The Soil Water Condition of a Typical Agroforestry System under the Policy of Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Water Content
2.3. Soil Desiccation Index
2.4. Precipitation
2.5. Data Analysis
3. Results
3.1. The Vertical Distribution of Soil Moisture at Each Monitoring Site in the Cropland and the Apple Orchard
3.2. The Variation Characteristics of the Soil Moisture at Each Monitoring Site in the Cropland and the Apple Orchard in Different Layers
3.3. The SWC Change at Each Monitoring Site in the Cropland and the Apple Orchard
3.4. The SWS (0–200 cm) Variation of Each Monitoring Site in the Cropland
3.5. The Characteristics of Soil Desiccation for Each Monitoring Site in the Cropland
4. Discussion
4.1. The Differences in SWC at Each Monitoring Site in the Cropland and the Apple Orchard
4.2. The Influence of the Apple Orchard on the SWC of the Cropland
4.3. The Influence of the Apple Orchard on the SWS of the Cropland
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jia, Y.H.; Shao, M.A.; Jia, X.X. Spatial pattern of soil moisture and its temporal stability within profiles on a loessial slope in northwestern China. J. Hydrol. 2013, 495, 150–161. [Google Scholar] [CrossRef]
- Liu, B.X.; Shao, M.A. Estimation of soil water storage using temporal stability in four land uses over 10 years on the Loess Plateau, China. J. Hydrol. 2014, 517, 974–984. [Google Scholar] [CrossRef]
- Gao, J.; Hua, O.; Lei, G.; Xu, X.; Zhang, M. Effects of temperature, soil moisture, soil type and their interactions on soil carbon mineralization in Zoigê Alpine Wetland, Qinghai-Tibet Plateau. Chin. Geogr. Sci. 2011, 21, 27–35. [Google Scholar] [CrossRef]
- Qiu, Y.; Fu, B.; Wang, J.; Chen, L. Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China. J. Hydrol. 2001, 240, 243–263. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, L. Plant water use strategy in response to spatial and temporal variation in precipitation patterns in China: A stable isotope analysis. Forests 2018, 9, 123. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L. The impact of land use on water loss and soil desiccation in the soil profile. Hydrogeol. J. 2018, 26, 185–196. [Google Scholar] [CrossRef]
- Porporato, A.; D’Odorico, P.; Laio, F.; Ridolfi, L.; Rodrigueziturbe, I.; Miller, C.T.; Parlange, M.B.; Hassanizadeh, S.M. Ecohydrology of water-controlled ecosystems. Adv. Water Resour. 2002, 25, 1335–1348. [Google Scholar] [CrossRef]
- Hingston, F.J.; Galbraith, J.H.; Dimmock, G.M. Application of the process-based model BIOMASS to Eucalyptus lobulus spp. globulus plantations on ex-farmland in south western Australia II Stemwood production and seasonal growth. For. Ecol. Manag. 1998, 106, 141–156. [Google Scholar] [CrossRef]
- Mu, X.M.; Xu, X.X.; Wang, W.L.; Wen, Z.M.; Du, F. Impact of artificial forest on soil moisture of the deep soil layer on Loess Plateau. Acta Pedol. Sin. 2003, 40, 210–217. [Google Scholar]
- Wang, Y.; Zhu, Q.; Zhao, W.; Ma, H.; Wang, R.; Ai, N. The dynamic trend of soil water content in artificial forests on the Loess Plateau, China. Forests 2016, 7, 236. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Z.; Gong, J.; Fu, B.; Huang, Y. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China. Catena 2007, 70, 200–208. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Shang, Z.H.; Tian, F.P.; Wu, G.L.; Chang, X.F.; Warrington, D. Effects of grassland conversion from cropland on soil respiration on the semi-arid Loess Plateau, China. CLEAN–Soil Air Water 2015, 43, 1052–1057. [Google Scholar] [CrossRef]
- Wang, Y.P.; Han, M.Y.; Zhang, L.S.; Mao, C.P.; Lei, Y.S. Spatial characteristics of soil moisture of apple orchards in the Loess Plateau of Shaanxi Province. Sci. Silv. Sin. 2013, 49, 16–25. [Google Scholar]
- Wang, S.Y.; Wang, L.; Han, X.; Zhang, L.S. Evapotranspiration characteristics of apple orchard at peak period of fruiting in Loess Tableland. Sci. Silv. Sin. 2016, 52, 128–135. [Google Scholar]
- Wang, Y.B.; Wu, P.T.; Zhao, X.N.; Jin, J.M. Water-saving crop planning using multiple objective chaos particle swarm optimization for sustainable agricultural and soil resources development. CLEAN–Soil Air Water 2012, 40, 1376–1384. [Google Scholar] [CrossRef]
- Rosenqvist, L.; Hansen, K.; Vesterdal, L.; van der Salm, C. Water balance in afforestation chronosequences of common oak and Norway spruce on former arable land in Denmark and southern Sweden. Agric. For. Meteorol. 2010, 150, 196–207. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Yu, X. Impact of China’s Grain for Green Project on the landscape of vulnerable arid and semi-arid agricultural regions: A case study in northern Shaanxi Province. J. Appl. Ecol. 2009, 46, 536–543. [Google Scholar] [CrossRef]
- Yi, X.; Wang, L. Land suitability assessment on a Watershed of Loess Plateau using the Analytic Hierarchy Process. PLoS ONE 2013, 8, e69498. [Google Scholar] [CrossRef]
- Campi, P.; Palumbo, A.D.; Mastrorilli, M. Effects of tree windbreak on microclimate and wheat productivity in a Mediterranean environment. Eur. J. Agron. 2009, 30, 220–227. [Google Scholar] [CrossRef]
- Ruizsinoga, J.D.; Gabarrón Galeote, M.A.; Martinez Murillo, J.F.; Garcia Marín, R. Vegetation strategies for soil water consumption along a pluviometric gradient in southern Spain. Catena 2010, 84, 12–20. [Google Scholar] [CrossRef]
- Woodall, G.S.; Ward, B.H. Soil water relations, crop production and root pruning of a belt of trees. Agric. Water Manag. 2002, 53, 153–169. [Google Scholar] [CrossRef]
- Kizito, F.; Sène, M.; Dragila, M.I.; Lufafa, A.; Diedhiou, I.; Dossa, E.; Cuenca, R.; Selker, J.; Dick, R.P. Soil water balance of annual crop–native shrub systems in Senegal’s Peanut Basin: The missing link. Agric. Water Manag. 2007, 90, 137–148. [Google Scholar] [CrossRef]
- Shen, Q.; Gao, G.; Fu, B. Soil water content variations and hydrological relations of a typical land use pattern in an arid inland river basin of northwest China. Powder Technol. 2003, 131, 212–222. [Google Scholar]
- Ellis, T.; Hatton, T.; Nuberg, I. An ecological optimality approach for predicting deep drainage from tree belts of alley farms in water-limited environments. Agric. Water Manag. 2005, 75, 92–116. [Google Scholar] [CrossRef]
- Wang, L.; Wei, S.; Horton, R.; Shao, M.A. Effects of vegetation and slope aspect on water budget in the hill and gully region of the Loess Plateau of China. Catena 2011, 87, 90–100. [Google Scholar] [CrossRef]
- Cao, Y.; Li, J.; Zhang, S.; Wang, Y.; Cheng, K.; Wang, X.; Wang, Y.; Tahir, M.N. Characteristics of deep soil desiccation of apple orchards in different weather and landform zones on the Loess Plateau in China. Trans. Chin. Soc. Agric. Eng. 2012, 28, 72–79. [Google Scholar]
- Li, Y. Productivity dynamic of alfalfa and its effects on water eco-environment. Acta Pedol. Sin. 2002, 39, 404–411. [Google Scholar]
- Entin, J.K.; Robock, A.; Vinnikov, K.Y.; Hollinger, S.E.; Liu, S.X.; Namkhai, A. Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res. Atmos. 2000, 105, 11865–11878. [Google Scholar] [CrossRef]
- Yang, Q.; Fu, B.; Wang, J.; Chen, L. Spatiotemporal prediction of soil moisture content using multiple-linear regression in a small catchment of the Loess Plateau, China. Catena 2003, 54, 173–195. [Google Scholar] [Green Version]
- Wang, L.; Wang, Q.; Wei, S.; Shao, M.A.; Li, Y. Soil desiccation for Loess soils on natural and regrown areas. For. Ecol. Manag. 2008, 255, 2467–2477. [Google Scholar] [CrossRef]
- Li, Y.S. Effects of forest on water circle on the Loess Plateau. J. Nat. Resour. 2000, 16, 427–432. [Google Scholar]
- Kizito, F.; Dragila, M.I.; Senè, M.; Brooks, J.R.; Meinzer, F.C.; Diedhiou, I.; Diouf, M.; Lufafa, A.; Dick, R.P.; Selker, J. Hydraulic redistribution by two semi-arid shrub species: Implications for Sahelian agro-ecosystems. J. Arid Environ. 2012, 83, 69–77. [Google Scholar] [CrossRef]
- Caldwell, M.M.; Dawson, T.E.; Richards, J.H. Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 1998, 113, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Cubera, E.; Moreno, G. Effect of land-use on soil water dynamic in Dehesas of central–western Spain. Catena 2007, 71, 298–308. [Google Scholar] [CrossRef]
- Karray, J.A.; Lhomme, J.P.; Masmoudi, M.M.; Mechlia, N.B. Water balance of the olive tree–annual crop association: A modeling approach. Agric. Water Manag. 2008, 95, 575–586. [Google Scholar] [CrossRef]
- Gan, Z.T.; Liu, W.Z. Distribution of the fine roots of different aged apple trees in Weibei rainfed tableland of the Loess Plateau. Acta Ecol. Sin. 2008, 28, 3401–3407. [Google Scholar]
- Zhang, J.S.; Meng, P.; Yin, C.J. Spatial distribution characteristics of apple tree roots in the apple-wheat intercropping. Sci. Silv. Sin. 2002, 38, 30–33. [Google Scholar]
- Lu, H.D.; Xue, J.Q.; Ma, G.S.; Hao, Y.C.; Zhang, R.H.; Ma, X.F. Soil physical and chemical properties and root distribution in high yielding spring maize fields in Yulin, Shaanxi Province. Chin. J. Appl. Ecol. 2010, 21, 895–900. [Google Scholar]
- He, F.H.; Jiang, W.G.; Huang, M.B. Ecological water effect of returning orchard to cultivated land in apple base of gully region of the Loess Plateau. Geogr. Res. 2010, 29, 1863–1869. [Google Scholar]
- Gao, Y.; Fan, J.; Peng, X.P.; Wang, L.; Mi, M.X. Soil water depletion and infiltration under the typical vegetation in the water-wind erosion crisscross region. Acta Ecol. Sin. 2014, 34, 7038–7046. [Google Scholar]
- Shen, Q.; Gao, G.; Fu, B.; Lü, Y. Soil water content variations and hydrological relations of the cropland-treebelt-desert land use pattern in an oasis-desert ecotone of the Heihe River Basin, China. Catena 2014, 123, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Dong, H.; Guo, G.H.; Yang, C. Spatial distribution rule of root system of Red FuJi Apple trees at full bearing period in Akesu. Nonwood For. Res. 2013, 31, 78–85. [Google Scholar]
- Miller, A.W.; Pallardy, S.G. Resource competition across the crop-tree interface in a maize-silver maple temperate alley cropping stand in Missouri. Agrofor. Syst. 2001, 53, 247–259. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, L.; Su, J. The Soil Water Condition of a Typical Agroforestry System under the Policy of Northwest China. Forests 2018, 9, 730. https://doi.org/10.3390/f9120730
Zhang J, Wang L, Su J. The Soil Water Condition of a Typical Agroforestry System under the Policy of Northwest China. Forests. 2018; 9(12):730. https://doi.org/10.3390/f9120730
Chicago/Turabian StyleZhang, Jing, Li Wang, and Jingyuan Su. 2018. "The Soil Water Condition of a Typical Agroforestry System under the Policy of Northwest China" Forests 9, no. 12: 730. https://doi.org/10.3390/f9120730
APA StyleZhang, J., Wang, L., & Su, J. (2018). The Soil Water Condition of a Typical Agroforestry System under the Policy of Northwest China. Forests, 9(12), 730. https://doi.org/10.3390/f9120730