Comparison of Timber Extraction Productivity between Winch and Grapple Skidding: A Case Study in Southern Italian Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Machine Characteristics
2.3. Working Systems
2.4. Productivity and Costs
- Travel unloaded (similar for cable winch and grapple): begins when the skidder leaves the landing area and ends when the skidder stops in the stump area
- Release and hooking (cable winch): begins when the worker has just grabbed the cable and sets the choker on the tree about 0.5–1.0 m away from the tree end, and ends when the skidder operator starts winching
- Winching (cable winch): begins when the driver starts to winch and ends when the tree has arrived at the rear part of the skidder
- Grabbing (grapple): begins when the grapple of the skidder opens and takes the trees and ends when the grapple is closed
- Travel loaded (similar for cable winch and grapple): begins when the machine moves to the landing and ends when it reaches the landing
- Unhooking (similar for cable winch and grapple): begins when the machine reaches the landing and ends when the load is unhooked
2.5. Data Analyses
3. Results
3.1. Elemental Time Study and Efficiency Analysis
3.2. Time Consumption and Productivity Models
3.3. Production Cost
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Italian National Inventory of Forests and Carbon Sinks. Italian Forests and Regions; Italian Council for Agricultural Research and Economics: Trento, Italy, 2005. [Google Scholar]
- Proto, A.R.; Macrì, G.; Bernardini, V.; Russo, D.; Zimbalatti, G. Acoustic evaluation of wood quality with a non-destructive method in standing trees: A first survey in Italy. iForest 2017, 10, 700–706. [Google Scholar] [CrossRef]
- Tam, V.W.; Senaratne, S.; Le, K.N.; Shen, L.Y.; Perica, J.; Illankoon, I.C.S. Life-cycle cost analysis of green-building implementation using timber applications. J. Clean. Prod. 2017, 147, 458–469. [Google Scholar] [CrossRef]
- Zambon, I.; Colosimo, F.; Monarca, D.; Cecchini, M.; Gallucci, F.; Proto, A.R.; Lord, R.; Colantoni, A. An innovative agro-forestry supply chain for residual biomass: Physicochemical characterisation of biochar from olive and hazelnut pellets. Energies 2016, 9, 526. [Google Scholar] [CrossRef] [Green Version]
- Proto, A.R.; Bacenetti, J.; Macrì, G.; Zimbalatti, G. Roundwood and bioenergy production from forestry: Environmental impact assessment considering different logging systems. J. Clean. Prod. 2017, 165, 1485–1498. [Google Scholar] [CrossRef]
- Klein, D.; Wolf, C.; Schulz, C.; Weber-Blaschke, G. Environmental impacts of various biomass supply chains for the provision of raw wood in Bavaria, Germany, with focus on climate change. Sci. Total Environ. 2016, 539, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Winter, S.; Brambach, F. Determination of a common forest life cycle assessment method for biodiversity evaluation. For. Ecol. Manag. 2011, 262, 2120–2132. [Google Scholar] [CrossRef]
- Zimbalatti, G.; Proto, A.R. Prospects of Forest Utilizations in the South of Italy. In Proceedings of the IUFRO (Unit 3.06.00) Workshop on Forestry Utilization in Mediterranean Countries, Reggio Calabria, Italy, 17–19 June 2009. [Google Scholar]
- Marchi, E.; Picchio, R.; Spinelli, R.; Verani, S.; Venanzi, R.; Certini, G. Environmental impact assessment of different logging methods in pine forests thinning. Ecol. Eng. 2014, 70, 429–436. [Google Scholar] [CrossRef]
- Macrì, G.; Russo, D.; Zimbalatti, G.; Proto, A.R. Measuring the mobility parameters of tree-length forwarding systems using GPS technology in the Southern Italy forestry. Agron. Res. 2016, 14, 836–845. [Google Scholar]
- Zimbalatti, G.; Proto, A.R. Cable logging opportunities for firewood in Calabrian forest. Biosyst. Eng. 2009, 102, 63–68. [Google Scholar] [CrossRef]
- Proto, A.R.; Zimbalatti, G. Firewood cable extraction in the southern Mediterranean area of Italy. For. Sci. Tech. 2016, 12, 16–23. [Google Scholar] [CrossRef]
- Proto, A.; Macrì, G.; Visser, R.; Harril, H.; Russo, D.; Zimbalatti, G. A case study on the productivity of forwarder extraction in small-scale Southern Italian Forests. Small-Scale For. 2017, 1–17. [Google Scholar] [CrossRef]
- Heinimann, H.R. Ground-Based Harvesting Technologies for Steep Slopes; Department of Forest Engineering, Oregon State University: Corvallis, OR, USA, 1999. [Google Scholar]
- Gumus, S.; Turk, Y. A new skid trail pattern design for farm tractors using linear programing and Geographical Information Systems. Forests 2016, 7, 306. [Google Scholar] [CrossRef]
- Mousavi, R. Effect of log length on productivity and cost of Timberjack 450C skidder in the Hyrcanian forest in Iran. J. For. Sci. 2012, 58, 473–482. [Google Scholar]
- Mousavi, R.; Nikooy, M.; Esmailnezhad, A.; Ershadifar, M. Evaluation of full tree skidding by HSM-904 skidder in patch cutting of aspen plantation in Northern Iran. J. For. Sci. 2012, 58, 79–87. [Google Scholar]
- Kluender, R.; Lortz, D.; McCoy, W.; Stokes, B.; Klepac, J. Productivity of rubber-tired skidders in Southern Pine Forests. For. Prod. J. 1997, 47, 53–58. [Google Scholar]
- Horvat, D.; Zecic, Z.; Susnjar, S. Morphological characteristics and productivity of skidder ECOTRAC 120 V. Croat. J. For. Eng. 2007, 28, 11–23. [Google Scholar]
- Stankić, I.; Poršinsky, T.; Tomašič, Ž.; Tonkovič, I.; Frntič, M. Productivity models for operational planning of timber forwarding in Croatia. Croat. J. For. Eng. 2012, 33, 61–78. [Google Scholar]
- Mederski, P.S.; Bembenek, M.; Jörn, E.; Dieter, D.F.; Karaszewsk, Z. The Enhancement of Skidding Productivity Resulting from Changes in Construction: Grapple Skidder vs. Rope Skidder. In Proceedings of the Forest Engineering: Meeting the Needs of the Society and the Environment, Padova, Italy, 11–14 July 2010. [Google Scholar]
- Kulak, D.; Stańczykiewicz, A.; Szewczyk, G. Productivity and time consumption of timber extraction with a grapple skidder in selected pine stands. Croat. J. For. Eng. 2017, 38, 33–55. [Google Scholar]
- Borz, S.; Dinulică, F.; Bîrda, M.; Ignea, G.; Ciobanu, V.; Popa, B. Time consumption and productivity of skidding Silver fir (Abies alba Mill.) round wood in reduced accessibility conditions: A case study in windthrow salvage logging form Romanian Carpathians. Ann. For. Res. 2013, 56, 363–375. [Google Scholar]
- Russell, F.; Mortimer, D. A Review of Small-Scale Harvesting Systems in Use Worldwide and Their Potential Application in Irish Forestry; COFORD, National Council for Forest Research and Development: Dublin, Ireland, 2005; 48p. [Google Scholar]
- Mousavi, R. Time consumption, productivity and cost analysis of skidding in the Hyrcanian Forest in Iran. J. For. Res. 2012, 58, 691–697. [Google Scholar] [CrossRef]
- Najafi, A.; Sobhani, H.; Seed, A.; Makhdom, M.; Marvi Mohajer, M.R. Time study of skidder HSM 904. J. Iran. Nat. Res. 2007, 60, 921–930. [Google Scholar]
- Eghtesadi, A. Study of Wood Extracting from Forest to Mill in Neka Watershed. Master’s Thesis, Tehran University, Tehran, Iran, 1991; p. 144. (In Persian). [Google Scholar]
- Wang, J.; Long, C.; McNeel, J.; Baumgras, J. Productivity and cost of manual felling and cable skidding in central Appalachian hardwood forests. For. Prod. J. 2004, 54, 45–51. [Google Scholar]
- Hurst, S. Skidder Performances. In Ground-Based Logging Seminar Proceedings; Logging Industry Research Organisation (LIRA): Rotorua, New Zealand, 1986; Session 3. [Google Scholar]
- Moore, T.A. Comparison of a Grapple and a Cable Skidder on Easy Terrain; Report Volume 12; Logging Industry Research Organisation (LIRA): Rotorua, New Zealand, 1987; p. 6. [Google Scholar]
- Philip, M.S. Measuring Trees and Forests; CAB International: Oxford, UK, 1994. [Google Scholar]
- UK Forestry Commission. Terrain Classification; Technical Note 16/95; Forestry Commission: Dumfries, UK, 1995. [Google Scholar]
- Cavalli, R.; Grigolato, S. Influence of characteristics and extension of a forest road network on the supply cost of forest woodchips. J. For. Res. 2010, 15, 202–209. [Google Scholar] [CrossRef]
- Harstela, P. Works Studies in Forestry; Silva Carelica n°25; Joensuu University Library: Joensuu, Finland, 1993. [Google Scholar]
- Nurminen, T.; Korpunen, H.; Uusitalo, J. Time consumption analysis of the mechanized cut-to-length harvesting system. Silv. Fenn. 2006, 40, 335–363. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N. Wood Extraction with Farm Tractor and Sulky: Estimating Productivity; Cost and Energy Consumption. Small-Scale For. 2012, 11, 73–85. [Google Scholar] [CrossRef]
- Olsen, E.D.; Kellogg, L.L. Comparison of time study techniques for evaluating logging production. Trans. ASAE 1983, 26, 1665–1668. [Google Scholar] [CrossRef]
- Miyata, E.S. Determining Fixed and Operating Costs of Logging Equipment; Forest Service, North Central Forest Experiment Station: St Paul, MN, USA, 1980. [Google Scholar]
- Spinelli, R.; Lombardini, C.; Magagnotti, N. The effect of mechanization level and harvesting system on the thinning cost of Mediterranean softwood plantations. Silv. Fenn. 2014, 48, 1–15. [Google Scholar]
- Spinelli, R.; Magagnotti, N. The effects of introducing modern technology on the financial, labour and energy performance of forest operations in the Italian Alps. For. Pol. Econ. 2011, 13, 520–524. [Google Scholar] [CrossRef]
- Nikooy, M.; Esmailnezhad, A.; Naghdi, R. Productivity and cost analysis of skidding with Timberjack 450C in forest plantations in Shafaroud watershed, Iran. J. For. Sci. 2013, 59, 261–266. [Google Scholar]
- Spinelli, R.; Baldini, S. Productivity and cost analysis of logging arch used with farm tractor in mediterranean forest skidding operations. Investigacion Agraria Sistemas y Recursos Forestales 1992, 2, 211–221. [Google Scholar]
- Calafatello, A.R.; Catania, P.; Vallone, M.; Pipitone, F. Technical analysis of mechanized yards in the farest utilization in Sicily. J. Agric. Eng. 2005, 3, 55–59. [Google Scholar]
- Hiesl, P.; Benjamin, J.G. Applicability of International Harvesting Equipment Productivity Studies in Maine, USA: A Literature Review. Forests 2013, 4, 898–921. [Google Scholar] [CrossRef]
- Liu, S.; Corcoran, T.J. Road and landing spacing under the consideration of surface dimension of road and landing. J. For. Eng. 1993, 5, 49–53. [Google Scholar] [CrossRef]
- Lotfalian, M.; Moafi, M.; Sotoude Foumani, B.; Akbari, R.A. Time study and skidding capacity of the wheeled skidder Timberjack 450C. J. Soil Sci. Environ. Manag. 2011, 2, 120–124. [Google Scholar]
- Behjou, F.K.; Majnounian, B.; Namiranian, M.; Dvořák, J. Time study and skidding capacity of the wheeled skidder Timberjack 450C in Caspian forests. J. For. Res. 2008, 54, 183–188. [Google Scholar]
- Proto, A.R.; Macrì, G.; Sorgonà, A.; Zimbalatti, G. Impact of skidding operations on soil physical properties in Southern Italy. Contemp. Eng. Sci. 2016, 9, 1105–1112. [Google Scholar] [CrossRef]
- Hoffmann, S.; Jaeger, D.; Lingenfelder, M.; Schoenherr, S. Analyzing the Efficiency of a Start-Up Cable Yarding Crew in Southern China under New Forest Management Perspectives. Forests 2016, 7, 188. [Google Scholar] [CrossRef]
- Haynes, H.; Visser, R. Productivity improvements through professional training in Appalachian cable logging operations. In Proceedings of the International Mountain Logging and 11th Northwest Pacific Skyline Symposium, Seattle, WA, USA, 10–12 December 2001. [Google Scholar]
Features | Site A | Site B |
---|---|---|
Silvicultural system | High forest | High forest |
Stand density | 800 trees/ha | 880 trees/ha |
Basal area | 36.2 m2/ha | 34.9 m2/ha |
Average DBH | 24 cm | 22.4 cm |
Average height per tree | 21 m | 20 m |
Average volume per tree | 0.52 m3 | 0.47 m3 |
Average Slope | 27% | 27% |
Range of Slopes | 23–37% | 19–32% |
Parameters | Unit | Value |
---|---|---|
Make | John Deere | |
Model | 548H | |
Power | kW | 110 |
Weight | tonnes | 12.16 |
Height | mm | 3002 |
Width | mm | 2640 |
Length | mm | 6662 |
Clearance | mm | 493 |
Wheelbase | mm | 2920 |
Grapple area | m2 | 0.74 |
Diameter Winch Cable | mm | 15.8 |
Drum capacity | m | 80 |
Nominal Pulling Force of Winch | kN | 193 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Purchase price (€) | 200,000 | Interest (€ year−1) | 8960 |
Salvage value (€) | 40,000 | Taxes and insurance (€ year−1) | 10,240 |
Estimated life (n year) | 10 | Total fixed cost (€ h−1) | 33.52 |
Scheduled machine hour (SMH) (h) | 1050 | Total variable cost (€ h−1) | 25.62 |
Productive machine hour (PMH) (%) | 70 | Total labour cost (€ h−1) | 21 |
Fuel & Lubricant (€ h−1) | 14.95 | Repair & maintenance (€ h−1) | 10.67 |
Annual depreciation (€ year−1) | 16,000 | Total hourly cost (€ h−1) | 80.14 |
Work Phase | Measurements Unit | Site A Mean | Site A (SD) | Site B Mean | Site B (SD) |
---|---|---|---|---|---|
Travel unloaded | Minutes | 1.93 | 0.39 | 3.25 | 0.35 |
Hooking/Grabbing | Minutes | 1.88 | 0.36 | 0.78 | 0.25 |
Winching | Minutes | 2.00 | 0.43 | ||
Travel loaded | Minutes | 2.75 | 0.56 | 3.68 | 0.53 |
Unhooking | Minutes | 0.59 | 0.07 | 0.01 | 0.00 |
Delay time | Minutes | 0.20 | 0.03 | 0.24 | 0.01 |
Total time | Minutes | 9.35 | 1.34 | 8.75 | 0.99 |
System | Model | Unstandardised Coefficients | Standardised Coefficients | t | Sig. | |
---|---|---|---|---|---|---|
B | Std. Error | Beta | ||||
Winch | (Constant) | −4.384 | 1.844 | −2.378 | 0.023 | |
Winching distance | 0.039 | 0.015 | 0.335 | 2.627 | 0.013 | |
Skidding Distance | 0.037 | 0.008 | 0.570 | 4.857 | 0.000 | |
Volume | 0.494 | 0.154 | 0.188 | 3.202 | 0.003 | |
Grapple | (Constant) | 2.505 | 0.387 | 6.4171 | 0.000 | |
Skidding Distance | 0.017 | 0.002 | 0.765 | 10.885 | 0.000 | |
Volume | 0.402 | 0.113 | 0.250 | 3.554 | 0.001 |
Site | Model | Equation | F | P | R2adjusted | |
---|---|---|---|---|---|---|
A | Tot time | Equation (1) | Tt = −4.384 + 0.039 × Wd (m) + 0.037 × Sd (m) + 0.494 × V (m3) | 133.3 | 0.00 | 0.91 |
B | Tot time | Equation (2) | Tt = 2.505 + 0.017 × Sd (m) + 0.402 × V (m3) | 151.3 | 0.00 | 0.88 |
Productivity | Equation (3) | P = 23.95 − 0.072 × Sd (m) + 4.833 × V (m3) + 1.833 × St | 91.6 | 0.00 | 0.77 |
Factor | Model | Sum of Squares | Df | Mean Square | F | Sig. |
---|---|---|---|---|---|---|
Productivity | Regression | 1188.896 | 3 | 396.299 | 91.653 | 0.000 |
Residual | 328.616 | 76 | 4.324 | |||
Total | 1517.512 | 79 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proto, A.R.; Macrì, G.; Visser, R.; Russo, D.; Zimbalatti, G. Comparison of Timber Extraction Productivity between Winch and Grapple Skidding: A Case Study in Southern Italian Forests. Forests 2018, 9, 61. https://doi.org/10.3390/f9020061
Proto AR, Macrì G, Visser R, Russo D, Zimbalatti G. Comparison of Timber Extraction Productivity between Winch and Grapple Skidding: A Case Study in Southern Italian Forests. Forests. 2018; 9(2):61. https://doi.org/10.3390/f9020061
Chicago/Turabian StyleProto, Andrea Rosario, Giorgio Macrì, Rien Visser, Diego Russo, and Giuseppe Zimbalatti. 2018. "Comparison of Timber Extraction Productivity between Winch and Grapple Skidding: A Case Study in Southern Italian Forests" Forests 9, no. 2: 61. https://doi.org/10.3390/f9020061
APA StyleProto, A. R., Macrì, G., Visser, R., Russo, D., & Zimbalatti, G. (2018). Comparison of Timber Extraction Productivity between Winch and Grapple Skidding: A Case Study in Southern Italian Forests. Forests, 9(2), 61. https://doi.org/10.3390/f9020061