Temporal Patterns of Wildfire Activity in Areas of Contrasting Human Influence in the Canadian Boreal Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Fire Variables
2.3. Fire-Climate Variables
2.4. Statistical Analysis
2.4.1. Linear Trend Detection
2.4.2. Time Series Decomposition
2.4.3. Cross-Correlations of Time Series
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Region | WBNP | LAP | ||||
---|---|---|---|---|---|---|
Cause | L + H | L | H | L + H | L | H |
Number of fires | 541 (100%) | 518 (95.75%) | 23 (4.25%) | 1146 (100%) | 614 (53.60%) | 532 (46.40%) |
Proportional number of fires (fires per 100 kha) | 12.70 | 12.14 | 0.54 | 14.44 | 7.74 | 6.70 |
Area burned (ha × 104) | 355.08 (100%) | 339.87 (95.70%) | 15.21 (4.30%) | 422.39 * (100%) | 199.56 (47.25%) | 222.83 (52.75%) |
Mean fire size (ha) | 7332.51 | 6978.90 | 353.60 | 7384.40 | 4411.42 | 2972.98 |
References
- Weber, M.G.; Stocks, B.J. Forest Fires and Sustainability in the Boreal Forest of Canada. Ambio 1998, 27, 545–550. [Google Scholar]
- Stocks, B.J.; Mason, J.A.; Todd, J.B.; Bosch, E.M.; Wotton, B.M.; Amiro, B.D.; Flannigan, M.D.; Hirsch, K.G.; Logan, K.A.; Martell, D.L.; et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. 2002, 108. [Google Scholar] [CrossRef]
- Bergeron, Y.; Leduc, A.; Harvey, B.; Gauthier, S. Natural fire regime: A guide for sustainable management of the Canadian boreal forest. Silva Fenn. 2002, 36, 81–95. [Google Scholar] [CrossRef]
- Johnstone, J.F. Response of boreal plant communities to variations in previous fire-free interval. Int. J. Wildl. Fire 2006, 15, 497–508. [Google Scholar] [CrossRef]
- Kurz, W.; Apps, M. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol. Appl. 1999, 9, 526–547. [Google Scholar] [CrossRef]
- Amiro, B.D.; Stocks, B.J.; Alexander, M.E.; Flannigan, M.D.; Wotton, B.M. Fire, climate change, carbon and fuel management in the Canadian boreal forest. J. Wildl. Fire 2001, 10, 405–413. [Google Scholar] [CrossRef]
- Martell, D.L. The impact of fire on timber supply in Ontario. For. Chron. 1994, 70, 164–173. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; Defries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [PubMed]
- Hope, E.S.; McKenney, D.W.; Pedlar, J.H.; Stocks, B.J.; Gauthier, S. Wildfire Suppression Costs for Canada under a Changing Climate. PLoS ONE 2016, 11, 2223–2236. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.G.; Flannigan, M.D. Canadian boreal forest ecosystem structure and function in a changing climate: Impact on fire regimes. Environ. Rev. 1997, 5, 145–166. [Google Scholar] [CrossRef]
- Flannigan, M.; Wotton, B. Climate, weather, and area burned. In Forest Fires: Behavior and Ecological Effects; Johnson, E.A., Miyanishi, K., Eds.; Academic Press: New York, NY, USA, 2001; pp. 351–373. [Google Scholar]
- Cumming, S.G. A parametric model of the fire-size distribution. Can. J. For. Res. 2001, 31, 1297–1303. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Cumming, S.G. Effects of biotic feedback and harvest management on boreal forest fire activity under climate change. Ecol. Appl. 2011, 21, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Podur, J. Spatial and temporal patterns of forest fire activity in Canada. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2001. [Google Scholar]
- Gralewicz, N.J.; Nelson, T.A.; Wulder, M.A. Factors influencing national scale wildfire susceptibility in Canada. For. Ecol. Manag. 2012, 265, 20–29. [Google Scholar] [CrossRef]
- Marlon, J.R.; Bartlein, P.J.; Carcaillet, C.; Gavin, D.G.; Harrison, S.P.; Higuera, P.E.; Joos, F.; Power, M.J.; Prentice, I.C. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 2008, 1, 697–702. [Google Scholar] [CrossRef]
- Gustafson, E.J.; Zollner, P.A.; Sturtevant, B.R.; He, H.S.; Mladenoff, D.J. Influence of forest management alternatives and land type on susceptibility to fire in northern Wisconsin, USA. Landsc. Ecol. 2004, 19, 327–341. [Google Scholar] [CrossRef]
- Parisien, M.; Peters, V.; Wang, Y. Spatial patterns of forest fires in Canada, 1980–1999. J. Wildl. Fire 2006, 15, 361–374. [Google Scholar] [CrossRef]
- Pechony, O.; Shindell, D.T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 2010, 107, 19167–19170. [Google Scholar] [CrossRef] [PubMed]
- Flannigan, M.; Cantin, A.S.; de Groot, W.J.; Wotton, M.; Newbery, A.; Gowman, L.M. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 2013, 294, 54–61. [Google Scholar] [CrossRef]
- Ruffault, J.; Mouillot, F. How a new fire-suppression policy can abruptly reshape the fire-weather relationship. Ecosphere 2015, 6, art199. [Google Scholar] [CrossRef]
- Brotons, L.; Aquilué, N.; de Cáceres, M.; Fortin, M.-J.; Fall, A. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes. PLoS ONE 2013, 8, e62392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higuera, P.E.; Abatzoglou, J.T.; Littell, J.S.; Morgan, P. The changing strength and nature of fire-climate relationships in the northern Rocky Mountains, USA., 1902–2008. PLoS ONE 2015, 10, e0127563. [Google Scholar] [CrossRef] [PubMed]
- Cumming, S.G. Effective fire suppression in boreal forests. Can. J. For. Res. 2005, 786, 772–786. [Google Scholar] [CrossRef]
- Martell, D.L.; Sun, H. The impact of fire suppression, vegetation, and weather on the area burned by lightning-caused forest fires in Ontario. Can. J. For. Res. 2008, 38, 1547–1563. [Google Scholar] [CrossRef]
- Magnussen, S.; Taylor, S.W. Inter- and intra-annual profiles of fire regimes in the managed forests of Canada and implications for resource sharing. Int. J. Wildl. Fire 2012, 21, 328–341. [Google Scholar] [CrossRef]
- Murphy, P. Methods for evaluating the effects of forest fire management in Alberta. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1985. [Google Scholar]
- Alberta Agriculture and Forestry Forest Areas of Alberta. Available online: http://wildfire.alberta.ca/resources/maps-data/documents/ForestAreasAlberta-May03-2017.pdf (accessed on 4 November 2016).
- Alberta Environment and Parks Alberta Wildfire 2015 Statistics. Available online: http://aep.alberta.ca/files/PREV_AlbertaWildfire_2015_Infographic_.pdf (accessed on 1 January 2016).
- Alam, R.; Islam, S.; Mosely, E.; Thomas, S.; Dodwell, V.; Doel, D. Rapid Impact Assessment of Fort McMurray Wildfire. Available online: https://www.iclr.org/images/AlamIslam_QuickResponseSummary-ICLR.pdf (accessed on 7 January 2017).
- KPMG May 2016 Wood Buffalo Wildfire, Post-Incident Assessment Report. Available online: https://www.alberta.ca/assets/documents/Wildfire-KPMG-Report.pdf (accessed 7 January 2017).
- Parks Canada Agency Fire Management Zones. Available online: https://www.pc.gc.ca/en/nature/science/conservation/feu-fire/feuveg-fireveg/incendies-wildfire (accessed on 1 January 2017).
- Natural Regions Committee. Natural Regions and Subregions of Alberta; Downing, D.J., Pettapiece, W.W., Eds.; Government of Alberta: Edmonton, AB, Canada, 2006; Pub. No. T/852.
- Alberta Biodiversity Monitoring Institute ABMI Wall-to-wall Land Cover Map. 2012. Available online: http://abmi.ca/home/data-analytics/da-top/da-product-overview/GIS-Land-Surface/Land-Cover.html (accessed on 10 April 2017).
- US Geological Survey USGS. Global Visualization Viewer. Available online: http://glovis.usgs.gov (accessed on 1 April 2017).
- Wang, T.; Hamann, A.; Spittlehouse, D.L.; Murdock, T.Q. ClimateWNA—High-resolution spatial climate data for western North America. J. Appl. Meteorol. Climatol. 2012, 51, 16–29. [Google Scholar] [CrossRef]
- Canadian Forest Service. Canadian National Fire Database—Agency Fire Data. 2016. Available online: http://cwfis.cfs.nrcan.gc.ca/datamart (accessed on 15 November 2016).
- Government of Alberta. Forest and Prairie Protection Act. Available online: http://www.qp.alberta.ca/574.cfm?page=F19.cfm&leg_type=Acts&isbncln=9780779726554%5CnR:%5CAdmin%5COffice%5CRefMan%5CPrairieOffices%5CCalgaryOffice%5C1322-EnvironmentalAssessment%5C1332-Biophysical%5CReferences (accessed on 20 July 2016).
- Armstrong, G.W. A stochastic characterisation of the natural disturbance regime of the boreal mixedwood forest with implications for sustainable forest management. Can. J. For. Res. 1999, 29, 424–433. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Development and Structure of the Canadian Forest Fire Weather Index System; Forestry Technical Report 35; Canadian Forestry Service: Otawa, ON, Canada, 1987. [Google Scholar]
- Natural Resources Canada. Canadian Forest Fire Weather Index System from the Canadian Wildland Fire Information System; Version 3.0; Canadian Forest Service, Northern Forestry Center: Edmonton, AB, Canada, 2016. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 4 June 2016).
- Hyndman, R.J.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008, 27, C3. [Google Scholar] [CrossRef]
- Metcalfe, A.V.; Cowpertwait, P.S.P. Introductory Time Series with R; Springer New York: New York, NY, USA, 2009; ISBN 978-0-387-88697-8. [Google Scholar]
- Crawley, M.J. The R Book, 2nd ed.; John Wiley and Sons: Chichester, UK, 2013; ISBN 9780470973929. [Google Scholar]
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression; Sage Publications: Thousand Oaks, CA, USA, 2002; ISBN 9781412975148. [Google Scholar]
- Harrell, F.E. Regression Modeling Strategies, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-19424-0. [Google Scholar]
- Jain, P. Package “MKcorrR”: Mann-Kendall Test with Autocorrelated Data. Unpublished work. 2017. [Google Scholar]
- Golyandina, N.; Korobeynikov, A. Basic singular spectrum analysis and forecasting with R. Comput. Stat. Data Anal. 2014, 71, 934–954. [Google Scholar] [CrossRef]
- Golyandina, N.; Korobeynikov, A.; Shlemov, A.; Usevich, K. Multivariate and 2D extensions of singular spectrum analysis with the Rssa package. J. Stat. Softw. 2014, 67, 1–78. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. Assessment of the significance of sample serial correlation by the bootstrap test. Water Resour. Manag. 2002, 16, 23–35. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Stoffer, D. Astsa: Applied Statistical Time Series Analysis. 2016. Available online: https://CRAN.R-project.org/package=astsa (accessed on 20 January 2017).
- Ebisuzaki, W.; Ebisuzaki, W. A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Clim. 1997, 10, 2147–2153. [Google Scholar] [CrossRef]
- Baddouh, M.; Meyers, S.R.; Carroll, A.R.; Beard, B.L.; Johnson, C.M. Lacustrine 87Sr/86Sr as a tracer to reconstruct Milankovitch forcing of the Eocene hydrologic cycle. Earth Planet. Sci. Lett. 2016, 448, 62–68. [Google Scholar] [CrossRef]
- Meyers, S.R. astrochron: An R Package for Astrochronology. 2014. Available online: https://cran.r-project.org/package=astrochron (accessed on 15 December 2016).
- Tymstra, C.; Flannigan, M.D.; Armitage, O.B.; Logan, K. Impact of climate change on area burned in Alberta’s boreal forest. Int. J. Wildl. Fire 2007, 16, 153–160. [Google Scholar] [CrossRef]
- Girardin, M.P. Interannual to decadal changes in area burned in Canada from 1781 to 1982 and the relationship to Northern Hemisphere land temperatures. Glob. Ecol. Biogeogr. 2007, 16, 557–566. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Parisien, M.-A.; Miller, C.; Parks, S.A.; DeLancey, E.R.; Robinne, F.-N.; Flannigan, M.D. The spatially varying influence of humans on area burned in North America. Environ. Res. Lett. 2016, 11, 075005. [Google Scholar] [CrossRef]
- Robinne, F.-N.; Parisien, M.-A.; Flannigan, M.D. Anthropogenic influence on wildfire activity in Alberta, Canada. Int. J. Wildl. Fire 2016, 25, 1131–1143. [Google Scholar] [CrossRef]
- Gralewicz, N.J.; Nelson, T.A.; Wulder, M.A. Spatial and temporal patterns of wildfire ignitions in Canada from 1980 to 2006. Int. J. Wildl. Fire 2012, 21, 230. [Google Scholar] [CrossRef]
- Podur, J.; Martell, D.; Knight, K. Statistical quality control analysis of forest fire activity in Canada. Can. J. For. 2002, 205, 195–205. [Google Scholar] [CrossRef]
- Ryu, S.-R.; Chen, J.; Zheng, D.; Bresee, M.K.; Crow, T.R. Simulating the effects of prescribed burning on fuel loading and timber production (EcoFL) in managed northern Wisconsin forests. Ecol. Modell. 2006, 196, 395–406. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Cumming, S.G.; Flannigan, M.D.; Wein, R.W. Biotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forest. Ecology 2006, 87, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Cumming, S. Forest type and wildfire in the Alberta boreal mixedwood: What do fires burn? Ecol. Appl. 2001, 11, 97–110. [Google Scholar] [CrossRef]
- Parisien, M.-A.; Parks, S.A.; Krawchuk, M.A.; Flannigan, M.D.; Bowman, L.M.; Moritz, M.A. Scale-dependent controls on the area burned in the boreal forest of Canada, 1980-2005. Ecol. Appl. 2011, 21, 789–805. [Google Scholar] [CrossRef] [PubMed]
- Fréjaville, T.; Curt, T. Seasonal changes in the human alteration of fire regimes beyond the climate forcing. Environ. Res. Lett. 2017, 12, 35006. [Google Scholar] [CrossRef]
- Archibald, S.; Roy, D.P.; van Wilgen, B.W.; Scholes, R.J. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob. Chang. Biol. 2009, 15, 613–630. [Google Scholar] [CrossRef]
- Wang, Y.; Anderson, K. An evaluation of spatial and temporal patterns of lightning-and human-caused forest fires in Alberta, Canada, 1980–2007. Int. J. Wildl. Fire 2011, 19, 1059–1072. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Rogers, B.M.; Goulden, M.L.; Jandt, R.R.; Miller, C.E.; Wiggins, E.B.; Randerson, J.T. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Chang. 2017, 7, 529–534. [Google Scholar] [CrossRef]
- Erni, S.; Arseneault, D.; Parisien, M.A.; Bégin, Y. Spatial and temporal dimensions of fire activity in the fire-prone eastern Canadian taiga. Glob. Chang. Biol. 2017, 23, 1152–1166. [Google Scholar] [CrossRef] [PubMed]
- Arienti, M.C.; Cumming, S.G.; Krawchuk, M.A.; Boutin, S. Road network density correlated with increased lightning fire incidence in the Canadian western boreal forest. Int. J. Wildl. Fire 2009, 18, 970–982. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Nagy, R.C.; Fusco, E.J. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114. [Google Scholar] [CrossRef] [PubMed]
- Albert-Green, A.; Dean, C.B.; Martell, D.L.; Woolford, D.G. A methodology for investigating trends in changes in the timing of the fire season with applications to lightning-caused forest fires in Alberta and Ontario, Canada. Can. J. For. Res. 2013, 43, 39–45. [Google Scholar] [CrossRef]
- Wang, X.; Thompson, D.K.; Marshall, G.A.; Tymstra, C.; Carr, R.; Flannigan, M.D. Increasing frequency of extreme fire weather in Canada with climate change. Clim. Chang. 2015, 130, 573–586. [Google Scholar] [CrossRef]
- Fauria, M.M.; Johnson, E.A. Large-scale climatic patterns control large lightning fire occurrence in Canada and Alaska forest regions. J. Geophys. Res. Biogeosci. 2006, 111, G04008. [Google Scholar] [CrossRef]
- Mori, A.S. Climatic variability regulates the occurrence and extent of large fires in the subalpine forests of the Canadian Rockies. Ecosphere 2011, 2, 1–20. [Google Scholar] [CrossRef]
- Bridgman, H.A.; Oliver, J.; Glantz, M. The Global Climate System: Patterns, Processes, and Teleconnections; Cambridge University Press: Cambridge, UK, 2006; ISBN 052182642X. [Google Scholar]
- Schoennagel, T.; Veblen, T.T.; Kulakowski, D.; Holz, A. Multidecadal climate variability and climate interactions affect subalpine fire occurrence, Western Colorado (USA). Ecology 2007, 88, 2891–2902. [Google Scholar] [CrossRef] [PubMed]
- Schoennagel, T.; Veblen, T.T.; Romme, W.H.; Sibold, J.S.; Cook, E.R. ENSO and PDO variability affect drought-induced fire occurrence in rocky mountain subalpine forests. Ecol. Appl. 2005, 15, 2000–2014. [Google Scholar] [CrossRef]
- Pickell, P.D.; Coops, N.C.; Ferster, C.J.; Bater, C.W.; Blouin, K.D.; Flannigan, M.D.; Zhang, J. An early warning system to forecast the close of the spring burning window from satellite-observed greenness. Sci. Rep. 2017, 1, 14190. [Google Scholar] [CrossRef] [PubMed]
Region | WBNP Area kha (%) | LAP Area kha (%) | ||
---|---|---|---|---|
Total | 4266 | (100) | 7932 | (100) |
Cultivation | 0 | 134.80 | (3.16) | |
Harvested (cut blocks) | 0 | 111.33 | (2.61) | |
Mining | 0 | 32.42 | (0.76) | |
Seismic lines | 0 | 29.86 | (0.70) | |
Industrial-rural | 0 | 23.90 | (0.56) | |
Roads and vegetated margins | 0.85 | (0.02) | 15.36 | (0.36) |
Urban | 0 | 2.58 | (0.06) | |
Total human-modified area | 0.85 | (0.02) | 350.25 | (8.21) |
Acronym | Name | Units | Description |
---|---|---|---|
TEMP | Temperature | ℃ | A measure of heat present in the air |
PRECIP | Precipitation | mm | A form of water, such as rain, snow etc. that condenses from the atmosphere and fall to the Earth |
RH | Relative Humidity | % | Amount of water vapor present in air |
WINS | Wind Speed | km/h | Velocity of air flow |
FFMC | Fine Fuel Moisture Code | unitless | Moisture contained in the upper soil layer (litter and fine fuels) |
DMC | Duff Moisture Code | unitless | Moisture for the loose organic layers of the soil, including medium-sized woody debris |
DC | Drought Code | unitless | Moisture in deep compacted organic layer and large woody debris |
ISI | Initial Spread Index | unitless | The expected rate of spread based on FFMC and wind speed |
BUI | Buildup Index | unitless | Proxy for the fuel load available for combustion. Based on DMC and DC |
FWI | Fire Weather Index | unitless | Reflects fire intensity and fire danger in forested areas. Based on ISI and BUI |
DSR | Daily Severity Rating | unitless | Exponential transformation of FWI indicating severe conditions when DSR >2 |
Acronym | Name | WBNP | LAP |
---|---|---|---|
TEMP | Temperature | 0.03 ** | 0.01 |
PRECIP | Precipitation | <−0.01 * | −0.01 ** |
RH | Relative Humidity | −0.15 ** | −0.06 ** |
WINS | Wind Speed | −0.10 ** | −0.03 * |
FFMC | Fine Fuel Moisture Code | 0.07 * | 0.07 ** |
DMC | Duff Moisture Code | 0.30 ** | 0.23 ** |
DC | Drought Code | 2.83 ** | 3.23 ** |
ISI | Initial Spread Index | 0 | 0 |
BUI | Buildup Index | 0.44 ** | 0.42 ** |
FWI | Fire Weather Index | 0.04 | 0.06 ** |
DSR | Daily Severity Rating | 0.02 | 0.02 * |
Region | WBNP | LAP | |||||
---|---|---|---|---|---|---|---|
Cause | L + H | L | H | L + H | L | H | |
WBNP | L + H | 1 | 0.96 ** | 0.17 * | 0.31 ** | 0.36 ** | 0.08 |
L | 0.94 ** | 1 | 0.13 | 0.30 ** | 0.35 ** | 0.09 | |
H | 0.09 | 0.04 | 1 | 0.18 | 0.24 * | −0.07 | |
LAP | L + H | 0.26 * | 0.25 * | 0.10 | 1 | 0.68 ** | 0.37 ** |
L | 0.33 ** | 0.32 ** | 0.09 | 0.76 ** | 1 | 0.06 | |
H | −0.01 | −0.01 | 0 | 0.29 * | 0.09 | 1 |
Number of Fires | Area Burned | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Region | WBNP | LAP | WBNP | LAP | ||||||||
Ignition cause | L + H | L | H | L + H | L | H | L + H | L | H | L + H | L | H |
Temperature | 0.20 * | 0.19 * | 0.17 | 0.20 | 0.12 | 0.23 * | 0.07 | 0.07 | 0.1 | 0.10 | 0.09 | 0.17 * |
Precipitation | −0.29 * | −0.27 * | −0.02 | −0.22 * | −0.21 * | −0.14 | −0.23 * | −0.25 * | 0.07 | −0.20 * | −0.21 * | −0.14 |
Relative humidity | −0.24 * | −0.23 * | −0.05 | −0.20 | −0.13 | −0.18 * | −0.21 | −0.22 * | −0.03 | −0.27 * | −0.24 * | -0.22 * |
Wind speed | −0.14 | −0.15 | −0.05 | −0.18 | −0.07 | −0.2 * | −0.27 | −0.23 | −0.09 | −0.02 | −0.01 | −0.12 |
FFMC | 0.26 * | 0.24 * | 0.1 | 0.23 * | 0.22 * | 0.15 | 0.20 | 0.20 * | 0.05 | 0.29 * | 0.27 * | 0.19 * |
DMC | 0.33 * | 0.32 ** | −0.01 | 0.27 * | 0.03 * | 0.21 * | 0.37 ** | 0.40 ** | −0.06 | 0.40 ** | 0.34 ** | 0.30 ** |
DC | 0.34 | 0.34 ** | 0.04 | 0.23 * | 0.25 * | 0.18 * | 0.36 * | 0.40 ** | −0.02 | 0.24 * | 0.26 ** | 0.27 * |
BUI | 0.20 * | 0.35 ** | 0 | 0.30 * | 0.26 * | 0.2 * | 0.37 ** | 0.40 ** | −0.03 | 0.40 ** | 0.35 ** | 0.30 * |
ISI | 0.21 * | 0.20 * | 0.10 | 0.28 * | 0.30 * | 0.1 | 0.23 * | 0.26 * | 0.07 | 0.40 ** | 0.32 ** | 0.21 * |
FWI | 0.30 * | 0.30 * | 0.06 | 0.31 * | 0.30 * | 0.16 | 0.36 ** | 0.40 ** | 0.01 | 0.44 ** | 0.36 ** | 0.30 ** |
DSR | 0.28 * | 0.26 * | 0.01 | 0.34 ** | 0.30 ** | 0.20 | 0.37 ** | 0.40 ** | 0.02 | 0.44 ** | 0.35 ** | 0.31 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos-Ruiz, R.; Parisien, M.-A.; Flannigan, M.D. Temporal Patterns of Wildfire Activity in Areas of Contrasting Human Influence in the Canadian Boreal Forest. Forests 2018, 9, 159. https://doi.org/10.3390/f9040159
Campos-Ruiz R, Parisien M-A, Flannigan MD. Temporal Patterns of Wildfire Activity in Areas of Contrasting Human Influence in the Canadian Boreal Forest. Forests. 2018; 9(4):159. https://doi.org/10.3390/f9040159
Chicago/Turabian StyleCampos-Ruiz, Rodrigo, Marc-André Parisien, and Mike D. Flannigan. 2018. "Temporal Patterns of Wildfire Activity in Areas of Contrasting Human Influence in the Canadian Boreal Forest" Forests 9, no. 4: 159. https://doi.org/10.3390/f9040159
APA StyleCampos-Ruiz, R., Parisien, M. -A., & Flannigan, M. D. (2018). Temporal Patterns of Wildfire Activity in Areas of Contrasting Human Influence in the Canadian Boreal Forest. Forests, 9(4), 159. https://doi.org/10.3390/f9040159