK forest products and wood based panels in construction: Helping to meet UK’s greenhouse gas emission reduction targets. Int. Wood Prod. J. 2014, 5, 139–145. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lin, C.M.; Han, Y.H. Carbon sequestration in Taiwan harvested wood products. Int. J. Sust. Dev. World 2011, 18, 154–163. [Google Scholar] [CrossRef]
- Xiang, S.; Wei, X.; Liu, W. Evaluation of the environmental properties of particle boards from a life cycle angle. J. Cent. South Univ. For. Technol. 2007, 27, 166–168. [Google Scholar]
- Xue, Y.; Xiang, S.; Liu, W. Life cycle assessment of MDF. For. Sci. Technol. 2006, 31, 47–49. [Google Scholar]
- West, T.O.; Marland, G.A. Synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Tillman, A.M.; Ekvall, T.; Baumann, H. Choice of system boundaries in life cycle assessment. J. Clean. Prod. 1994, 2, 21–29. [Google Scholar] [CrossRef]
- Rivela, B.; Hospido, A.; Moreira, M.T.; Feijoo, G. Life cycle inventory of particleboard: A case study in the wood sector. Int. J. Life Cycle Assess. 2006, 11, 106–113. [Google Scholar] [CrossRef]
- Sandin, G.; Peters, G.M.; Svanström, M. Life Cycle Assessment of Forest Products: Challenges and Solutions; Springer International Publishing: Cham, Switzerland, 2016; Volume 1, pp. 25–67. [Google Scholar]
- Pingoud, K.; Soimakallio, S.; Pussinen, A. Greenhouse gas impacts of harvested wood products: Evaluation and development of methods. VTT Tiedotteita–Valtion Teknillinen Tutkimuskeskus 2003, 2189, 3–120. [Google Scholar]
- Kouchakipenchah, H.; Sharifi, M.; Mousazadeh, H.; Zareahosseinabadi, H.; Nabavupelesaeaei, A. Gate to gate life cycle assessment of flat pressed particleboard production in Islamic Republic of Iran. J. Clean. Prod. 2016, 112, 343–350. [Google Scholar] [CrossRef]
- Chu, J.; Duan, X.; Zhang, R. Development path of wood-based panel industry under low-carbon economy. World For. Res. 2013, 26, 84–88. [Google Scholar]
- The State Forestry Administration of the People’s Republic of China.
- The State Forestry Administration of the People’s Republic of China. Comprehensive Energy Consumption for Hard Fiberboard Production on Wet Process; Standards Press of China: Beijing, China, 1989; pp. 623–626. [Google Scholar]
- The State Forestry Administration of the People’s Republic of China. Total Energy Consumption in the Particleboard Production; Standards Press of China: Beijing, China, 1989; pp. 1–6. [Google Scholar]
- 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.htm (accessed on 10 March 2016).
- Marcus, K. A multi-tiered approach for assessing the forestry and wood products industries’ impact on the carbon balance. Carbon Balance Manag. 2015, 10, 4. [Google Scholar]
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in life cycle assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Malik, R.N.; Taylor, A. Carbon footprint as an environmental sustainability indicator for the particleboard produced in Pakistan. Environ. Res. 2017, 155, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Kouchakipenchah, H.; Sharifi, M.; Mousazadeh, H.; Zareahosseinabadi, H. Life cycle assessment of medium-density fiberboard manufacturing process in Islamic Republic of Iran. J. Clean. Prod. 2016, 112, 351–358. [Google Scholar] [CrossRef]
- The State Forestry Administration of the People’s Republic of China. Comprehensive Energy Consumption of Plywood Production; Standards Press of China: Beijing, China, 2012; pp. 1–10. [Google Scholar]
- The State Forestry Administration of the People’s Republic of China. Overall Energy Consumption for Fiberboard Production; Standards Press of China: Beijing, China, 2008; pp. 1–4. [Google Scholar]
- The State Forestry Administration of the People’s Republic of China. Comprehensive Energy Consumption of Particleboard Production; Standards Press of China: Beijing, China, 2011; pp. 1–6. [Google Scholar]
- Cong, X.; Zhao, S. Study on application of cleaner production of forestry enterprises. Appl. Energy Technol. 2014, 3, 16–18. [Google Scholar]
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Technical Requirements of Cleaner Production for Wood-Based Panel Industry; Standards Press of China: Beijing, China, 2013; pp. 1–12. [Google Scholar]
- Li, H. Energy Consumption Analyze and Energy-Conserving Technology of Medium and Small-Scale MDF Enterprise; Central South Forestry University: Changsha, China, 2005. [Google Scholar]
- Li, X. Research of Typical Particleboard Enterprise’s Comprehensive Energy Consumption of Unit Product and Energy Saving Programs; Nanjing Forestry University: Nanjing, China, 2011. [Google Scholar]
- Vengala, J.; Nath, S.K.; Pandey, C.N. Energy consumption of wood-based panel products: A review. J. Indian Acad. Wood Sci. 2011, 8, 80–83. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change. Decisions Adopted by the Conference of the Parties Serving as the Meeting of the Parties to the Kyoto Protocol. 2012. Available online: http://unfccc.int/resource/docs/2011/cmp7/eng/10a01.pdf (accessed on 28 May 2016).
- Yang, H.; Zhang, X. A rethinking of the production approach in IPCC: Its objectiveness in China. Sustainability 2016, 8, 216. [Google Scholar] [CrossRef]
- Bai, Y.; Jiang, C.; Lu, D.; Zhu, Z. Carbon stock change of HWP in China. J. Zhejiang For. Coll. 2007, 24, 587–592. [Google Scholar]
- Guo, M.; Guan, X.; Li, J. Carbon storage and carbon emission of wood forest products in China. China Popul. Resour. Environ. 2010, 20, 19–21. [Google Scholar]
- Tu, H.; Liu, C. Calculations of CO2 emissions of standard coal. Coal Qual. Technol. 2014, 2, 57–60. [Google Scholar]
- Brunet-Navarro, P.; Jochheim, H.; Muys, B. Modelling carbon stocks and fluxes in the wood product sector: A comparative review. Glob. Chang. Biol. 2016, 22, 2555. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environmental Protection of the People’s Republic of China. Technical Requirement for Environmental Labeling Products-Wood-Based Panels and Finishing Products; China Environmental Science Press: Beijing, China, 2010; pp. 1–6. Available online: http://www.sepacec.com/cs/rzbz/201006/W020100612553147617000.pdf (accessed on 10 October 2016).
- Zhang, Q.; Zhou, D. The approach to enhancing comprehensive strength of China’s wood-based panel industry. China For. Prod. Ind. 2005, 32, 3–5. [Google Scholar]
- Guo, S. Energy saving in MDF plant. China For. Prod. Ind. 2002, 29, 39–41. [Google Scholar]
- Puettmann, M.E.; Bergman, R.; Hubbard, S.; Johnson, L.; Lippke, B.; Oneil, E.; Wagner, F.G. Cradle-to-gate life-cycle inventory of US wood products production: CORRIM Phase I and Phase II products. Wood Fiber Sci. 2010, 42, 15–28. [Google Scholar]
- Pingoud, K.; Perälä, A.L.; Pussinen, A. Carbon dynamics in wood products. Mitig. Adapt. Strat. Glob. Chang. 2001, 6, 91–111. [Google Scholar] [CrossRef]
- Profft, I. Contribution of harvested wood products to carbon sequestration-recent trends in Thuringia. For. Und Holz 2010. [Google Scholar]
- Lun, F.; Liu, M.; Zhang, D.; Li, W.; Liu, J. Life cycle analysis of carbon flow and carbon footprint of harvested wood products of larix principis-rupprechtii in China. Sustainability 2016, 8, 247. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, J.; Li, H. Discussion on energy-saving measures of plywood enterprises in China. China For. Prod. Ind. 2010, 37, 33–35. [Google Scholar]
- Huang, Z. Energy consumption analysis and energy saving technology of medium density fiberboard. Silicon Valley 2014, 19, 151–152. [Google Scholar]
- Yong, J.Y.; Klemeš, J.J.; Varbanov, P.S.; Huisingh, D. Cleaner energy for cleaner production: Modelling, simulation, optimisation and waste management. J. Clean. Prod. 2016, 111, 1–16. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, S.; Bi, J. Enterprises’ willingness to adopt/develop cleaner production technologies: An empirical study in Changshu, China. J. Clean. Prod. 2013, 40, 62–70. [Google Scholar] [CrossRef]
- Shen, J.; Xue, S.; Zeng, M.; Wang, Y.; Wang, Y.; Liu, X.; Wang, Z. Low-carbon development strategies for the top five power generation groups during China’s 12th Five-Year Plan Period. Renew. Sustain. Energy Rev. 2014, 34, 350–360. [Google Scholar]
Wood-Based Panels | Indexes | Areas | |
---|---|---|---|
Southern Provinces | Northern Provinces | ||
Plywood | First grade | 320 < q1 ≤ 450 | 420 < q1 ≤ 600 |
Second grade | 450 < q1 ≤ 600 | 600 < q1 ≤ 830 | |
Third grade | 600 < q1 ≤ 900 | 830 < q1 ≤ 1100 | |
Fiberboard | First grade | q1 ≤ 700 | q1 ≤ 750 |
Second grade | 700 < q1 ≤ 750 | 751 < q1 ≤ 850 | |
Particleboard | First grade | 20 < q1 ≤ 410 | 260 < q1 ≤ 490 |
Second grade | 410 < q1 ≤ 590 | 490 < q1 ≤ 670 | |
Third grade | 590 < q1 ≤ 830 | 670 < q1 ≤ 900 |
Wood-Based Panels | Indexes | Values |
---|---|---|
Plywood | Excellent | q1 ≤ 200 |
Good | 200 < q1 ≤ 240 | |
Qualified | 240 < q1 ≤ 260 | |
Fiberboard | Excellent | q1 ≤ 320 |
Good | 320 < q1 ≤ 380 | |
Qualified | 380 < q1 ≤ 450 | |
Particleboard | Excellent | q1 ≤ 120 |
Good | 120 < q1 ≤ 160 | |
Qualified | 160 < q1 ≤ 200 |
Wood-Based Panels | Density (t/m3) | Carbon Fraction (%) | Carbon Factor (tc/m3) | Moisture Content (%) | Half-Life (years) | Decay Rate (K) |
---|---|---|---|---|---|---|
Plywood | 0.520 | 0.443 | 0.230 | 6 | 25 | 0.028 |
Fiberboard | 0.760 | 0.465 | 0.353 | 4 | 25 | 0.028 |
Particleboard | 0.620 | 0.470 | 0.291 | 5 | 25 | 0.028 |
Countries | Wood-Based Panels | CO2 Emissions | CO2 Stocks | CO2 Fluxes | ||
---|---|---|---|---|---|---|
China | First stage | Plywood | 1.30 | 0.85 | 0.45 | |
Fiberboard | 1.91 | 1.30 | 0.61 | |||
Particleboard | 0.95 | 1.07 | −0.12 | |||
Second stage | Plywood | 0.51 | 0.85 | −0.34 | ||
Fiberboard | 0.81 | 1.30 | −0.49 | |||
Particleboard | 0.30 | 1.07 | −0.77 | |||
USA | Plywood | PNW | 0.13 | 0.84 | −0.71 | |
SE | 0.20 | 0.98 | −0.78 | |||
Fiberboard | 0.08 | 1.27 | −1.19 | |||
Particleboard | 0.18 | 1.05 | −0.87 |
Wood-Based Panels | Indexes | Values |
---|---|---|
Fiberboard | First grade | q1 ≤ 200 |
Second grade | q1 ≤ 390 | |
Third grade | q1 ≤ 440 | |
Particleboard | First grade | q1 ≤ 120 |
Second grade | q1 ≤ 150 | |
Third grade | q1 ≤ 200 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhang, H.; Nie, Y.; Yang, H. Contributions of China’s Wood-Based Panels to CO2 Emission and Removal Implied by the Energy Consumption Standards. Forests 2017, 8, 273. https://doi.org/10.3390/f8080273
Wang S, Zhang H, Nie Y, Yang H. Contributions of China’s Wood-Based Panels to CO2 Emission and Removal Implied by the Energy Consumption Standards. Forests. 2017; 8(8):273. https://doi.org/10.3390/f8080273
Chicago/Turabian StyleWang, Shanshan, Han Zhang, Ying Nie, and Hongqiang Yang. 2017. "Contributions of China’s Wood-Based Panels to CO2 Emission and Removal Implied by the Energy Consumption Standards" Forests 8, no. 8: 273. https://doi.org/10.3390/f8080273
APA StyleWang, S., Zhang, H., Nie, Y., & Yang, H. (2017). Contributions of China’s Wood-Based Panels to CO2 Emission and Removal Implied by the Energy Consumption Standards. Forests, 8(8), 273. https://doi.org/10.3390/f8080273