Detection of Annual Spruce Budworm Defoliation and Severity Classification Using Landsat Imagery
Abstract
:1. Introduction
2. Methods
2.1. Study Area in Quebec, Canada
2.2. Study Area in Maine, United States
2.3. Satellite Data Acquisition and Pre-Processing
2.4. Spruce Budworm Defoliation Detection and Severity Level Estimation for the Quebec Study Area Current Spruce Budworm Outbreak
2.5. Spruce Budworm Defoliation Detection for the Maine Study Area Past Spruce Budworm Outbreak
2.6. Detecting Other Disturbances in Spruce Budworm-Defoliated Forests
3. Results
3.1. Spruce Budworm Defoliation Detection and Severity Level Classification in the Current Quebec Outbreak
3.2. Spruce Budworm Defoliation Detection in the Maine Past Outbreak
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- MacLean, D.A.; MacKinnon, W.E. Accuracy of aerial sketch-mapping estimates of spruce budworm defoliation in New Brunswick. Can. J. For. Res. 1996, 26, 2099–2108. [Google Scholar] [CrossRef]
- MacLean, D.A.; MacKinnon, W.E. Effects of stand and site characteristics on susceptibility and vulnerability of balsam fir and spruce to spruce budworm in New Brunswick. Can. J. For. Res. 1997, 27, 1859–1871. [Google Scholar] [CrossRef]
- MacLean, D.A. Effects of spruce budworm outbreaks on the productivity and stability of balsam fir forests. For. Chron. 1984, 60, 273–279. [Google Scholar] [CrossRef]
- Gray, D.R. The relationship between climate and outbreak characteristics of the spruce budworm in eastern Canada. Clim. Chang. 2008, 87, 361–383. [Google Scholar] [CrossRef]
- Williams, D.W.; Liebhold, A.M. Spatial synchrony of spruce budworm outbreaks in eastern North America. Ecology 2000, 81, 2753–2766. [Google Scholar] [CrossRef]
- Hall, R.; Filiatrault, M.; Deschamps, A.; Arsenault, E. Mapping eastern spruce budworm cumulative defoliation severity from Landsat and SPOT. In Proceedings of the 30th Canadian Symposium on Remote Sensing, Lethbridge, AB, Canada, 22–25 June 2009; pp. 22–25. [Google Scholar]
- Ministère des Forêts de la Faune et des Parcs. Aires Infestées Par la Tordeuse des Bourgeons de L’épinette au Québec en 2017-Version 1.0; Gouvernement du Québec, Direction de la Protection des Forêts: Québec, QC, Canada, 2017; p. 16.
- Wagner, R.G.; Bryant, J.; Burgason, B.; Doty, M.; Roth, B.E.; Strauch, P.; Struble, D.; Denico, D. Coming Spruce Budworm Outbreak: Initial Risk Assessment and Preparation & Response Recommendations for Maine’s Forestry Community; Cooperative Forestry Research Unit, University of Maine: Orono, ME, USA, 2015; p. 77. [Google Scholar]
- Gray, D.R.; Régnière, J.; Boulet, B. Analysis and use of historical patterns of spruce budworm defoliation to forecast outbreak patterns in Quebec. For. Ecol. Manag. 2000, 127, 217–231. [Google Scholar] [CrossRef]
- Taylor, S.L.; MacLean, D.A. Validation of spruce budworm outbreak history developed from aerial sketch mapping of defoliation in New Brunswick. North. J. Appl. For. 2008, 25, 139–145. [Google Scholar]
- Hall, R.; Castilla, G.; White, J.; Cooke, B.; Skakun, R. Remote sensing of forest pest damage: A review and lessons learned from a Canadian perspective. Can. Entomol. 2016, 148, S296–S356. [Google Scholar] [CrossRef]
- Leckie, D.; Teillet, P.; Ostaff, D.; Fedosejevs, G. Sensor band selection for detecting current defoliation caused by the spruce budworm. Remote Sens. Environ. 1988, 26, 31–36. [Google Scholar] [CrossRef]
- MacLean, D.A.; Ostaff, D.P. Patterns of balsam fir mortality caused by an uncontrolled spruce budworm outbreak. Can. J. For. Res. 1989, 19, 1087–1095. [Google Scholar] [CrossRef]
- Ostaff, D.P.; MacLean, D.A. Patterns of balsam fir foliar production and growth in relation to defoliation by spruce budworm. Can. J. For. Res. 1995, 25, 1128–1136. [Google Scholar] [CrossRef]
- Rullan-Silva, C.; Olthoff, A.; de la Mata, J.D.; Pajares-Alonso, J. Remote monitoring of forest insect defoliation—A Review. For. Syst. 2013, 22, 377–391. [Google Scholar] [CrossRef]
- Brovkina, O.; Cienciala, E.; Zemek, F.; Lukeš, P.; Fabianek, T.; Russ, R. Composite indicator for monitoring of Norway spruce stand decline. Eur. J. Remote Sens. 2017, 50, 550–563. [Google Scholar] [CrossRef]
- De Beurs, K.; Townsend, P. Estimating the effect of gypsy moth defoliation using MODIS. Remote Sens. Environ. 2008, 112, 3983–3990. [Google Scholar] [CrossRef]
- Dottavio, C.L.; Williams, D.L. Satellite technology: An improved means for monitoring forest insect defoliation. J. For. 1983, 81, 30–34. [Google Scholar]
- Hurley, A.; Watts, D.; Burke, B.; Richards, C. Identifying gypsy moth defoliation in Ohio using Landsat data. Environ. Eng. Geosci. 2004, 10, 321–328. [Google Scholar] [CrossRef]
- Townsend, P.A.; Singh, A.; Foster, J.R.; Rehberg, N.J.; Kingdon, C.C.; Eshleman, K.N.; Seagle, S.W. A general Landsat model to predict canopy defoliation in broadleaf deciduous forests. Remote Sens. Environ. 2012, 119, 255–265. [Google Scholar] [CrossRef]
- Hall, R.; Crown, P.; Titus, S. Change detection methodology for aspen defoliation with Landsat MSS digital data. Can. J. Remote Sens. 1984, 10, 135–142. [Google Scholar] [CrossRef]
- Leckie, D.G.; Cloney, E.; Joyce, S.P. Automated detection and mapping of crown discolouration caused by jack pine budworm with 2.5 m resolution multispectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 61–77. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Mladenoff, D.J.; Boyce, M.S. Detecting jack pine budworm defoliation using spectral mixture analysis: Separating effects from determinants. Remote Sens. Environ. 1999, 69, 156–169. [Google Scholar] [CrossRef]
- Fraser, R.; Latifovic, R. Mapping insect-induced tree defoliation and mortality using coarse spatial resolution satellite imagery. Int. J. Remote Sens. 2005, 26, 193–200. [Google Scholar] [CrossRef]
- Hawryło, P.; Bednarz, B.; Wężyk, P.; Szostak, M. Estimating defoliation of Scots pine stands using machine-learning methods and vegetation indices of Sentinel-2. Eur. J. Remote Sens. 2018, 51, 194–204. [Google Scholar] [CrossRef]
- Franklin, S.; Fan, H.; Guo, X. Relationship between Landsat TM and SPOT vegetation indices and cumulative spruce budworm defoliation. Int. J. Remote Sens. 2008, 29, 1215–1220. [Google Scholar] [CrossRef]
- Franklin, S.; Waring, R.; McCreight, R.; Cohen, W.; Fiorella, M. Aerial and satellite sensor detection and classification of western spruce budworm defoliation in a subalpine forest. Can. J. Remote Sens. 1995, 21, 299–308. [Google Scholar] [CrossRef]
- Leckie, D.; Teillet, P.; Fedosejevs, G.; Ostaff, D. Reflectance characteristics of cumulative defoliation of balsam fir. Can. J. For. Res. 1988, 18, 1008–1016. [Google Scholar] [CrossRef]
- Hall, R.J.; Skakun, R.S.; Arsenault, E.J. Remotely sensed data in the mapping of insect defoliation. In Understanding Forest Disturbance and Spatial Pattern: Remote Sensing and Gis Approaches; Wulder, M.A., Franklin, S.E., Eds.; Taylor and Francis, CRC Press: Boca Raton, FL, USA, 2006; pp. 85–111. [Google Scholar]
- Leckie, D.G.; Yuan, X.; Ostaff, D.P.; Piene, H.; MacLean, D. Analysis of high resolution multispectral MEIS imagery for spruce budworm damage assessment on a single tree basis. Remote Sens. Environ. 1992, 40, 125–136. [Google Scholar] [CrossRef]
- Goodbody, T.R.; Coops, N.C.; Hermosilla, T.; Tompalski, P.; McCartney, G.; MacLean, D.A. Digital aerial photogrammetry for assessing cumulative spruce budworm defoliation and enhancing forest inventories at a landscape-level. ISPRS J. Photogramm. Remote Sens. 2018, 142, 1–11. [Google Scholar] [CrossRef]
- Chalifoux, S.; Cavayas, F.; Gray, J.T. Map-guided approach for the automatic detection on Landsat TM images of forest stands damaged by the spruce budworm. Photogramm. Eng. Remote Sens. 1998, 64, 629–635. [Google Scholar]
- Franklin, S.; Raske, A. Satellite remote sensing of spruce budworm forest defoliation in western Newfoundland. Can. J. Remote Sens. 1994, 20, 37–48. [Google Scholar]
- Campbell, P.E.; Rock, B.; Martin, M.; Neefus, C.; Irons, J.; Middleton, E.; Albrechtova, J. Detection of initial damage in Norway spruce canopies using hyperspectral airborne data. Int. J. Remote Sens. 2004, 25, 5557–5584. [Google Scholar] [CrossRef]
- Hennigar, C.R.; MacLean, D.A.; Erdle, T.A. Potential Spruce Budworm Impacts and Mitigation Opportunities in Maine; Cooperative Forest Research Unit, University of Maine: Orono, ME, USA, 2013; p. 68. [Google Scholar]
- Gray, D.R. The influence of forest composition and climate on outbreak characteristics of the spruce budworm in eastern Canada. Can. J. For. Res. 2013, 43, 1181–1195. [Google Scholar] [CrossRef]
- Saucier, J.; Bergeron, J.; Grondin, P.; Robitaille, A. Les régions écologiques du Québec méridional: Un des éléments du systeme hiérarchique de classification écologique du territoire mis au point par le Ministere des Ressources Naturelles. L’Aubelle 1998. [Google Scholar]
- Bélisle, A.C.; Gauthier, S.; Cyr, D.; Bergeron, Y.; Morin, H. Fire regime and old-growth boreal forests in central Quebec, Canada: An ecosystem management perspective. Silva Fenn. 2011, 45, 889–908. [Google Scholar] [CrossRef]
- Boucher, D.; De Grandpré, L.; Kneeshaw, D.; St-Onge, B.; Ruel, J.-C.; Waldron, K.; Lussier, J.-M. Effects of 80 years of forest management on landscape structure and pattern in the eastern Canadian boreal forest. Landsc. Ecol. 2015, 30, 1913–1929. [Google Scholar] [CrossRef]
- Legaard, K.R.; Sader, S.A.; Simons-Legaard, E.M. Evaluating the impact of abrupt changes in forest policy and management practices on landscape dynamics: Analysis of a Landsat image time series in the Atlantic Northern Forest. PLoS ONE 2015, 10, e0130428. [Google Scholar] [CrossRef] [PubMed]
- Maine Forest Service. Assessment of Maine’s Wood Supply; Maine Forest Service, Department of Conservation: Augusta, Maine, USA, 1993; p. 38.
- Régnière, J. Generalized approach to landscape-wide seasonal forecasting with temperature-driven simulation models. Environ. Entomol. 1996, 25, 869–881. [Google Scholar] [CrossRef]
- Régnière, J.; Cooke, B.; Bergeron, V. BioSIM: A Computer-Based Decision Support Tool for Seasonal Planning of Pest Management Activities; User’s Manual; Canadian Forest Service Information Report LAU-X-116; Canadian Forest Service Publications: Sainte-Foy, QC, Canada, 1995; 1996p.
- Braaten, J.D.; Cohen, W.B.; Yang, Z. Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems. Remote Sens. Environ. 2015, 169, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.A. The feeding impact of spruce budworm on balsam fir. Can. J. For. Res. 1977, 7, 76–84. [Google Scholar] [CrossRef]
- Eklundh, L.; Johansson, T.; Solberg, S. Mapping insect defoliation in Scots pine with MODIS time-series data. Remote Sens. Environ. 2009, 113, 1566–1573. [Google Scholar] [CrossRef]
- Spruce, J.P.; Sader, S.; Ryan, R.E.; Smoot, J.; Kuper, P.; Ross, K.; Prados, D.; Russell, J.; Gasser, G.; McKellip, R. Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks. Remote Sens. Environ. 2011, 115, 427–437. [Google Scholar] [CrossRef]
- Olsson, P.-O.; Lindström, J.; Eklundh, L. Near real-time monitoring of insect induced defoliation in subalpine birch forests with MODIS derived NDVI. Remote Sens. Environ. 2016, 181, 42–53. [Google Scholar] [CrossRef]
- Thomas, S.J.; Deschamps, A.; Landry, R.; van der Sanden, J.J.; Hall, R.J. Mapping insect defoliation using multi-temporal Landsat data. In Proceedings of the CRSS/ASPRS Specialty Conference: Our Common Borders—Safety, Security and the Environment through Remote Sensing, Ottawa, ON, Canada, 28 October–1 November 2007. [Google Scholar]
- Rouse, J.W., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA: Washington, DC, USA, 1974; pp. 309–317.
- Huete, A.; Justice, C.; Leeuwen, W. MODIS Vegetation Index (MOD13), EOS MODIS Algorithm; Theoretical Basis Document; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1996.
- Huete, A.R.; Liu, H.; van Leeuwen, W.J. The use of vegetation indices in forested regions: issues of linearity and saturation. In Proceedings of the 1997 IEEE International Geoscience and Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; pp. 1966–1968. [Google Scholar]
- Gitelson, A.A.; Vina, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Vina, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Rock, B.N. Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar]
- Hardisky, M.; Klemas, V.; Smart, M. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Key, C.; Benson, N. Measuring and remote sensing of burn severity. In Proceedings of the Joint Fire Science Conference and Workshop, Boise, ID, USA, 15–17 June 1999; University of Idaho and International Association: Moscow, ID, USA; p. 284. [Google Scholar]
- Ménard, S.; Darveau, M.; Imbeau, L.; Lemelin, L.-V. Méthode de Classification des Milieux Humides du Québec Boréal à Partir de la Carte Écoforestière du 3e Inventaire Décennal; Canards Illimités Canada: Quebec City, QB, Canada, 2006. [Google Scholar]
- Franklin, S.; Wulder, M.; Skakun, R.; Carroll, A. Mountain pine beetle red-attack forest damage classification using stratified Landsat TM data in British Columbia, Canada. Photogramm. Eng. Remote Sens. 2003, 69, 283–288. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Tolk, B.; Zhu, Z. Monitoring forest changes in the southwestern United States using multitemporal Landsat data. Remote Sens. Environ. 2009, 113, 1739–1748. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Adelabu, S.; Mutanga, O.; Adam, E.; Sebego, R. Spectral discrimination of insect defoliation levels in mopane woodland using hyperspectral data. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2014, 7, 177–186. [Google Scholar] [CrossRef]
- Sauro, J.; Lewis, J.R. Estimating completion rates from small samples using binomial confidence intervals: Comparisons and recommendations. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Los Angeles, CA, USA, 26–30 September 2005; pp. 2100–2103. [Google Scholar]
- Lyon, J.G.; Yuan, D.; Lunetta, R.S.; Elvidge, C.D. A change detection experiment using vegetation indices. Photogramm. Eng. Remote Sens. 1998, 64, 143–150. [Google Scholar]
- Simmons, G. Influence of spruce budworm moth dispersal on suppression decisions, In A Symposium on the Spruce Budworm; United States Department of Agriculture, Forest Service: Alexandria, VI, USA, 1974.
- Harrell, F.E. Ordinal logistic regression. In Regression Modeling Strategies; Springer: New York, NY, USA, 2001; pp. 331–343. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Chen, C.; Weiskittel, A.; Bataineh, M.; MacLean, D.A. Evaluating the influence of varying levels of spruce budworm defoliation on annualized individual tree growth and mortality in Maine, USA and New Brunswick, Canada. For. Ecol. Manag. 2017, 396, 184–194. [Google Scholar] [CrossRef]
Study Area | Imagery Date | Landsat Sensor | Path/Row |
---|---|---|---|
Quebec | 12 July 2004 | TM5 | 12/26 |
15 July 2005 | TM5 | 12/26 | |
8 July 2008 | TM5 | 12/26 | |
10 July 2009 | TM5 | 12/26 | |
Maine | 2 September 1972 | MSS1 | 12/28 |
23 July 1973 | MSS1 | 13/28 | |
9 August 1975 | MSS2 | 13/28 | |
30 July 1982 | MSS2 | 13/28 |
Landsat Sensor | Index | Acronym and Formulation | Reference |
---|---|---|---|
TM | Enhanced Vegetation Index | EVI = 2.5 * (NIR − Red)/(NIR + 6 * Red − 7.5 * Blue + 1) | [51,52] |
Normalized Difference Vegetation Index | NDVI = (NIR − Red)/(NIR + Red) | [50] | |
Green Chlorophyll Index | Chlgreen = (NIR/Green) − 1 | [53,54] | |
Greenness Normalized Difference Vegetation Index | GNDVI = (NIR − Green)/(NIR + Green) | [55] | |
Normalized Difference Moisture Index | NDMI = (NIR − SWIR1)/(NIR + SWIR1) | [56] | |
Normalized Burn Ratio1 | NBR1 = (NIR − SWIR2)/(NIR + SWIR2) | [57] | |
Normalized Burn Ratio 2 | NBR2 = (SWIR1 − SWIR2)/(SWIR1 + SWIR2) | [58] | |
MSS | Normalized Difference Vegetation Index | NDVI = (NIR2 − Red)/(NIR2 + Red) | [50] |
No Defoliation | Light Defoliation | Moderate Defoliation | Severe Defoliation | PA | UA | PA Conf. Interval | UA Conf. Interval | |
---|---|---|---|---|---|---|---|---|
2008 | ||||||||
No defoliation | 93.4 | 15.7 | 6.2 | 0.1 | 93.4 | 85.9 | 92–94 | 84–87 |
Light defoliation | 6.6 | 67.3 | 35.4 | 6.0 | 67.3 | 55.0 | 65–70 | 52–57 |
Moderate defoliation | 0.0 | 14.9 | 53.1 | 25.8 | 53.1 | 56.3 | 50–56 | 54–59 |
Severe defoliation | 0.0 | 2.0 | 5.4 | 68.1 | 68.1 | 91.0 | 66–70 | 89–93 |
Overall Acc. and Kappa Coeff.: 72.4%, 0.63 | ||||||||
2009 | ||||||||
No defoliation | 62.2 | 20.1 | 0.5 | 0.0 | 62.2 | 81.9 | 60–64 | 80–84 |
Light defoliation | 24.2 | 49.5 | 4.4 | 0.6 | 49.5 | 55.3 | 47–52 | 53–58 |
Moderate defoliation | 13.1 | 29.0 | 67.8 | 21.5 | 67.8 | 48.0 | 65–70 | 46–50 |
Severe defoliation | 0.5 | 1.2 | 27.3 | 78.1 | 78.0 | 65.7 | 75–80 | 63–68 |
Overall Acc. and Kappa Coeff.: 64%, 0.50 |
Year | Egg Mass Counts Class/100 ft2 | Expected Defoliation Class (%) | Samples per Egg-Mass Class | % of Total Egg-Mass Samples | % Correctly Identified | p-Value | Pseudo R2 (Nagelkerke) |
---|---|---|---|---|---|---|---|
1975 | 0 | 0 | 3 | 1 | 67 | 0.001 | 0.038 |
1–50 | 1–12 | 29 | 8 | 41 | |||
51–170 | 13–42 | 87 | 25 | 45 | |||
171–320 | 43–78 | 87 | 25 | 68 | |||
321–+400 | 79–100 | 143 | 41 | 60 | |||
- | - | Tot. 349 | Tot. 100 | Ave. 57 | |||
1982 | 1–50 | 1–12 | 52 | 21 | 42 | 0.002 | 0.041 |
51–170 | 13–42 | 55 | 22 | 36 | |||
171–320 | 43–78 | 48 | 20 | 56 | |||
321–400 | 79–98 | 92 | 37 | 53 | |||
- | - | Tot. 247 | Tot. 100 | Ave. 47 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahimzadeh-Bajgiran, P.; Weiskittel, A.R.; Kneeshaw, D.; MacLean, D.A. Detection of Annual Spruce Budworm Defoliation and Severity Classification Using Landsat Imagery. Forests 2018, 9, 357. https://doi.org/10.3390/f9060357
Rahimzadeh-Bajgiran P, Weiskittel AR, Kneeshaw D, MacLean DA. Detection of Annual Spruce Budworm Defoliation and Severity Classification Using Landsat Imagery. Forests. 2018; 9(6):357. https://doi.org/10.3390/f9060357
Chicago/Turabian StyleRahimzadeh-Bajgiran, Parinaz, Aaron R. Weiskittel, Daniel Kneeshaw, and David A. MacLean. 2018. "Detection of Annual Spruce Budworm Defoliation and Severity Classification Using Landsat Imagery" Forests 9, no. 6: 357. https://doi.org/10.3390/f9060357
APA StyleRahimzadeh-Bajgiran, P., Weiskittel, A. R., Kneeshaw, D., & MacLean, D. A. (2018). Detection of Annual Spruce Budworm Defoliation and Severity Classification Using Landsat Imagery. Forests, 9(6), 357. https://doi.org/10.3390/f9060357