Nondestructive Characterization of Dry Heat-Treated Fir (Abies Alba Mill.) Timber in View of Possible Structural Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
2.2.1. Heat Treatment
2.2.2. Determination of Wood Color
2.2.3. Determination of Elastomechanical Properties of Structural Timber with Ultrasound
2.2.4. Analysis of Flexural Vibration of Structural Timber Boards and Strength Grading
3. Results
3.1. Impact of Heat Treatment on Wood Density, Weight Loss, Hygroscopicity and Color of Fir Structural Timber
3.2. Elastomechanical Properties and Anisotropy of Heat-Treated Structural Timber
3.3. Vibration Response of Heat-Treated Structural Timber
Strength Grading of Heat-Treated Structural Timber
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stamm, A.J. Themal degradation of wood and cellulose. Ind. Eng. Chem. 1956, 48, 413–417. [Google Scholar] [CrossRef]
- Kollmann, F.; Schneider, A. Über das Sorptionsverhaltnis wärmebehandelter Hölzer. Holz Roh- Werkst. 1963, 21, 77–85. (In German) [Google Scholar] [CrossRef]
- Tjeerdsma, B.F.; Boonstra, M.; Pizzi, A.; Tekely, P.; Militz, H. Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz Roh- Werkst. 1998, 56, 149–153. [Google Scholar] [CrossRef]
- Metsä-Kortelainen, S.; Antikainen, T.; Viitaniemi, P. The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170 °C., 190 °C., 210 °C. and 230 °C. Holz Roh- Werkst. 2006, 64, 192–197. [Google Scholar] [CrossRef]
- Hakkou, M.; Pétrissans, M.; Zoulalian, A.; Gérardin, P. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym. Dégrad. Stab. 2005, 89, 1–5. [Google Scholar] [CrossRef]
- Burmeister, A. Einfluss einer Wärme-Druck-Behandlung halbtrockenen Holzes auf eine seine Formbeständigkeit. Holz Roh- Werkst. 1973, 31, 237–243. (In German) [Google Scholar] [CrossRef]
- Cetera, P.; Negro, F.; Cremonini, C.; Todaro, L. Physico-Mechanical Properties of Thermally Treated Poplar OSB. Forests 2018, 9, 345. [Google Scholar] [CrossRef]
- Santos, J.A. Mecanical behaviour of Eucalyptus wood modified by heat. Wood Sci. Technol. 2000, 34, 39–43. [Google Scholar] [CrossRef]
- Shi, J.L.; Kocaefe, D.; Zhang, J. Mechanical behaviour of Quebec wood species heat-treated using ThermoWood process. Holz Roh- Werkst. 2007, 65, 255–259. [Google Scholar] [CrossRef]
- Bengtsson, C.; Jermer, J.; Brem, F. Bending strength of heat-treated spruce and pine timber. In Proceedings of the IRG/WP 02-40242, Jackson Lake, WJ, USA, 20–24 May 2007. [Google Scholar]
- Giebeler, E. Dimensionstabilisierung von Holz durch eine Feuchte/Wärme/Druck- Behandlung. Holz Roh- Werkst. 1983, 41, 87–94. (In German) [Google Scholar] [CrossRef]
- Kubojima, Y.; Okano, T.; Ohta, M. Bending strength and toughness of heat-treated wood. J. Wood Sci. 2000, 46, 8–15. [Google Scholar] [CrossRef]
- Poncsak, S.; Kocaefe, D.; Bouazara, M.; Pichette, A. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci. Technol. 2006, 40, 647–663. [Google Scholar] [CrossRef]
- Borůvka, V.; Zeidler, A.; Holeček, T.; Dudik, R. Elastic and Strength Properties of Heat-Treated Beech and Birch Wood. Forests 2018, 9, 197. [Google Scholar] [CrossRef]
- Zeidler, A.; Borůvka, V.; Schönfelder, O. Comparison of Wood Quality of Douglas Fir and Spruce from Afforested Agricultural Land and Permanent Forest Land in the Czech Republic. Forests 2017, 9, 13. [Google Scholar] [CrossRef]
- Rusche, H. Festigkeitseigenschaften von trockenem Holz nach thermischer Behandlung. Holz Roh- Werkst. 1973, 31, 273–281. (In German) [Google Scholar] [CrossRef]
- Widman, R.; Fernandez-Cabo, J.L.; Steiger, R. Mechanical properties of thermally modified beech timber for structural purposes. Eur. J. Wood Wood Prod. 2012, 70, 775–784. [Google Scholar] [CrossRef]
- Newton, P.F. Acoustic-Based Non-Destructive Estimation of Wood Quality Attributes within Standing Red Pine Trees. Forests 2017, 8, 380. [Google Scholar] [CrossRef]
- Škorpik, P.; Konrad, H.; Geburek, T.; Schuh, M.; Vasold, D.; Eberhardt, M.; Schuler, S. Solid Wood Properties Assessed by Non-Destructive Measurements of Standing European Larch (Larix decidua Mill.): Environmental Effects on Variation within and among Trees and Forest Stands. Forests 2018, 9, 276. [Google Scholar] [CrossRef]
- German Institute for Standardisation. Strength Grading of Wood—Part 1: Coniferous Sawn Timber; German Institute for Standardisation: Berlin, Germany, 2012; Volume DIN 4071-1, p. 8. [Google Scholar]
- European Committee for Standardization. Structural timber—Strength classes—Assignment of visual grades and species; CEN: Brussels, Belgium, 2007; Volume EN 1912: 2004, p. 16. [Google Scholar]
- European Committee for Standardization. Timber Structures—Strangth Graded Structural Timber with Rectangular Cross Section—Part 1: General Requirements; CEN: Brussels, Belgium, 2010; Volume EN 14081-1: 2005, p. 12. [Google Scholar]
- European Committee for Standardization. Structural Timber—Stress Classes; CEN: Brussels, Belgium, 2009; Volume EN 338: 2009, p. 10. [Google Scholar]
- Boonstra, M.; van Acker, J.; Tjeerdsma, B.F.; Kegel, E.V. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann. For. Sci. 2007, 64, 679–690. [Google Scholar] [CrossRef]
- Welzbacher, C.R.; Brischke, C.; Rapp, A.O. Influence of treatment temperature and duration on selected biological, mechanical, physical and optical properties of thermally modified timber. Wood Mater. Sci. Eng. 2007, 2, 66–76. [Google Scholar] [CrossRef]
- Candelier, K.; Dumarcay, S.; Pétrassans, A.; Desharnais, L.; Gérardin, P. Comparison of chemical composition and decay durability of heat treated wood cured under different inert atmospheres: Nitrogen or vacuum. Polym. Dégrad. Stab. 2013, 98, 677–681. [Google Scholar] [CrossRef]
- Alén, R.; Kotilainen, R.; Zaman, A. Thermochemical behaviour of Norway spruce (Picea abies) at 180 to 225 °C. Wood Sci. Technol. 2002, 36, 163–171. [Google Scholar] [CrossRef]
- Esteves, B.M.; Pereira, H. Wood modification by heat treatment: A. review. BioResources 2009, 4, 370–404. [Google Scholar]
- Bobleter, O.; Binder, H. Dynamischer hydrothermaler Abbau von Holz. Holzforschung 1980, 34, 48–51. [Google Scholar] [CrossRef]
- Tjeerdsma, B.F.; Militz, H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh- Werkst. 2005, 63, 102–111. [Google Scholar] [CrossRef]
- Repellin, V.; Guyonnet, R. Evaluation of heat treated wood swelling by differential scanning calotrimetry in relation with chemical composition. Holzforschung 2005, 59, 28–34. [Google Scholar] [CrossRef]
- Paul, W.; Ohlmeyer, M.; Leithoff, H.; Boonstra, M. Optimising the properties of OSB by one-step heat pre-treatment process. Holz Roh- Werkst. 2006, 64, 227–234. [Google Scholar] [CrossRef]
- Boonstra, M.; Tjeerdsma, B.F. Chemical analysis of heat treated softwoods. Holz Roh- Werkst. 2006, 64, 204–211. (In German) [Google Scholar] [CrossRef]
- Esteves, B.; Marques, A.V.; Domingos, I.; Pereira, H. Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci. Technol. 2006, 41, 193–207. [Google Scholar] [CrossRef]
- Brischke, C.; Welzbacher, C.R.; Brandt, K.; Rapp, A.O. Quality control of thermally modified timber: Interrelationship between heat treatment intensities and CIEL*a*b* color data on homogenized wood samples. Holzforschung 2007, 61, 19–22. [Google Scholar] [CrossRef]
- Bekhta, P.; Niemz, P. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 2003, 57, 539–546. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, P.; Liu, Y.; Chen, Y.; Gao, J.; Fan, Y. Kinetic Analysis of the Color of Larch Sapwood and Heartwood during Heat Treatment. Forests 2018, 9, 289. [Google Scholar] [CrossRef]
- Esteves, B.; Marques, A.V.; Domingos, I.; Pereira, H. Heat-induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci. Technol. 2008, 42, 369–384. [Google Scholar] [CrossRef]
- Sandoz, J.L. Grading of construction timber by ultrasound. Wood Sci. Technol. 1989, 23, 95–108. [Google Scholar] [CrossRef]
- Llana, D.F.; Iniguez-Gonzales, G.; Arriaga, F.; Niemz, P. Influence of Temperature and Moisture Content in Non-destructive values of Scots pine (Pinus sylvestris L.). In Proceedings of the 18th International Nondestructive Testing and Evaluation of Wood Symposium, Madison, WI, USA, 24–27 September 2013; pp. 451–458. [Google Scholar]
- Holeček, T.; Gašparik, M.; Lagaňa, R.; Borůvka, V.; Oberhofnerová, E. Measuring the Modulus of Elasticity of Thermally Treated Spruce Wood using the Ultrasound and Resonance Methods. BioResources 2017, 12, 819–838. [Google Scholar] [CrossRef]
- Del Menezzi, C.H.S.; Amorim, M.R.S.; Costa, M.A.; Garcez, L.R.O. Evaluation of Thermally Modified Wood by Means of Stress Wave and Ultrasound Nondestructive Methods. Mater. Sci. 2014, 20, 61–66. [Google Scholar] [CrossRef]
- Heräjärvi, H. Effect of Drying Technology on Aspen Wood Properties. Silva Fennica 2009, 43, 433–445. [Google Scholar] [CrossRef]
- Straže, A.; Fajdiga, G.; Pervan, S.; Gorišek, Ž. Hygro-mechanical behaviour of thermally treated beech subjected to compression loads. Constr. Build. Mater. 2016, 113, 28–33. [Google Scholar] [CrossRef]
- Kubojima, Y.; Okano, T.; Ohta, M. Vibrational properties of Sitka spruce heat-treated in nitrogen gas. J. Wood Sci. 1998, 44, 73–77. [Google Scholar] [CrossRef]
- Bodig, J.; Jayne, B. Mechanics of Wood and Wood Composites; Krieger Publishing Co.: Malabar, India, 1993; p. 712. [Google Scholar]
- Harris, C.M.; Paez, T.L. Harris’ Shock and Vibration Handbook, 6th ed.; McGraw-Hill: New York, NY, USA, 2009; p. 1168. [Google Scholar]
- Roohnia, M.; Tajdini, A. Identification of the Severity and Position of a Single Defect in a Wooden Beam. BioResources 2014, 9, 3428–3438. [Google Scholar] [CrossRef]
- Kubojima, Y.; Tonosaki, M.; Yoshihara, H. Young’s modulus obtained by flexural vibration test of a wooden beam with inhomogeneity of density. J. Wood Sci. 2006, 52, 20–24. [Google Scholar] [CrossRef]
- Kubojima, Y.; Suzuki, S.; Tonosaki, M. Effect of Additional Mass on the Apparent Young’s Modulus of a Wooden Bar by Longitudinal Vibration. BioResources 2014, 9, 5088–5098. [Google Scholar] [CrossRef]
- Roohnia, M.; Yavari, A.; Tajdini, A. Elastic parameters of poplar wood with end-cracks. Ann. For. Sci. 2010, 67, 409. [Google Scholar] [CrossRef]
- Johansson, D. Influence of drying on internal checking of spruce (Picea abies L.) heat-treated at 212°C. Holzforschung 2006, 60, 558–560. [Google Scholar] [CrossRef]
Heat Treatment (°C) | ρ (kg/m3) | WTloss (%) | EMC (%) | L* | a* | b* | ΔE* |
---|---|---|---|---|---|---|---|
Control | 425 | 12.4 | 74.9 | 6.1 | 25.1 | ||
(6.4) | (4.1) | (2.8) | (10.5) | (5.7) | |||
170 | 415 | 2.5 | 8.0 | 57.8 | 13.0 | 31.5 | 19.6 |
(6.7) | (36.6) | (12.7) | (6.2) | (9.2) | (4.8) | (24.0) | |
190 | 415 | 3.1 | 7.5 | 47.6 | 11.7 | 24.8 | 28.0 |
(7.3) | (26.8) | (11.9) | (7.1) | (6.5) | (10.9) | (13.9) | |
210 | 397 | 5.9 | 6.9 | 44.2 | 11.6 | 23.5 | 31.3 |
(6.5) | (24.9) | (8.1) | (6.0) | (5.8) | (4.9) | (10.8) | |
230 | 392 | 10.3 | 7.6 | 37.6 | 10.3 | 18.8 | 38.2 |
(6.7) | (15.9) | (13.9) | (4.4) | (8.5) | (9.9) | (8.6) |
Heat Treatment (°C) | vLL (m/s) | vRR (m/s) | vTT (m/s) | vLL/vRR | vLL/vTT | vRR/vTT | EL (GPa) | ER (GPa) | ET (GPa) |
---|---|---|---|---|---|---|---|---|---|
Control | 4991 | 1399 | 1079 | 3.7 | 4.7 | 1.3 | 10.6 | 0.88 | 0.51 |
(6.8) | (22.8) | (14.8) | (25.0) | (16.4) | (13.0) | (15.5) | (50.3) | (35.8) | |
170 | 5424 | 1610 | 1090 | 3.5 | 5.0 | 1.5 | 12.2 | 1.13 | 0.50 |
(6.3) | (21.1) | (10.7) | (21.6) | (14.6) | (15.0) | (10.5) | (44.3) | (22.8) | |
190 | 5365 | 1473 | 1045 | 3.8 | 5.4 | 1.5 | 12.0 | 0.93 | 0.39 |
(4.1) | (21.7) | (7.7) | (24.6) | (14.1) | (21.7) | (11.7) | (40.1) | (20.3) | |
210 | 5520 | 1587 | 1071 | 3.5 | 5.0 | 1.5 | 11.7 | 0.99 | 0.49 |
(4.2) | (17.4) | (9.7) | (28.6) | (15.6) | (18.2) | (10.4) | (31.0) | (26.3) | |
230 | 5161 | 1225 | 1028 | 3.9 | 4.7 | 1.2 | 10.1 | 0.60 | 0.42 |
(6.5) | (13.4) | (8.5) | (24.8) | (17.6) | (15.4) | (13.5) | (30.1) | (21.3) |
Heat Treatment (°C) | EB1 (GPa) | EB2 (GPa) | EB3 (GPa) | EB4 (GPa) | EB5 (GPa) | Bending Strength Grade (MPa) |
---|---|---|---|---|---|---|
Control | 12.74 | 13.01 | 12.38 | 11.83 | 11.45 | 31.6 |
(12.2) | (12.6) | (12.9) | (12.7) | (12.4) | (21.2) | |
170 | 13.58 | 13.48 | 12.96 | 12.47 | 12.06 | 34.1 |
(9.6) | (11.1) | (10.7) | (10.2) | (10.3) | (17.6) | |
190 | 13.59 | 13.73 | 12.96 | 12.50 | 12.12 | 34.9 |
(12.5) | (10.6) | (10.3) | (10.2) | (10.1) | (20.3) | |
210 | 12.94 | 12.81 | 12.12 | 11.71 | 11.40 | 29.4 |
(14.5) | (10.8) | (11.7) | (11.8) | (11.4) | (20.9) | |
230 | 11.58 | 12.45 | 11.69 | 11.21 | 10.92 | 26.8 |
(23.4) | (17.8) | (18.9) | (18.2) | (18.3) | (36.6) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straže, A.; Fajdiga, G.; Gospodarič, B. Nondestructive Characterization of Dry Heat-Treated Fir (Abies Alba Mill.) Timber in View of Possible Structural Use. Forests 2018, 9, 776. https://doi.org/10.3390/f9120776
Straže A, Fajdiga G, Gospodarič B. Nondestructive Characterization of Dry Heat-Treated Fir (Abies Alba Mill.) Timber in View of Possible Structural Use. Forests. 2018; 9(12):776. https://doi.org/10.3390/f9120776
Chicago/Turabian StyleStraže, Aleš, Gorazd Fajdiga, and Bojan Gospodarič. 2018. "Nondestructive Characterization of Dry Heat-Treated Fir (Abies Alba Mill.) Timber in View of Possible Structural Use" Forests 9, no. 12: 776. https://doi.org/10.3390/f9120776
APA StyleStraže, A., Fajdiga, G., & Gospodarič, B. (2018). Nondestructive Characterization of Dry Heat-Treated Fir (Abies Alba Mill.) Timber in View of Possible Structural Use. Forests, 9(12), 776. https://doi.org/10.3390/f9120776