Investigating the Effect of a Mixed Mycorrhizal Inoculum on the Productivity of Biomass Plantation Willows Grown on Marginal Farm Land
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sampling and Measurements
2.3. Molecular Fungal Community Analysis
2.4. Data Analysis
3. Results
3.1. Sequence Library Results
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, T.; Ma, Z.; McConkey, B.; Kulshreshtha, S.; Huffman, T.; Green, M.; Liu, J.; Du, Y.; Shang, J. Bioenergy production on marginal land in Canada: Potential, economic feasibility, and greenhouse gas emissions impacts. Appl. Energy 2017, 205, 477–485. [Google Scholar] [CrossRef]
- Don, A.; Osborne, B.; Hastings, A.; Skiba, U.; Carter, M.S.; Drewer, J.; Flessa, H.; Freibauer, A.; Hyvönen, N.; Jones, M.B.; et al. Land-use change to bioenergy production in Europe: Implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 2012, 4, 372–391. [Google Scholar] [CrossRef]
- Labrecque, M.; Teodorescu, T.I. Influence of plantation site and wastewater sludge fertilization on the performance and foliar nutrient status of two willow species grown under SRIC in southern Quebec (Canada). For. Ecol. Manag. 2001, 150, 223–239. [Google Scholar] [CrossRef]
- Guidi, W.; Pitre, F.; Labrecque, M. Short-rotation coppice of willows for the production of biomass in Eastern Canada. In Biomass Now-Sustainable Growth and Use; Matovic, M.D., Ed.; InTech Open Science: Rijeka, Croatia, 2013; pp. 421–448. [Google Scholar]
- Kopp, R.F.; White, E.H.; Abrahamson, L.P.; Nowak, C.A.; Zsuffa, L.; Burns, K.F. Willow biomass trials in Central New York State. Biomass Bioenergy 1993, 5, 179–187. [Google Scholar] [CrossRef]
- Buchholz, T.; Volk, T. Improving the profitability of willow crops—Identifying opportunities with a crop budget model. Bioenergy Res. 2011, 4, 85–95. [Google Scholar] [CrossRef]
- Caslin, B.; Finnan, J.; McCracken, A. Short Rotation Coppice Willow Best Practice Guidelines; AFBI Agri-Food & Bioscience Institute: Belfast, England, 2010. [Google Scholar]
- Wang, B.; Qiu, Y.L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 2006, 16, 299–363. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, M.D.; Digman, M.A.; Gratton, E.; Treseder, K.K. Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol. Biochem. 2012, 22, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Jakobsen, I.; Grønlund, M.; Smith, F.A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011, 156, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Maldonado-Mendoza, I.; Lopez-Meyer, M.; Cheung, F.; Town, C.D.; Harrison, M.J. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J. 2007, 50, 529–544. [Google Scholar] [CrossRef] [PubMed]
- St-Arnaud, M.; Vujanovic, V. Effect of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In Mycorrhizae in Crop Production; Hamel, C., Plenchette, C., Eds.; Haworth Food & Agricultural Products Press: Binghamton, NY, USA, 2007; pp. 67–122. [Google Scholar]
- Lekberg, Y.; Koide, R.T. Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol. 2005, 168, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Puettsepp, U.; Rosling, A.; Taylor, A.F.S. Ectomycorrhizal fungal communities associated with Salix viminalis L. and S. dasyclados Wimm. clones in a short-rotation forestry plantation. For. Ecol. Manag. 2004, 196, 413–424. [Google Scholar] [CrossRef]
- Paradi, I.; Baar, J. Mycorrhizal fungal diversity in willow forests of different age along the river Waal, The Netherlands. For. Ecol. Manag. 2006, 237, 366–372. [Google Scholar] [CrossRef]
- Ryberg, M.; Andreasen, M.; Bjoerk, R.J. Weak habitat specificity in ectomycorrhizal communities associated with Salix herbacea and Salix polaris in alpine tundra. Mycorrhiza 2011, 21, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Van der Heijden, E.W. Differential benefits of arbuscular mycorrhizal and ectomycorrhizal infection of Salix repens. Mycorrhiza 2001, 10, 185–193. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Higuchi, R. Ectomycorrhizal and arbuscular mycorrhizal colonization of two species of floodplain willows. Mycoscience 2003, 44, 339–343. [Google Scholar] [CrossRef]
- Milne, J.M.; Ennos, R.A.; Holingsworth, R.M. Vegetation influence on ectomycorrhizal inoculum available to sub-arctic willow (Salix lapponum L.) planted in an upland site. Bot. J. Scotl. 2006, 58, 19–34. [Google Scholar] [CrossRef]
- Becerra, A.G.; Nouhra, E.R.; Silva, M.P.; McKay, D. Ectomycorrhizae, arbuscular mycorrhizae, and dark-septate fungi on Salix humboldtiana in two riparian populations from central Argentina. Mycoscience 2009, 50, 343–352. [Google Scholar] [CrossRef]
- Baxter, J.W.; Dighton, J. Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host–symbiont culture conditions. New Phytol. 2001, 152, 139–149. [Google Scholar] [CrossRef]
- Fransson, P.M.A.; Toljander, Y.K.; Baum, C.; Weih, M. Host plant-ectomycorrhizal fungus combination drives resource allocation in willow: Evidence for complex species interaction from a simple experiment. Ecoscience 2013, 20, 112–121. [Google Scholar] [CrossRef]
- Corredor, A.H.; van Rees, K.; Vujanovic, V. Changes in root-associated fungal assemblages within newly established clonal biomass plantations of Salix spp. For. Ecol. Manag. 2012, 282, 105–114. [Google Scholar] [CrossRef]
- Six, J.; Frey, S.D.; Thiet, R.K.; Batten, K.M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. 2006, 70, 556–569. [Google Scholar] [CrossRef]
- Douds, D.D.; Nagahashi, G.; Shenk, J.E. Frequent cultivation prior to planting to prevent weed competition results in an opportunity for the use of arbuscular mycorrhizal fungus inoculum. Renew. Agric. Food Syst. 2012, 27, 251–255. [Google Scholar] [CrossRef]
- Garbaye, J.; Churin, J.L. Growth stimulation of young oak plantations inoculated with the ectomycorrhizal fungus Paxillus involutus with special reference to summer drought. For. Ecol. Manag. 1997, 98, 221–228. [Google Scholar] [CrossRef]
- Baum, C.; Stetter, U.; Makeschin, F. Growth response of Populus trichocarpa to inoculation by the ectomycorrhizal fungus Laccaria laccata in a pot and a field experiment. For. Ecol. Manag. 2002, 163, 1–8. [Google Scholar] [CrossRef]
- Duponnois, R.; Plenchette, C.; Prin, Y.; Ducousso, M.; Kisa, M.; Bâ, A.M.; Galiana, A. Use of mycorrhizal inoculation to improve reafforestation process with Australian Acacia in Sahelian ecozones. Ecol. Eng. 2007, 29, 105–112. [Google Scholar] [CrossRef]
- Quoreshi, A.M.; Piché, Y.; Khasa, D.P. Field performance of conifer and hardwood species 5 years after nursery inoculation in the Canadian Prairie Provinces. New For. 2008, 35, 235–253. [Google Scholar] [CrossRef]
- Chapdelaine, A.; Dalpé, Y.; Hamel, C.; St Arnaud, M. Arbuscular mycorrhizal inoculation of ornamental trees in nursery. In Mycorrhiza Works; Feldmann, F., Kapulnik, Y., Baar, J., Eds.; Deutsche Phytomedizinische Gesellschaft, Spectrum Phytomedizin: Braunschweig, Germany, 2008; pp. 46–55. ISBN 978-3-941261-01-3. [Google Scholar]
- Quoreshi, A.M.; Khasa, D.P. Effectiveness of mycorrhizal inoculation in the nursery on root colonization, growth, and nutrient uptake of aspen and balsam poplar. Biomass Bioenergy 2008, 32, 381–391. [Google Scholar] [CrossRef]
- Fillion, M.; Brisson, J.; Guidi, W.; Labrecque, M. Increasing phosphorus removal in willow and poplar vegetation filters using arbuscular mycorrhizal fungi. Ecol. Eng. 2011, 37, 199–205. [Google Scholar] [CrossRef]
- Bissonnette, L.; St-Arnaud, M.; Labrecque, M. Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant Soil 2010, 332, 55–67. [Google Scholar] [CrossRef]
- Sieverding, E.; da Silva, G.A.; Berndt, R.; Oehl, F. Rhizoglomus, a new genus of the Glomeraceae. Mycotaxon 2015, 129, 373–386. [Google Scholar] [CrossRef]
- Stockinger, H.; Walker, C.; Schüßler, A. Glomus intraradices DAOM197198, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol. 2009, 183, 1176–1187. [Google Scholar] [CrossRef] [PubMed]
- Conseil de Production Végétale du Québec. Méthodes D’analyse des Sols, des Fumiers et des Tissus Végétaux; Ministère de l’Agriculture, des Pêcheries et de l’Alimentation. Gouvernement du Québec: Ste-Foy, QC, Canada, 1998. (In French)
- U.S. Environmental Protection Agency. Method 200.7. Inductively coupled plasma-atomic emission spectrometric method for trace element analysis of water and waste. In Methods for Chemical Analysis of Water and Wastes; U.S. Environmental Protection Agency: Cincmnati, OH, USA, 1983; EPA-600/4-79-020. [Google Scholar]
- Lee, J.; Lee, S.; Young, J.P. Improved primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microb. Ecol. 2008, 65, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Ghannoum, M.A.; Jurevic, R.J.; Mukherjee, P.K.; Cui, F.; Sikaroodi, M.; Naqvi, A.; Gillevet, P.M. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 2010, 6, e1000713. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.E.; Boon, E.; St-Arnaud, M.; Hijri, M. Molecular biodiversity of arbuscular mycorrhizal fungi in heavy metal polluted soils. Mol. Ecol. 2011, 20, 3469–3483. [Google Scholar] [CrossRef] [PubMed]
- Bell, T.H.; Hassan, S.E.; Lauron-Moreau, A.; Al Otaibi, F.; Hijri, M.; Yergeau, E.; St-Arnaud, M. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny. ISME J. 2014, 8, 331–343. [Google Scholar] [CrossRef] [PubMed]
- McKnight, J.S. Black Willow (Salix nigra) Marsh. Available online: http://vmpincel.ou.edu/oliver/pdf/Salix_nigraBlackWillow.pdf (accessed on 30 March 2018).
- Aanen, D.K.; Kuyper, T.; Mes, T.H.M.; Hoekstra, R. The evolution of reproductive isolation in the ectomycorrhizal Hebeloma crustuliniforme aggregate (basidiomycetes) in northwestern Europe: A phylogenetic approach. Evolution 2000, 54, 1192–1206. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, E.; Kiers, T.E. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evolut. Appl. 2010, 3, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Beauregard, M.S.; Hamel, C.; Gauthier, M.P.; Zhang, T.; Tan, C.S.; Welacky, T.; St-Arnaud, M. Various forms of organic and inorganic P fertilizers did not negatively affect AM fungi communities and biomass in a maize-soybean rotation system. Mycorrhiza 2013, 23, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Moebius-Clune, D.J.; Moebius-Clune, B.N.; van Es, H.M.; Pawlowska, T.E. Arbuscular mycorrhizal fungi associated with a single agronomic plant host across the landscape: Community differentiation along a soil textural gradient. Soil Biol. Biochem. 2013, 64, 191–199. [Google Scholar] [CrossRef]
- Tedersoo, L.; May, T.W.; Smith, M.E. Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 2010, 20, 217–263. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.C.; Haigh, J.M. Diversity of ectomycorrhizal fungi in Britain: A test of the species–area relationship, and the role of host specificity. New Phytol. 1998, 138, 619–627. [Google Scholar] [CrossRef]
- Kilronomos, J.N. Host-specificity and functional diversity among arbuscular mycorrhizal fungi. Microb. Biosyst. N. Front. 2000, 1, 845–851. [Google Scholar]
- Dickie, I.A.; Reich, P.B. Ectomycorrhizal fungal communities at forest edges. J. Ecol. 2005, 93, 244–255. [Google Scholar] [CrossRef]
- Oehl, F.; Sieverding, E.; Ineichen, K.; Mäder, P.; Boller, T.; Wiemken, A. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl. Environ. Microbiol. 2003, 69, 2816–2824. [Google Scholar] [CrossRef] [PubMed]
Depth | pH | Nitrate | Phosphorus | Organic Matter | Clay | Silt | Sand | Soil Type |
---|---|---|---|---|---|---|---|---|
Dry Field (45°49′31″ N, 73°37′29″ W) 1 | ||||||||
(0−20 cm) | 7.1 | 5.77 ppm | 130 kg/ha | 4.0% | 21.0% | 40.9% | 38.1% | Medium loam |
(20–40 cm) | 7.3 | 7.35 ppm | 81 kg/ha | 3.9% | 19.9% | 32.7% | 47.4% | Edging towards sandy |
Rocky Field (45°49′38″ N, 73°37′36″ W) 2 | ||||||||
(0–20 cm) | 7.9 | 6.87 ppm | 63 kg/ha | 3.5% | 29.5% | 39.2% | 31.3% | Medium loam |
(20–40 cm) | 7.9 | 5.77 ppm | 39 kg/ha | 2.8% | 24.1% | 43.5% | 32.4% | Edging towards clay |
Sandy Field (45°49′32″ N, 73°37′04″ W) 3 | ||||||||
(0–20 cm) | 6.0 | 5.35 ppm | 256 kg/ha | 2.1% | 2.5% | 10.4% | 87.1% | Loamy sand |
(20–40 cm) | 6.1 | 5.91 ppm | 192 kg/ha | 2.0% | 3.4% | 6.8% | 89.8% | Very close to pure sand |
Source | Nparm | DF | DFDen | F Ratio | Prob > F |
---|---|---|---|---|---|
Field | 2 | 2 | 33 | 21.0017 | <0001 * |
Inoc | 1 | 1 | 33 | 0.0175 | 0.8955 |
Field × inoc | 2 | 2 | 33 | 1.1145 | 0.3401 |
Fert | 1 | 1 | 33 | 105.1391 | <0001 * |
Field × fert | 2 | 2 | 33 | 1.8694 | 0.1702 |
Inoc × fert | 1 | 1 | 33 | 0.0187 | 0.8920 |
Field × inoc × fert | 2 | 2 | 33 | 0.2658 | 0.7682 |
Cultivar | 1 | 1 | 33 | 0.0465 | 0.8305 |
Field × cultivar | 2 | 2 | 33 | 0.4076 | 0.6686 |
Inoc × cultivar | 1 | 1 | 33 | 0.8624 | 0.3598 |
Field × inoc × cultivar | 2 | 2 | 33 | 0.2301 | 0.7957 |
Fert × cultivar | 1 | 1 | 33 | 0.1629 | 0.6891 |
Field × fert × cultivar | 2 | 2 | 33 | 0.4619 | 0.6341 |
Inoc × fert × cultivar | 1 | 1 | 33 | 2.0731 | 0.1593 |
Field × inoc × fert × cultivar | 2 | 2 | 33 | 0.602 | 0.5536 |
Experimental Treatments | Least Squares Mean | Standard Error | Test |
---|---|---|---|
Panel A: Field | Tukey’s test | ||
Dry | 11.029889 | 0.66402733 | B1 |
Rocky | 10.307269 | 0.66402733 | B |
Sandy | 15.964387 | 0.66402733 | A |
Panel B: Inoculation 1 | Student’s T-test | ||
Not inoculated | 12.478451 | 0.43045506 | A |
Inoculated | 12.389246 | 0.43045506 | A |
Panel C: Nitrogen fertilization | Student’s T-test | ||
Fertilized | 13.921206 | 0.4122257 | A |
Unfertilized | 10.946491 | 0.4122257 | B |
Panel D: Cultivar | Student’s T-test | ||
‘SX64’ | 12.486569 | 0.44855227 | A |
‘SX61’ | 12.381127 | 0.44855227 | A |
OTU | Not Inoculated | Inoculated | Name and GI 1 of Closest Match in NCBI Database |
---|---|---|---|
OTU-10 | 1 | - | Diversispora celata: 224586636 |
OTU-11 | 32 | - | Diversispora sp. W4538: 342298391 |
OTU-12 | 2 | - | Uncultured Diversispora: 398649715 |
OTU-13 | 19 | 47 | Glomus sp. MC27: 334683211 |
OTU-14 | 31 | 39 | Uncultured Glomus: 401664149 |
OTU-15 | 10 | 78 | Uncultured Ambispora: 308084344 |
OTU-16 | - | 1 | Uncultured Archaeospora: 308084350 |
OTU-17 | 9 | - | Glomeromycota sp. MIB 8442: 328541374 |
OTU | Not Inoculated | Inoculated | Name and GI 1 of Closest Match in NCBI Database | Phylum (Division) |
---|---|---|---|---|
OTU-2 | 5 | 3 | Cladosporium cladosporioides: 356484684 | Ascomycota |
OTU-3 | 2 | 2 | Epicoccum nigrum: 404474360 | Ascomycota |
OTU-6 | 8 | 8 | Magnusiomyces 357934165 | Ascomycota |
OTU-9 | 9 | 24 | * Pulvinula constellatio: 10178659 | Ascomycota |
OTU-11 | 2 | - | Trichurus spiralis: 237872399 | Ascomycota |
OTU-17 | - | 2 | Uncultured Geopora: 295291451 | Ascomycota |
OTU-18 | 2 | 2 | Uncultured Hyaloscyphaceae: 193850652 | Ascomycota |
OTU-21 | - | 5 | Hebeloma crustuliniforme 2 UE-2011: 359751813 | Basidiomycota |
OTU-22 | - | 3 | * Hymenogaster griseus: 387145960 | Basidiomycota |
OTU-28 | 2 | - | Uncultured 334683052 | Basidiomycota |
OTU-30 | 1 | 3 | * Uncultured Sebacinales: 264716693 | Basidiomycota |
OTU-33 | 16 | 1 | * Uncultured ectomycorrhizal fungus: 404247775 | unknown |
OTU-34 | 71 | 70 | * Uncultured fungus (from Salix rhiz. 2): 402535072 | unknown |
OTU-35 | 4 | 3 | Uncultured soil fungus: 195964332 | unknown |
OTU-36 | 1 | 5 | Olpidium brassicae: 87159723 | unknown |
OTU-40 | 2 | - | Entrophospora sp. JJ38: 15809596 | Glomeromycota |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pray, T.J.; Guidi Nissim, W.; St-Arnaud, M.; Labrecque, M. Investigating the Effect of a Mixed Mycorrhizal Inoculum on the Productivity of Biomass Plantation Willows Grown on Marginal Farm Land. Forests 2018, 9, 185. https://doi.org/10.3390/f9040185
Pray TJ, Guidi Nissim W, St-Arnaud M, Labrecque M. Investigating the Effect of a Mixed Mycorrhizal Inoculum on the Productivity of Biomass Plantation Willows Grown on Marginal Farm Land. Forests. 2018; 9(4):185. https://doi.org/10.3390/f9040185
Chicago/Turabian StylePray, Thomas Joseph, Werther Guidi Nissim, Marc St-Arnaud, and Michel Labrecque. 2018. "Investigating the Effect of a Mixed Mycorrhizal Inoculum on the Productivity of Biomass Plantation Willows Grown on Marginal Farm Land" Forests 9, no. 4: 185. https://doi.org/10.3390/f9040185
APA StylePray, T. J., Guidi Nissim, W., St-Arnaud, M., & Labrecque, M. (2018). Investigating the Effect of a Mixed Mycorrhizal Inoculum on the Productivity of Biomass Plantation Willows Grown on Marginal Farm Land. Forests, 9(4), 185. https://doi.org/10.3390/f9040185