Effects of CMIP5 Projections on Volume Growth, Carbon Stock and Timber Yield in Managed Scots Pine, Norway Spruce and Silver Birch Stands under Southern and Northern Boreal Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Outline of the Forest Ecosystem Model Used in the Simulations
2.2. Simulations and Data Analyses
3. Results
3.1. Mean Annual Stem Volume Growth
3.2. Total Ecosystem Carbon Stock
3.3. Timber Yield
3.4. Economic Profitability of Timber Yield (NPV)
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Timber Assortment | Tree Species | Unit Stumpage Prices (€ m−3) | ||
---|---|---|---|---|
1st Thinning | Other Thinnings | Final Cut | ||
Pulpwood | Scots pine | 12 | 15 | 18 |
Norway spruce | 12 | 16 | 19 | |
Silver birch | 12 | 14 | 17 | |
Sawlog | Scots pine | 40 | 48 | 56 |
Norway spruce | 40 | 48 | 56 | |
Silver birch | 33 | 37 | 43 |
Climate | Volume growth, m3 ha−1 year−1 | Carbon stock, Mg ha−1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BT(0,0) | BT(20,20) | BT(−20,−20) | BT(0,0) | BT(20,20) | BT(−20,−20) | |||||||
Scots pine | S | N | S | N | S | N | S | N | S | N | S | N |
CU | 6.7 | 4.1 | 7.0 | 4.1 | 6.3 | 3.7 | 71 | 57 | 79 | 64 | 63 | 52 |
HadGEM2 8.5 | 6.1 | 6.5 | 6.2 | 6.6 | 5.6 | 5.7 | 61 | 64 | 66 | 73 | 55 | 55 |
GFDL 8.5 | 6.5 | 6.4 | 6.7 | 6.9 | 6.0 | 5.7 | 63 | 63 | 71 | 64 | 59 | 56 |
CanESM2 8.5 | 6.7 | 6.4 | 6.7 | 6.5 | 6.1 | 5.8 | 66 | 65 | 71 | 74 | 62 | 57 |
MIROC5 8.5 | 6.7 | 6.4 | 6.9 | 6.9 | 6.1 | 5.8 | 69 | 64 | 76 | 72 | 64 | 56 |
HadGEM2 4.5 | 7.6 | 6.0 | 7.9 | 6.4 | 6.9 | 5.2 | 75 | 62 | 86 | 71 | 71 | 54 |
CanESM2 4.5 | 7.6 | 6.1 | 7.9 | 6.4 | 6.9 | 5.5 | 74 | 62 | 84 | 71 | 67 | 57 |
MIROC5 4.5 | 7.6 | 6.3 | 7.7 | 6.5 | 7.0 | 5.5 | 74 | 63 | 84 | 71 | 67 | 57 |
CNRM 8.5 | 8.1 | 6.2 | 8.4 | 6.6 | 7.6 | 5.3 | 78 | 63 | 79 | 70 | 71 | 57 |
MPI 4.5 | 7.6 | 5.4 | 7.9 | 5.7 | 7.1 | 4.8 | 75 | 63 | 77 | 69 | 71 | 55 |
MPI 8.5 | 8.0 | 5.8 | 8.4 | 6.3 | 7.4 | 5.2 | 78 | 64 | 78 | 70 | 73 | 56 |
Mean RCP4.5 | 7.7 | 5.9 | 8.1 | 6.1 | 7.2 | 5.3 | 76 | 62 | 86 | 68 | 70 | 55 |
Mean RCP8.5 | 7.6 | 6.4 | 8.1 | 6.8 | 7.1 | 5.7 | 75 | 63 | 85 | 72 | 67 | 59 |
Norway spruce | S | N | S | N | S | N | S | N | S | N | S | N |
CU | 7.1 | 4.7 | 7.4 | 5 | 6.6 | 4.3 | 87 | 70 | 90 | 81 | 80 | 63 |
HadGEM2 8.5 | 2.5 | 5.0 | 2.4 | 5.2 | 2.3 | 4.6 | 43 | 74 | 47 | 81 | 39 | 67 |
GFDL 8.5 | 1.6 | 4.7 | 1.7 | 4.9 | 1.5 | 4.4 | 34 | 76 | 36 | 85 | 30 | 60 |
CanESM2 8.5 | 2.5 | 5.1 | 2.6 | 5.4 | 2.4 | 4.5 | 44 | 72 | 49 | 82 | 41 | 67 |
MIROC5 8.5 | 2.3 | 5.2 | 2.3 | 5.6 | 2.3 | 4.9 | 44 | 88 | 47 | 90 | 40 | 77 |
HadGEM2 4.5 | 4.6 | 5.6 | 4.7 | 6.1 | 4.3 | 4.9 | 65 | 76 | 72 | 82 | 61 | 65 |
CanESM2 4.5 | 5.4 | 5.8 | 5.4 | 6.1 | 5.1 | 5.1 | 70 | 76 | 82 | 84 | 63 | 65 |
MIROC5 4.5 | 4.8 | 5.8 | 4.6 | 6.2 | 4.5 | 5.2 | 65 | 75 | 70 | 84 | 60 | 65 |
CNRM 8.5 | 5.5 | 6.1 | 5.7 | 6.4 | 5.1 | 5.4 | 74 | 76 | 77 | 86 | 70 | 64 |
MPI 4.5 | 7.3 | 5.7 | 7.6 | 6.1 | 6.9 | 5.1 | 88 | 77 | 90 | 83 | 84 | 66 |
MPI 8.5 | 6.9 | 6.2 | 7.1 | 6.5 | 6.4 | 5.3 | 85 | 76 | 85 | 87 | 75 | 67 |
Mean RCP4.5 | 6.7 | 5.9 | 6.8 | 6.1 | 6.1 | 5.1 | 82 | 74 | 84 | 84 | 65 | 66 |
Mean RCP8.5 | 4.3 | 5.8 | 4.6 | 6.3 | 4.3 | 5.2 | 64 | 76 | 69 | 86 | 59 | 66 |
Silver birch | S | N | S | N | S | N | S | N | S | N | S | N |
CU | 6.0 | 2.9 | 6.4 | 3.1 | 5.1 | 2.5 | 93 | 65 | 99 | 71 | 80 | 55 |
HadGEM2 8.5 | 6.5 | 4.5 | 7.5 | 5.3 | 5.8 | 4.0 | 97 | 70 | 101 | 84 | 80 | 57 |
GFDL 8.5 | 7.4 | 4.8 | 8.6 | 5.6 | 6.3 | 4.0 | 92 | 69 | 110 | 82 | 83 | 58 |
CanESM2 8.5 | 7.1 | 4.7 | 8.3 | 5.4 | 6.1 | 3.9 | 90 | 70 | 100 | 87 | 78 | 60 |
MIROC5 8.5 | 7.7 | 4.8 | 8.2 | 5.5 | 6.3 | 4.0 | 100 | 70 | 113 | 83 | 90 | 58 |
HadGEM2 4.5 | 7.5 | 4.4 | 8.1 | 4.8 | 6.1 | 3.6 | 100 | 72 | 111 | 83 | 86 | 57 |
CanESM2 4.5 | 6.7 | 4.5 | 8.2 | 4.9 | 5.9 | 3.6 | 105 | 71 | 114 | 83 | 87 | 59 |
MIROC5 4.5 | 7.7 | 4.4 | 8.1 | 4.9 | 6.5 | 3.6 | 89 | 74 | 105 | 82 | 80 | 64 |
CNRM 8.5 | 7.0 | 4.4 | 8.0 | 5.1 | 6.2 | 3.7 | 103 | 69 | 115 | 83 | 85 | 56 |
MPI 4.5 | 6.9 | 3.9 | 7.9 | 4.3 | 5.9 | 3.3 | 107 | 72 | 115 | 73 | 85 | 63 |
MPI 8.5 | 7.1 | 4.2 | 7.6 | 4.7 | 6.2 | 3.6 | 105 | 70 | 113 | 83 | 90 | 62 |
Mean RCP4.5 | 6.6 | 4.1 | 7.7 | 4.6 | 5.9 | 3.3 | 85 | 72 | 110 | 81 | 79 | 59 |
Mean RCP8.5 | 6.8 | 4.6 | 8.3 | 5.3 | 6.0 | 3.9 | 87 | 69 | 110 | 82 | 80 | 56 |
Climate | Timber Yield, m3 ha−1 | NPV, € ha−1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BT(0,0) | BT(20,20) | BT(−20,−20) | BT(0,0) | BT(20,20) | BT(−20,−20) | |||||||
Scots pine | S | N | S | N | S | N | S | N | S | N | S | N |
CU | 506 | 227 | 523 | 319 | 530 | 311 | 2473 | 1149 | 2273 | 1082 | 2750 | 1226 |
HadGEM2 8.5 | 301 | 522 | 214 | 512 | 285 | 482 | 1897 | 2090 | 1245 | 2033 | 1925 | 2155 |
GFDL 8.5 | 440 | 556 | 270 | 563 | 371 | 462 | 2454 | 2339 | 1474 | 2883 | 2365 | 2195 |
CanESM2 8.5 | 406 | 532 | 346 | 477 | 376 | 501 | 2317 | 2268 | 1750 | 2067 | 2366 | 2246 |
MIROC5 8.5 | 402 | 514 | 337 | 548 | 355 | 519 | 2319 | 2221 | 1733 | 2701 | 2292 | 2224 |
HadGEM2 4.5 | 614 | 487 | 590 | 527 | 563 | 478 | 3088 | 1946 | 2655 | 2466 | 3040 | 1998 |
CanESM2 4.5 | 568 | 518 | 584 | 528 | 536 | 480 | 2906 | 2137 | 2644 | 2567 | 3048 | 2147 |
MIROC5 4.5 | 566 | 530 | 623 | 526 | 537 | 461 | 2890 | 2080 | 3165 | 2594 | 2984 | 2059 |
CNRM 8.5 | 624 | 504 | 634 | 526 | 621 | 456 | 3206 | 2027 | 2836 | 2474 | 3317 | 1897 |
MPI 4.5 | 619 | 445 | 599 | 468 | 555 | 413 | 3146 | 1653 | 3075 | 2009 | 3030 | 1599 |
MPI 8.5 | 657 | 465 | 632 | 498 | 596 | 436 | 3322 | 1775 | 2797 | 2310 | 3201 | 1768 |
Mean RCP4.5 | 598 | 492 | 623 | 485 | 583 | 460 | 3073 | 1949 | 2769 | 2270 | 3132 | 1940 |
Mean RCP8.5 | 574 | 524 | 561 | 544 | 545 | 477 | 2985 | 2082 | 2529 | 2587 | 3056 | 2067 |
Norway spruce | S | N | S | N | S | N | S | N | S | N | S | N |
CU | 541 | 411 | 567 | 413 | 527 | 387 | 2210 | 1645 | 2121 | 1460 | 2102 | 1294 |
HadGEM2 8.5 | 0 | 339 | 45 | 275 | 0 | 371 | 0 | 1640 | 0 | 1242 | 220 | 1474 |
GFDL 8.5 | 0 | 349 | 0 | 268 | 43 | 314 | 0 | 1615 | 0 | 1178 | 192 | 1577 |
CanESM2 8.5 | 53 | 390 | 0 | 307 | 45 | 416 | 212 | 1855 | 0 | 1375 | 222 | 1697 |
MIROC5 8.5 | 51 | 466 | 0 | 427 | 48 | 455 | 196 | 1771 | 0 | 1935 | 222 | 1830 |
HadGEM2 4.5 | 182 | 492 | 161 | 516 | 244 | 453 | 667 | 1773 | 536 | 2347 | 1064 | 1781 |
CanESM2 4.5 | 366 | 538 | 230 | 539 | 375 | 476 | 1427 | 2019 | 754 | 2419 | 1475 | 1893 |
MIROC5 4.5 | 247 | 534 | 182 | 538 | 311 | 470 | 866 | 1993 | 605 | 2360 | 1281 | 1867 |
CNRM 8.5 | 276 | 571 | 206 | 528 | 331 | 511 | 1220 | 2068 | 687 | 2413 | 1717 | 2063 |
MPI 4.5 | 575 | 513 | 586 | 544 | 540 | 448 | 2326 | 1843 | 2301 | 2373 | 2634 | 1777 |
MPI 8.5 | 472 | 533 | 533 | 553 | 497 | 495 | 1966 | 1975 | 2053 | 2458 | 2298 | 1982 |
Mean RCP4.5 | 511 | 542 | 476 | 526 | 459 | 484 | 2070 | 1920 | 1755 | 2318 | 1833 | 1883 |
Mean RCP8.5 | 70 | 504 | 113 | 552 | 153 | 484 | 300 | 1925 | 373 | 2509 | 795 | 1927 |
Silver birch | S | N | S | N | S | N | S | N | S | N | S | N |
CU | 425 | 239 | 444 | 226 | 384 | 213 | 1410 | 622 | 1577 | 546 | 1650 | 599 |
HadGEM2 8.5 | 329 | 393 | 307 | 451 | 282 | 402 | 2058 | 1280 | 1501 | 1797 | 1647 | 1336 |
GFDL 8.5 | 556 | 406 | 556 | 505 | 501 | 378 | 2693 | 1464 | 2241 | 1716 | 2548 | 1370 |
CanESM2 8.5 | 423 | 364 | 439 | 466 | 391 | 367 | 2285 | 1168 | 1841 | 1910 | 2131 | 1233 |
MIROC5 8.5 | 478 | 434 | 519 | 487 | 444 | 396 | 1766 | 1441 | 2098 | 1987 | 2251 | 1386 |
HadGEM2 4.5 | 546 | 400 | 521 | 418 | 464 | 343 | 2578 | 1166 | 2039 | 1523 | 2237 | 1026 |
CanESM2 4.5 | 573 | 391 | 558 | 421 | 530 | 333 | 2578 | 1192 | 2167 | 1573 | 2442 | 1076 |
MIROC5 4.5 | 445 | 391 | 545 | 418 | 498 | 333 | 1755 | 1569 | 2144 | 1622 | 2363 | 1144 |
CNRM 8.5 | 518 | 394 | 553 | 436 | 486 | 353 | 2413 | 1749 | 2579 | 1955 | 2726 | 1423 |
MPI 4.5 | 503 | 349 | 521 | 348 | 504 | 302 | 2234 | 1194 | 1954 | 1060 | 2273 | 839 |
MPI 8.5 | 494 | 382 | 559 | 394 | 494 | 325 | 1802 | 1068 | 2111 | 1357 | 2238 | 942 |
Mean RCP4.5 | 513 | 342 | 500 | 397 | 500 | 299 | 2463 | 1244 | 1913 | 1405 | 2361 | 906 |
Mean RCP8.5 | 533 | 431 | 569 | 446 | 478 | 389 | 2465 | 1365 | 2145 | 1712 | 2323 | 1266 |
References
- Hyvönen, R.; Ågren, G.I.; Linder, S.; Persson, T.; Cotrufo, M.F.; Ekblad, A.; Freeman, M.; Grelle, A.; Janssens, I.A.; Jarvis, P.G.; et al. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: A literature review. New Phytol. 2007, 173, 463–480. [Google Scholar] [CrossRef] [PubMed]
- Kellomäki, S.; Peltola, H.; Nuutinen, T.; Korhonen, K.T.; Strandman, H. Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 2341–2351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergh, J.; Freeman, M.; Sigurdsson, B.; Kellomäki, S.; Laitinen, K.; Niinistö, S.; Peltola, H.; Linder, S. Modelling short-term effects of climate change on the productivity of selected tree species in Nordic countries. For. Ecol. Manag. 2003, 183, 327–340. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Poudel, B.C.; Sathre, R.; Gustavsson, L.; Bergh, J.; Lundström, A.; Hyvönen, R. Effects of climate change on biomass production and substitution in north-central Sweden. Biomass Bioenergy 2011, 35, 4340–4355. [Google Scholar] [CrossRef]
- Saxe, H.; Cannell, M.G.; Johnsen, Ø.; Ryan, M.G.; Vourlitis, G. Tree and forest functioning in response to global warming. New Phytol. 2001, 149, 369–399. [Google Scholar] [CrossRef]
- Peltola, H.; Kilpeläinen, A.; Kellomäki, S. Diameter growth of Scots pine [Pinus sylvestris] tree grown at elevated temperature and carbon dioxide concentration under boreal conditions. Tree Physiol. 2002, 22, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Ellsworth, D.S.; Thomas, R.; Crous, K.Y.; Palmroth, S.; Ward, E.; Maier, C.; Delucia, E.; Oren, R. Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: A synthesis from Duke FACE. Glob. Chang. Biol. 2012, 18, 223–242. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.-J.; Nabuurs, G.-J.; Zimmermann, N.E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 2013, 3, 203–207. [Google Scholar] [CrossRef]
- Äijälä, O.; Koistinen, A.; Sved, J.; Vanhatalo, K.; Väisänen, P. Hyvän Metsänhoidon Suositukset—Metsänhoito (Recommendation for Good Forest Management in Finland); Forestry Development Centre, Tapio Publications: Helsinki, Finland, 2014. (In Finnish) [Google Scholar]
- Kohler, M.; Sohn, J.; Nägele, G.; Bauhus, J. Can drought tolerance of Norway spruce [Picea abies [L.] Karst.] be increased through thinning? Eur. J. For. Res. 2010, 129, 1109–1118. [Google Scholar] [CrossRef]
- Kolström, M.; Lindner, M.; Vilén, T.; Maroschek, M.; Seidl, R.; Lexer, M.J.; Netherer, S.; Kremer, A.; Delzon, S.; Barbati, A.; et al. Reviewing the science and implementation of climate change adaptation measures in European forestry. Forests 2011, 2, 961–982. [Google Scholar] [CrossRef] [Green Version]
- Liski, J.; Pussinen, A.; Pingoud, K.; Mäkipää, R.; Karjalainen, T. Which rotation lengths are favourable to carbon sequestration? Can. J. For. Res. 2001, 31, 2003–2013. [Google Scholar] [CrossRef]
- Seidl, R.; Lexer, M.J. Forest management under climatic and social uncertainty: Trade-offs between reducing climate change impacts and fostering adaptive capacity. J. Environ. Manag. 2013, 114, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Ruosteenoja, K.; Jylhä, K.; Kämäräinen, M. Climate projections for Finland under the RCP forcing scenarios. Geophysica 2016, 51, 17–50. [Google Scholar]
- Briceño-Elizondo, E.; Garcia-Gonzalo, J.; Peltola, H.; Matala, J.; Kellomäki, S. Sensitivity of growth of Scots pine, Norway spruce, and silver birch to climate change and forest management in boreal conditions. For. Ecol. Manag. 2006, 232, 152–167. [Google Scholar] [CrossRef]
- Briceño-Elizondo, E.; Garcia-Gonzalo, J.; Peltola, H.; Kellomäki, S. Carbon stocks and timber yield in two boreal forest ecosystems under current and changing climatic conditions subjected to varying management regimes. Environ. Sci. Policy 2006, 9, 237–252. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, J.; Peltola, H.; Briceño-Elizondo, E.; Kellomäki, S. Effects of climate change and management on timber yield in boreal forests, with economic implications: A case study. Ecol. Model. 2007, 209, 220–234. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, J.; Peltola, H.; Briceño-Elizondo, E.; Kellomäki, S. Changed thinning regimes may increase carbon stock under climate change: A case study from a Finnish boreal forest. Clim. Chang. 2007, 81, 431–454. [Google Scholar] [CrossRef]
- Torssonen, P.; Strandman, H.; Kellomäki, S.; Kilpeläinen, A.; Jylhä, K.; Asikainen, A.; Peltola, H. Do we need to adapt the choice of main boreal tree species in forest regeneration under the projected climate change? Forestry 2015, 88, 564–572. [Google Scholar] [CrossRef]
- ALRahahleh, L.; Ikonen, V.-P.; Kilpeläinen, A.; Torssonen, P.; Strandman, H.; Asikainen, A.; Kaurola, J.; Venäläinen, A.; Peltola, H. Effects of forest conservation and management on volume growth, harvested amount of timber, carbon stock and amount of deadwood in Finnish boreal forests under changing climate. Can. J. For. Res. 2017, 47, 215–225. [Google Scholar] [CrossRef]
- Kellomäki, S.; Strandman, H.; Heinonen, T.; Asikainen, A.; Venäläinen, A.; Peltola, H. Temporal and spatial change in diameter growth of boreal Scots pine, Norway spruce and birch under recent-generation (CMIP5) global climate model projections for the 21st century. Forests 2018, 9, 118. [Google Scholar] [CrossRef]
- Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H. Risk of large-scale fires in boreal forests of Finland under changing climate. Nat. Hazards Earth Syst. Sci. 2016, 16, 239–253. [Google Scholar] [CrossRef]
- Ruosteenoja, K.; Markkanen, T.; Venäläinen, A.; Räisänen, P.; Peltola, H. Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Clim. Dyn. 2017, 50, 1177–1192. [Google Scholar] [CrossRef]
- Kärkkäinen, L.; Matala, J.; Härkänen, K.; Kellomäki, S.; Nuutinen, T. Potential recovery of industrial wood and energy wood raw material in different cutting and climate scenarios for Finland. Biomass Bioenergy 2008, 32, 934–943. [Google Scholar] [CrossRef]
- Matala, J.; Kärkkäinen, L.; Härkönen, K.; Kellomäki, S.; Nuutinen, T. Carbon sequestration in the growing stock of trees in Finland under different cutting and climate scenarios. Eur. J. For. Res. 2009, 128, 493–504. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Jäger, D.; Currie, W.S.; Lexer, M.J. Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria. For. Ecol. Manag. 2007, 248, 64–79. [Google Scholar] [CrossRef]
- Kindermann, G.E.; Schörghuber, S.; Linkosalo, M.J. Potential stocks and increments of woody biomass in the European Union under different management and climate scenarios. Carbon Balance Manag. 2013, 8, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triviño, M.; Juutinen, A.; Mazziotta, A.; Miettinen, K.; Podkopaev, D.; Reunanen, P.; Mönkkönen, M. Managing a boreal forest landscape for providing timber, storing and sequestering carbon. Ecosyst. Serv. 2015, 14, 179–189. [Google Scholar] [CrossRef]
- Bottalico, F.; Pesola, L.; Vizzarri, M.; Antonello, L.; Barbati, A.; Chirici, G.; Corona, P.; Cullotta, S.; Garfì, V.; Giannico, V.; et al. Modeling the influence of alternative forest management scenarios on wood production and carbon storage: A case study in the Mediterranean region. Environ. Res. 2016, 144, 72–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellomäki, S.; Peltola, H.; Nuutinen, T.; Korhonen, K.T.; Väisänen, H. Adaptation of Forest Ecosystems, Forests and Forestry to Climate Change; FINADAPT Work Paper 4; Finnish Environment Institute: Helsinki, Finland, 2005. [Google Scholar]
- Kienast, F. FORECE: A Forest Succession Model for Southern Central Europe; Publication No. 2989; Oak Ridge National Laboratory: Oak Ridge, TN, USA; University of Zürich: Zürich, Switzerland, 1987. [Google Scholar]
- Nikolov, N.; Helmisaari, H. Sivics of the Circumpolar Boreal Forest Tree Species. In A System Analysis of the Global Boreal Forests; Shugart, H.H., Leemans, R., Bonan, G.B., Eds.; Cambridge University Press: Cambridge, UK, 1992; pp. 9–12. [Google Scholar]
- Routa, J.; Kellomäki, S.; Kilpeläinen, A.; Peltola, H.; Strandman, H. Effects of forest management on the carbon dioxide emissions of wood energy in integrated production of timber and energy biomass. GCB Bioenergy 2011, 3, 483–497. [Google Scholar] [CrossRef]
- Baul, T.; Alam, A.; Ikonen, A.; Strandman, H.; Asikainen, A.; Peltola, H.; Kilpeläinen, A. Climate change mitigation potential in boreal forests: Impacts of management, harvest intensity and use of forest biomass to substitute fossil resources. Forests 2018, 8, 455. [Google Scholar] [CrossRef]
- Järvinen, O.; Vänni, T. The Ministry of Water and Environment Mimeograph 579; Ministry of Water and Environment: Helsinki, Finland, 1994. (In Finnish)
- Räisänen, J.; Räty, O. Projections of daily mean temperature variability in the future: Cross-validation tests with ENSEMBLES regional climate models. Clim. Dyn. 2013, 41, 1553–1568. [Google Scholar] [CrossRef]
- Räty, O.; Räisänen, J.; Ylhäisi, J.S. Evaluation of delta change and bias correction methods for future daily precipitation: Intermodal cross-validation using ENSEMBLES simulations. Clim. Dyn. 2014, 42, 2287–2303. [Google Scholar] [CrossRef]
- Aalto, J.; Pirinen, P.; Jylhä, K. New gridded daily climatology of Finland: Permutation-based uncertainty estimates and temporal trends in climate. J. Geophys. Res. Atmos. 2016, 121, 3807–3823. [Google Scholar] [CrossRef]
- Aalto, J.; Pirinen, P.; Heikkinen, J.; Venäläinen, A. Spatial interpolation of monthly climate data for Finland: Comparing the performance of kriging and generalized additive models. Theor. Appl. Climatol. 2013, 112, 99–111. [Google Scholar] [CrossRef]
- The Natural Resources Institute Finland. Available online: http://statdb.luke.fi/PXWeb/pxweb/en/LUKE/ (accessed on 17 November 2017).
- Mäkipää, R.; Karjalainen, T.; Pussinen, A.; Kukkola, M. Effects of nitrogen fertilization on carbon accumulation in boreal forests: Model computations compared with the results of long-term fertilization experiments. Chemosphere 1998, 36, 1155–1160. [Google Scholar] [CrossRef]
- Hynynen, J.; Ojansuu, R.; Hökka, H.; Siipilehto, J.; Salminen, H.; Haapala, P. Models for Predicting Stand Development in MELA System; Research Paper 835; Finnish Forest Research Institute: Helsinki, Finland, 2002; ISBN 951-40-1815-X. [Google Scholar]
- Lehtonen, I.; Kämäräinen, M.; Gregow, H.; Venäläinen, A.; Peltola, H. Heavy snow loads in Finnish forests respond regionally asymmetrically to projected climate change. Nat. Hazards Earth Syst. Sci. 2016, 16, 2259–2271. [Google Scholar] [CrossRef]
- Madsen, M.S.; Langen, P.L.; Boberg, F.; Christense, J.H. Inflated uncertainty in multimodel-based regional climate projections. Geophys. Res. Lett. 2017, 44, 11606–11613. [Google Scholar] [CrossRef] [PubMed]
- Wilcke, R.A.I.; Bärring, L. Selecting regional climate scenarios for impact modelling studies. Environ. Model. Softw. 2016, 78, 191–201. [Google Scholar] [CrossRef]
- Ahlström, A.; Schurgers, G.; Arneth, A.; Smith, B. Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environ. Res. Lett. 2012, 7, 044008. [Google Scholar] [CrossRef]
- Ekström, M.; Grose, M.; Heady, C.; Turner, S.; Teng, J. The method of producing climate change datasets impacts the resulting policy guidance and chance of mal-adaptation. Clim. Serv. 2016, 4, 13–29. [Google Scholar] [CrossRef]
- Mäkinen, H.; Nöjd, P.; Mielikäinen, K. Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies [L.] Karst.] in southern Finland. Trees 2001, 15, 177–185. [Google Scholar] [CrossRef]
- Jyske, T.; Höttä, T.; Mäkinen, H.; Nöjd, P.; Lumme, I.; Spieker, H. The effect of artificially induced drought on radial increment and wood properties of Norway spruce. Tree Physiol. 2010, 30, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Henttonen, H.M.; Mäkinen, H.; Heiskanen, J.; Peltoniemi, M.; Lauren, A.; Hordo, M. Response of radial increment variation of Scots pine to temperature, precipitation and soil water content along a latitudinal gradient across Finland and Estonia. Agric. Forest Meteorol. 2014, 198, 294–308. [Google Scholar] [CrossRef]
- Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; van der Maaten, E.; Schelhaas, M.-J.; Lasch, P.; Eggers, J.; van der Maaten-Theunissen, M.; et al. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? J. Environ. Manag. 2014, 146, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, C.; Grams, T.E.E.; Rötzer, T.; Feldermann, A.; Pretzsch, H. Drought Stress Reaction of Growth and Δ13C in Tree Rings of European Beech and Norway Spruce in Monospecific Versus Mixed Stands Along a Precipitation Gradient. Forests 2017, 8, 177. [Google Scholar] [CrossRef]
- Reyer, C.; Bathgate, S.; Blennow, K.; Borges, J.G.; Bugmann, H.; Delzon, S.; Faias, S.P.; Garcia-Gonzalo, J.; Gardiner, B.; Gonzalez-Olabarria, J.R.; et al. Are forest disturbances amplifying or cancelling out climate change-induced productivity changes in European forests? Environ. Res. Lett. 2017, 12, 034027. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Peltola, H.; Ikonen, V.-P.; Gregow, H.; Strandman, H.; Kilpeläinen, A.; Venäläinen, A.; Kellomäki, S. Impacts of climate change on timber production and regional risks of wind-induced damage to forests in Finland. For. Ecol. Manag. 2010, 260, 833–845. [Google Scholar] [CrossRef]
- Ikonen, V.-P.; Kilpeläinen, A.; Zubizarreta-Gerendiain, A.; Strandman, H.; Asikainen, A.; Venäläinen, A.; Kaurola, J.; Kangas, J.; Peltola, H. Regional risks of wind damage in boreal forests under changing management and climate projections. Can. J. For. Res. 2017, 47, 1632–1645. [Google Scholar] [CrossRef]
- Päätalo, M.L.; Peltola, H.; Kellomäki, S. Modelling the risk of snow damage to forests under short-term snow loading. For. Ecol. Manag. 1999, 116, 51–70. [Google Scholar] [CrossRef]
- Subramanian, N.; Bergh, J.; Johansson, U.; Nilsson, U.; Sallnäs, O. Adaptation of forest management regimes in southern Sweden to increased risk associated with climate change. Forests 2016, 7, 8. [Google Scholar] [CrossRef]
- Neuner, S.; Albrecht, A.; Cullmann, D.; Engels, F.; Griess, V.C.; Hahn, W.A.; Hanewinkel, M.; Härtl, F.; Kölling, C.; Staupendahl, K.; et al. Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Glob. Chang. Biol. 2015, 21, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Felton, A.; Nilsson, U.; Sonesson, J.; Felton, A.M.; Roberge, J.-M.; Ranius, T.; Ahlström, M.; Bergh, J.; Björkman, C.; Boberg, J.; et al. Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. Ambio 2016, 45, 124–139. [Google Scholar] [CrossRef] [PubMed]
- Pretzsh, H.; Schütze, G. Effect of tree species mixing on the structure, density, and yield of forest stands. Eur. J. For. Res. 2016, 135, 1–22. [Google Scholar] [CrossRef]
- González de Andrés, E.; Seely, B.; Blanco, J.A.; Imbert, B.I.; Lo, Y.-H.; Castillo, F.J. Increased complementarity in water-limited environments in Scots pine and European beech mixtures under climate change. Ecohydrology 2017, 10, e1810. [Google Scholar] [CrossRef]
- Pukkala, T. Effects of species composition on ecosystem services in European boreal forest. J. For. Res. 2018, 29, 261–272. [Google Scholar] [CrossRef]
- Nilsson, U.; Fahlvik, N.; Johansson, U.; Lundström, A.; Rosvall, O. Simulation of the Effect of Intensive Forest Management on Forest Production in Sweden. Forests 2011, 2, 373–393. [Google Scholar] [CrossRef]
Simulation Layout | Description |
---|---|
Initial site conditions | Medium fertile (Myrtillus-type) upland forest sites in southern (Tampere, 61°21′ N, 23°25′ E) and northern Finland (Rovaniemi, 66°37′ N, 25°38′ E). The initial amount of soil organic matter (and carbon) and nitrogen available for growth were defined based on the site fertility type and regional temperature sum of the current climate. A nitrogen deposition of 10 kg year−1 was used, regardless of the site. |
Climatic conditions | Current climate, altogether 10 individual GCM projections under the RCP4.5 and RCP8.5 forcing scenarios and multi-model mean values for the RCP4.5 and RCP8.5 forcing scenarios. |
Forest regeneration | Planting of Norway spruce and Scots pine (2000 seedlings ha−1) and Silver birch (1600 seedlings ha−1), with an initial diameter of 2.5 cm. |
Thinning regimes | Baseline management (BT(0,0)) followed the thinning recommendations. In the other management regimes, either a 20% higher (BT(20,20)) or lower (BT(−20,−20)) volume of growing stock was maintained in the thinnings. Thinning was always done from below and at least 10 years before the final felling. |
Final cut | A rotation length of 90 years was applied in all simulations. |
Harvesting intensity | In thinnings and the final cut, only timber (sawlogs and pulpwood with minimum top diameters of 15 cm and 6 cm) was harvested and the logging residues were left at the sites. |
Global Climate Models (Acronyms) | Short Name | ΔT (°C) | ΔP (%) | CO2 (ppm) | ||
---|---|---|---|---|---|---|
South | North | South | North | |||
HadGEM2-ES RCP8.5 | HadGEM2 8.5 | 6.1 | 6.1 | −9 | 7 | 807 |
GFDL-CM3 RCP8.5 | GFDL 8.5 | 6.3 | 7 | 14 | 26 | 807 |
CanESM2 RCP8.5 | CanESM2 8.5 | 5.9 | 6.3 | 7 | 13 | 807 |
MIROC5 RCP8.5 | MIROC5 8.5 | 5.6 | 6 | 13 | 15 | 807 |
HadGEM2-ES RCP4.5 | HadGEM2 4.5 | 3.5 | 3.7 | 2 | 8 | 536 |
CanESM2 RCP4.5 | CanESM2 4.5 | 3.3 | 3.6 | 12 | 13 | 536 |
MIROC5 RCP4.5 | MIROC5 4.5 | 3.2 | 3.3 | 9 | 11 | 536 |
CNRM-CM5 RCP8.5 | CNRM 8.5 | 3.7 | 3.9 | 24 | 19 | 807 |
MPI-ESM-MR RCP4.5 | MPI 4.5 | 1.6 | 1.8 | 1 | 4 | 536 |
MPI-ESM-MR RCP8.5 | MPI 8.5 | 2.8 | 3.1 | 6 | 4 | 807 |
Mean RCP4.5 | Mean RCP4.5 | 2.6 | 2.9 | 7 | 10 | 536 |
Mean RCP8.5 | Mean RCP8.5 | 4.6 | 4.9 | 9 | 14 | 807 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
ALRahahleh, L.; Kilpeläinen, A.; Ikonen, V.-P.; Strandman, H.; Venäläinen, A.; Peltola, H. Effects of CMIP5 Projections on Volume Growth, Carbon Stock and Timber Yield in Managed Scots Pine, Norway Spruce and Silver Birch Stands under Southern and Northern Boreal Conditions. Forests 2018, 9, 208. https://doi.org/10.3390/f9040208
ALRahahleh L, Kilpeläinen A, Ikonen V-P, Strandman H, Venäläinen A, Peltola H. Effects of CMIP5 Projections on Volume Growth, Carbon Stock and Timber Yield in Managed Scots Pine, Norway Spruce and Silver Birch Stands under Southern and Northern Boreal Conditions. Forests. 2018; 9(4):208. https://doi.org/10.3390/f9040208
Chicago/Turabian StyleALRahahleh, Laith, Antti Kilpeläinen, Veli-Pekka Ikonen, Harri Strandman, Ari Venäläinen, and Heli Peltola. 2018. "Effects of CMIP5 Projections on Volume Growth, Carbon Stock and Timber Yield in Managed Scots Pine, Norway Spruce and Silver Birch Stands under Southern and Northern Boreal Conditions" Forests 9, no. 4: 208. https://doi.org/10.3390/f9040208
APA StyleALRahahleh, L., Kilpeläinen, A., Ikonen, V.-P., Strandman, H., Venäläinen, A., & Peltola, H. (2018). Effects of CMIP5 Projections on Volume Growth, Carbon Stock and Timber Yield in Managed Scots Pine, Norway Spruce and Silver Birch Stands under Southern and Northern Boreal Conditions. Forests, 9(4), 208. https://doi.org/10.3390/f9040208