Incorporating Insect and Wind Disturbances in a Natural Disturbance-Based Management Framework for the Boreal Forest
Abstract
:1. Introduction
2. Disturbance Regime Descriptors
3. Windthrow
3.1. Temporal Descriptors
3.2. Spatial Descriptors
3.3. Severity
3.4. Specificity
4. Spruce Budworm Outbreaks
4.1. Temporal Descriptors
4.2. Spatial Descriptors
4.3. Severity
4.4. Specificity
5. Biological Legacies
5.1. Snags and Coarse Woody Debris
5.2. Tip-Up Mounds
5.3. Remnant Live Trees
5.4. Undisturbed Understory Patches
6. Discussion
6.1. Incorporating Knowledge of Windthrow and Insect Disturbance into Boreal Forest Management
6.2. Knowledge Gaps and Avenues for Research
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Attiwill, P.M. The disturbance of forest ecosystems: The ecological basis for conservative management. For. Ecol. Manag. 1994, 63, 247–300. [Google Scholar] [CrossRef]
- Romme, W.H.; Everham, E.H.; Frelich, L.E.; Moritz, M.A.; Sparks, R.E. Are large, infrequent disturbances qualitatively different from small, frequent disturbances? Ecosystems 1998, 1, 524–534. [Google Scholar] [CrossRef]
- Turner, M.G.; Baker, W.L.; Peterson, C.J.; Peet, R.K. Factors influencing succession: Lessons from large, infrequent natural disturbances. Ecosystems 1998, 1, 511–523. [Google Scholar] [CrossRef]
- Stueve, K.M.; Hobie Perry, C.H.; Nelson, M.D.; Healey, S.P.; Hill, A.D.; Moisen, G.G.; Cohen, W.B.; Gormanson, D.D.; Huang, C. Ecological importance of intermediate windstorms rivals large, infrequent disturbances in the northern great lakes. Ecosphere 2011, 2, 1–21. [Google Scholar] [CrossRef]
- Sousa, W.P. The role of disturbance in natural communities. Annu. Rev. Ecol. Syst. 1984, 15, 353–391. [Google Scholar] [CrossRef]
- Gutschick, V.P.; BassiriRad, H. Extreme events as shaping physiology, ecology, and evolution of plants: Toward a unified definition and evaluation of their consequences. New Phytol. 2003, 160, 21–42. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Spies, T.A. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol. App. 2014, 24, 2063–2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauthier, S.; Vaillancourt, M.-A.; Leduc, A.; De Grandpré, L.; Kneeshaw, D.; Morin, H.; Drapeau, P.; Bergeron, Y. Ecosystem Management in the Boreal Forest; Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Center: Québec, QC, Canada, 2009; 539p.
- Long, J.N. Emulating natural disturbance regimes as a basis for forest management: A North American view. For. Ecol. Manag. 2009, 257, 1868–1873. [Google Scholar] [CrossRef]
- Perera, A.H.; Cui, W. Emulating natural disturbances as a forest management goal: Lessons from fire regime simulations. For. Ecol. Manag. 2010, 259, 1328–1337. [Google Scholar] [CrossRef]
- Perera, A.H.; Buse, L.J.; Weber, M.G. Emulating Natural Forest Landscape Disturbances: Concepts and Applications; Columbia University Press: New York, NY, USA, 2004; 352p. [Google Scholar]
- Kuuluvainen, T.; Grenfell, R. Natural disturbance emulation in boreal forest ecosystem management—Theories, strategies, and a comparison with conventional even-aged management. Can. J. For. Res. 2012, 42, 1185–1203. [Google Scholar] [CrossRef]
- Franklin, J.F.; Mitchell, R.J.; Palik, B.J. Natural Disturbance and Stand Development Principles for Ecological Forestry; General Technical Report NRS-19; USDA Forest Service, Northern Research Station: Newtown Square, PA, USA, November 2007.
- Bergeron, Y.; Leduc, A.; Harvey, B.D.; Gauthier, S. Natural fire regime: A guide for sustainable management of the Canadian boreal forest. Silva Fenn. 2002, 36, 81–95. [Google Scholar] [CrossRef]
- Gauthier, S.; Nguyen, T.; Bergeron, Y.; Leduc, A.; Drapeau, P.; Grondin, P. Developing forest management strategies based on fire regimes in northwestern Quebec. In Emulating Natural Forest Landscape Disturbances: Concepts and Applications; Perera, A.H., Buse, L.J., Weber, M.G., Eds.; Columbia University Press: New York, NY, USA, 2004; pp. 219–229. [Google Scholar]
- Thom, D.; Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 2016, 91, 760–781. [Google Scholar] [CrossRef] [PubMed]
- MacLean, D.A. Predicting forest insect disturbance regimes for use in emulating natural disturbance. In Emulating Natural Forest Landscape Disturbances: Concepts and Applications; Perera, A.H., Buse, L.J., Weber, M.G., Eds.; Columbia University Press: New York, NY, USA, 2004; pp. 69–82. [Google Scholar]
- Morin, H.; Jardon, Y.; Gagnon, R.A. Relationship between spruce budworm outbreaks and forest dynamics in eastern North America. In Plant Disturbance Ecology; Johnson, E., Miyanishi, K., Eds.; Academic Press: New York, NY, USA, 2007; pp. 555–577. [Google Scholar]
- De Grandpré, L.; Gauthier, S.; Allain, C.; Cyr, D.; Périgon, S.; Pham, A.T.; Boucher, D.; Morissette, J.; Reyes, G.; Aakala, T.; et al. Towards an ecosystem approach to managing the boreal forest in the north shore region: Disturbance regime and natural forest dynamics. In Ecosystem Management in the Boreal Forest; Gauthier, S., Vaillancourt, M.-A., Leduc, A., De Grandpré, L., Kneeshaw, D., Morin, H., Drapeau, P., Bergeron, Y., Eds.; Presses de l’Université du Québec: Quebec, QC, Canada, 2009; pp. 229–255. [Google Scholar]
- Kneeshaw, D.D.; Harvey, B.D.; Reyes, G.P.; Caron, M.N.; Barlow, S. Spruce budworm, windthrow and partial cutting: Do different partial disturbances produce different forest structures? For. Ecol. Manag. 2011, 262, 482–490. [Google Scholar] [CrossRef]
- Shorohova, E.; Kuuluvainen, T.; Kangur, A.; Jõgiste, K. Natural stand structures, disturbance regimes and successional dynamics in the Eurasian boreal forests: A review with special reference to Russian studies. Ann. For. Sci. 2009, 66, 201–220. [Google Scholar] [CrossRef]
- Waldron, K.; Ruel, J.-C.; Gauthier, S. The effects of site characteristics on the landscape-level windthrow regime in the north shore region of Quebec, Canada. Forestry 2012, 86, 159–171. [Google Scholar] [CrossRef]
- Bergeron, Y.; Fenton, N.J. Boreal forests of eastern Canada revisited: Old growth, nonfire disturbances, forest succession, and biodiversity. Botany 2012, 90, 509–523. [Google Scholar] [CrossRef]
- Suffling, R.; Perera, A.H. Characterizing natural forest disturbance regimes: Concepts and approaches. In Emulating Natural Forest Landscape Disturbances: Concepts and Applications; Perera, A.H., Buse, L.J., Weber, M.G., Eds.; Columbia University Press: New York, NY, USA, 2004. [Google Scholar]
- Turner, M.G. Disturbance and landscape dynamics in a changing world. Ecology 2010, 91, 2833–2849. [Google Scholar] [CrossRef] [PubMed]
- Seymour, R.S.; White, A.S.; deMaynadier, P.G. Natural disturbance regimes in northeastern North America—Evaluating silvicultural systems using natural scales and frequencies. For. Ecol. Manag. 2002, 155, 357–367. [Google Scholar] [CrossRef]
- Swanson, F.J.; Jones, J.A.; Wallin, D.O.; Cissel, J. Natural variability--implications for ecosystem management. In Eastside Forest Ecosystem Health Assessment--Volume ii: Ecosystem Management: Principles and Applications; Jensen, M.E., Bourgeron, P.S., Eds.; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1994. [Google Scholar]
- Sturtevant, B.R.; Cooke, B.J.; Kneeshaw, D.D.; MacLean, D.A. Modeling insect disturbance across forested landscapes: Insights from the spruce budworm. In Simulation Modeling of Forest Landscape Disturbances; Perera, A.H., Sturtevant, B.R., Buse, L.J., Eds.; Springer: Berlin, German, 2015; pp. 93–134. [Google Scholar]
- MacLean, D.A. Impacts of insect outbreaks on tree mortality, productivity, and stand development. Can. Entomol. 2016, 148, S138–S159. [Google Scholar] [CrossRef]
- Bognounou, F.; De Grandpré, L.; Pureswaran, D.S.; Kneeshaw, D. Temporal variation in plant neighborhood effects on the defoliation of primary and secondary hosts by an insect pest. Ecosphere 2017, 8, e01759. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Burton, P.J.; Franklin, J.F. Salvage Logging and Its Ecological Consequences; Island Press: Washington, DC, USA, 2008; 227p. [Google Scholar]
- Bače, R.; Svoboda, M.; Janda, P.; Morrissey, R.C.; Wild, J.; Clear, J.L.; Čada, V.; Donato, D.C. Legacy of pre-disturbance spatial pattern determines early structural diversity following severe disturbance in montane spruce forests. PLoS ONE 2015, 10, e0139214. [Google Scholar] [CrossRef] [PubMed]
- Thorn, S.; Bässler, C.; Bernhardt-Römermann, M.; Cadotte, M.; Heibl, C.; Schäfer, H.; Seibold, S.; Müller, J. Changes in the dominant assembly mechanism drive species loss caused by declining resources. Ecol. Lett. 2015, 19, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, Y.; Drapeau, P.; Gauthier, S.; Lecomte, N. Using knowledge of natural disturbances to support sustainable forest management in the northern clay belt. For. Chron. 2007, 83, 326–337. [Google Scholar] [CrossRef]
- Bergeron, Y.; Gauthier, S.; Flannigan, M.; Kafka, V. Fire regimes at the transition between mixedwood and coniferous boreal forest in northwestern Quebec. Ecology 2004, 85, 1916–1932. [Google Scholar] [CrossRef]
- White, P.S.; Pickett, S.T. Natural disturbance and patch dynamics: An introduction. In The Ecology of Natural Disturbance and Patch Dynamics; Pickett, S.T.A., White, P.S., Eds.; Academic Press: New York, NY, USA, 1985; pp. 3–13. [Google Scholar]
- Boucher, D.; De Grandpré, L.; St-Onge, B.; Ruel, J.-C.; Waldron, K.; Lussier, J.-M.; Kneeshaw, D. Effects of 80 years of forest management on landscape structure and pattern in the eastern Canadian boreal forest. Landsc. Ecol. 2015, 30, 1913–1929. [Google Scholar] [CrossRef]
- Frelich, L.E.; Reich, P.B. Disturbance severity and threshold responses in the boreal forest. Conserv. Ecol. 1998, 2, 1–7. [Google Scholar] [CrossRef]
- Roberts, M.R. Response of the herbaceous layer to natural disturbance in north american forests. Can. J. Bot. 2004, 82, 1273–1283. [Google Scholar] [CrossRef]
- Roberts, M.R. A conceptual model to characterize disturbance severity in forest harvests. For. Ecol. Manag. 2007, 242, 58–64. [Google Scholar] [CrossRef]
- MacLean, D.A. Vulnerability of fir-spruce stands during uncontrolled spruce budworm outbreaks: A review and discussion. For. Chron. 1980, 56, 213–221. [Google Scholar] [CrossRef]
- Peterson, C.J. Within-stand variation in windthrow in southern boreal forests of Minnesota: Is it predictable? Can. J. For. Res. 2004, 34, 365–375. [Google Scholar] [CrossRef]
- Canham, C.D.; Papaik, M.J.; Latty, E.F. Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for northern temperate tree species. Can. J. For. Res. 2001, 31, 1–10. [Google Scholar] [CrossRef]
- Canham, C.D.; Thompson, J.; Zimmerman, J.K.; Uriarte, M. Variation in susceptibility to hurricane damage as a function of storm intensity in Puerto Rican tree species. Biotropica 2010, 42, 87–94. [Google Scholar] [CrossRef]
- Osawa, A. Seedling responses to forest canopy disturbance following a spruce budworm outbreak in Maine. Can. J. For. Res. 1994, 24, 850–859. [Google Scholar] [CrossRef]
- Anyomi, K.A.; Mitchell, S.J.; Ruel, J.C. Windthrow modelling in old-growth and multi-layered boreal forests. Ecol. Model. 2016, 327, 105–114. [Google Scholar] [CrossRef]
- Dupont, S.; Pivato, D.; Brunet, Y. Wind damage propagation in forests. Agric. For. Meteorol. 2015, 214, 243–251. [Google Scholar] [CrossRef]
- Bouchard, M.; Pothier, D.; Ruel, J.C. Stand-replacing windthrow in the boreal forests of eastern Quebec. Can. J. For. Res. 2009, 39, 481–487. [Google Scholar] [CrossRef]
- Boucher, Y.; Bouchard, M.; Grondin, P.; Tardif, P. Le Registre des États de Référence: Intégration des Connaissances sur la Structure, la Composition et la Dynamique des Paysages Forestiers Naturels du Québec Méridional; Mémoire de recherche forestière no. 161; Direction de la Recherche Forestière, Ministère des Ressources Naturelles et de la Faune, Gouvernement du Québec: Québec, QC, Canada, 2011; 21p. [Google Scholar]
- Vaillancourt, M.-A. Effets des Régimes de Perturbation par le Chablis sur la Biodiversité et les Implications Pour la Récupération; Direction du développement socio-économique, des partenariats et de l′éducation: Québec, QC, Canada, 2008; 58p. [Google Scholar]
- Kerharo, L. Dynamique des Chablis dans les Pessières de la Ceinture D′argile; UQAM: Montréal, QC, Canada, 2013. [Google Scholar]
- Foody, G.M.; Jackson, R.G.; Quine, C.P. Potential improvements in the characterization of forest canopy gaps caused by windthrow using fine spatial resolution multispectral data: Comparing hard and soft classification techniques. For. Sci. 2003, 49, 444–454. [Google Scholar]
- Waldron, K.; Ruel, J.C.; Gauthier, S.; Goulet, P. Comparisons of spatial patterns between windthrow and logging at two spatial scales. Can. J. For. Res. 2014, 44, 740–749. [Google Scholar] [CrossRef]
- Kneeshaw, D.; Lauzon, E.; de Romer, A.; Reyes, G.; Belle-Isle, J.; Messier, J.; Gauthier, S. Applying knowledge of natural disturbance regimes to develop forestry practices inspired by nature in the southern region of the Gaspé peninsula. In Ecosystem Management in the Boreal Forest; Gauthier, S., Vaillancourt, M.-A., Leduc, A., De Grandpré, L., Kneeshaw, D., Morin, H., Drapeau, P., Bergeron, Y., Eds.; Presses de l′Université du Québec: Quebec, QC, Canada, 2009; pp. 203–228. [Google Scholar]
- Lindemann, J.D.; Baker, W.L. Attributes of blowdown patches from a severe wind event in the Southern Rocky Mountains, USA. Landsc. Ecol. 2001, 16, 313–325. [Google Scholar] [CrossRef]
- Ulanova, N.G. The effects of windthrow on forests at different spatial scales: A review. For. Ecol. Manag. 2000, 135, 155–167. [Google Scholar] [CrossRef]
- Everham, E.M.I.; Brokaw, N.V.L. Forest damage and recovery from catastrophic wind. Bot. Rev. 1996, 62, 113–185. [Google Scholar] [CrossRef]
- Girard, F.; De Grandpré, L.; Ruel, J.C. Partial windthrow as a driving process of forest dynamics in old-growth boreal forests. Can. J. For. Res. 2014, 44, 1165–1176. [Google Scholar] [CrossRef]
- Waldron, K.; Ruel, J.C.; Gauthier, S. Forest structural attributes after windthrow and consequences of salvage logging. For. Ecol. Manag. 2013, 289, 28–37. [Google Scholar] [CrossRef]
- Rich, R.L.; Frelich, L.E.; Reich, P.B. Windthrow mortality in the southern boreal forest: Effects of species, diameter and stand age. J. Ecol. 2007, 95, 1261–1273. [Google Scholar] [CrossRef]
- Lavoie, S.; Ruel, J.C.; Bergeron, Y.; Harvey, B.D. Windthrow after group and dispersed tree retention in eastern Canada. For. Ecol. Manag. 2012, 269, 158–167. [Google Scholar] [CrossRef]
- Papaik, M.J.; Canham, C.D.; Latty, E.F.; Woods, K.D. Effects of an introduced pathogen on resistance to natural disturbance: Beech bark disease and windthrow. Can. J. For. Res. 2005, 35, 1832–1843. [Google Scholar] [CrossRef]
- Ruel, J.C. Factors influencing windthrow in balsam fir forests: From landscape studies to individual tree studies. For. Ecol. Manag. 2000, 135, 169–178. [Google Scholar] [CrossRef]
- Mitchell, S.J. Wind as a natural disturbance agent in forests: A synthesis. Forestry 2013, 86, 147–157. [Google Scholar] [CrossRef]
- Canham, C.D.; Loucks, O.L. Catastrophic windthrow in the presettlement forests of Wisconsin. Ecology 1984, 65, 803–809. [Google Scholar] [CrossRef]
- Cooper-Ellis, S.; Foster, D.R.; Carlton, G.; Lezberg, A. Forest response to catastrophic wind: Results from an experimental hurricane. Ecology 1999, 80, 2683–2696. [Google Scholar] [CrossRef]
- Bégin, É. Caractérisation des Régimes de Perturbations par le Chablis et des Vents Extrêmes dans L’érablière à Bouleau Jaune du Québec; UQAM: Montréal, QC, Canada, 2011. [Google Scholar]
- Cyr, D.; Gauthier, S.; Bergeron, Y. Scale-dependent determinants of heterogeneity in fire frequency in a coniferous boreal forest of eastern Canada. Landsc. Ecol. 2007, 22, 1325–1339. [Google Scholar] [CrossRef]
- Bouchard, M.; Pothier, D.; Gauthier, S. Fire return intervals and tree species succession in the north shore region of eastern Quebec. Can. J. For. Res. 2008, 38, 1621–1633. [Google Scholar] [CrossRef]
- Hansen, A.J.; Spies, T.A.; Swanson, F.J.; Ohmann, J.L. Conserving biodiversity in managed forests: Lessons from natural forests. BioScience 1991, 41, 382–392. [Google Scholar] [CrossRef]
- Lorimer, C.G.; White, A.S. Scale and frequency of natural disturbances in the northeastern US: Implications for early successional forest habitats and regional age distributions. For. Ecol. Manag. 2003, 185, 41–64. [Google Scholar] [CrossRef]
- Dobbertin, M. Influence of stand structure and site factors on wind damage comparing the storms Vivian and Lothar. For. Snow Landsc. Res. 2002, 77, 187–205. [Google Scholar]
- Ruel, J.-C.; Benoit, R. Analyse du chablis du 7 novembre 1994 dans les régions de Charlevoix et de la Gaspésie, Québec, canada. For. Chron. 1999, 75, 293–301. [Google Scholar] [CrossRef]
- Ruel, J.C. Understanding windthrow: Silvicultural implications. For. Chron. 1995, 71, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Meunier, S.; Ruel, J.C.; Laflamme, G.; Achim, A. Comparison of resistance to overturning between balsam fir and white spruce. Can. J. For. Res. 2002, 32, 642–652. [Google Scholar] [CrossRef]
- Ilisson, T.; Metslaid, M.; Vodde, F.; Jõgiste, K.; Kurm, M. Storm disturbance in forest ecosystems in Estonia. Scand. J. For. Res. 2005, 20, 88–93. [Google Scholar] [CrossRef]
- Zeng, H.; Garcia-Gonzalo, J.; Peltola, H.; Kellomäki, S. The effects of forest structure on the risk of wind damage at a landscape level in a boreal forest ecosystem. Ann. For. Sci. 2010, 67, 111. [Google Scholar] [CrossRef]
- Zeng, H.; Peltola, H.; Talkkari, A.; Venäläinen, A.; Strandman, H.; Kellomäki, S.; Wang, K. Influence of clear-cutting on the risk of wind damage at forest edges. For. Ecol. Manag. 2004, 203, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Peltola, H.; Väisänen, H.; Kellomäki, S. The effects of fragmentation on the susceptibility of a boreal forest ecosystem to wind damage. For. Ecol. Manag. 2009, 257, 1165–1173. [Google Scholar] [CrossRef]
- Ruel, J.C.; Pin, D.; Spacek, L.; Cooper, K.; Benoit, R. The estimation of wind exposure for windthrow hazard rating: Comparison between strongblow, mc2, topex and a wind tunnel study. Forestry 1997, 70, 253–266. [Google Scholar] [CrossRef]
- Quine, C.P.; White, I.M.S. The potential of distance-limited topex in the prediction of site windiness. Forestry 1998, 71, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Ruel, J.C.; Mitchell, S.J.; Dornier, M. A GIS based approach to map wind exposure for windthrow hazard rating. North J. Appl. For. 2002, 19, 183–187. [Google Scholar]
- Royama, T. Population dynamics of the spruce budworm Choristoneura fumiferana. Ecol. Monogr. 1984, 54, 429–462. [Google Scholar] [CrossRef]
- Royama, T.; MacKinnon, W.E.; Kettela, E.G.; Carter, N.E.; Hartling, L.K. Analysis of spruce budworm outbreak cycles in New Brunswick, Canada, since 1952. Ecology 2005, 86, 1212–1224. [Google Scholar] [CrossRef]
- Jardon, Y.; Morin, H.; Dutilleul, P. Periodicity and synchronism of spruce budworm outbreaks in Quebec. Can. J. For. Res. 2003, 33, 1947–1961. [Google Scholar] [CrossRef]
- Robert, L.E.; Sturtevant Brian, R.; Cooke Barry, J.; James Patrick, M.A.; Fortin, M.J.; Townsend Philip, A.; Wolter Peter, T.; Kneeshaw, D. Landscape host abundance and configuration regulate periodic outbreak behavior in spruce budworm Choristoneura fumiferana. Ecography 2018, 40, 1–16. [Google Scholar] [CrossRef]
- Boulanger, Y.; Arseneault, D. Spruce budworm outbreaks in eastern Quebec over the last 450 years. Can. J. For. Res. 2004, 34, 1035–1043. [Google Scholar] [CrossRef]
- Boulanger, Y.; Arseneault, D.; Morin, H.; Jardon, Y.; Bertrand, P.; Dagneau, C. Dendrochronological reconstruction of spruce budworm (Choristoneura fumiferana) outbreaks in southern Quebec for the last 400 years. Can. J. For. Res. 2012, 42, 1264–1276. [Google Scholar] [CrossRef]
- QMFFP. Aires Infestées par la Tordeuse des Bourgeons de L’épinette au Québec en 2017—Version 1.0; Ministère des Forêts, de la Faune et des Parcs: Québec, QC, Canada, 2017; 17p. [Google Scholar]
- Kneeshaw, D.D.; Bergeron, Y. Canopy gap characteristics and tree replacement in the southeastern boreal forest. Ecology 1998, 79, 783–794. [Google Scholar] [CrossRef]
- Bouchard, M.; Kneeshaw, D.; Bergeron, Y. Mortality and stand renewal patterns following the last spruce budworm outbreak in mixed forests of western Quebec. For. Ecol. Manag. 2005, 204, 297–313. [Google Scholar] [CrossRef]
- MacLean, D.A.; Piene, H. Spatial and temporal patterns of balsam fir mortality in spaced and unspaced stands caused by spruce budworm defoliation. Can. J. For. Res. 1995, 25, 902–911. [Google Scholar] [CrossRef]
- Bouchard, M.; Régnière, J.; Therrien, P. Bottom-up factors contribute to large-scale synchrony in spruce budworm populations. Can. J. For. Res. 2017, 48, 277–284. [Google Scholar] [CrossRef]
- Belle-Isle, J.; Kneeshaw, D. A stand and landscape comparison of the effects of a spruce budworm (Choristoneura fumiferana (Clem.)) outbreak to the combined effects of harvesting and thinning on forest structure. For. Ecol. Manag. 2007, 246, 163–174. [Google Scholar] [CrossRef]
- De Römer, A.H.; Kneeshaw, D.D.; Bergeron, Y. Small gap dynamics in the southern boreal forest of eastern Canada: Do canopy gaps influence stand development? J. Veg. Sci. 2007, 18, 815–826. [Google Scholar] [CrossRef]
- D′Aoust, V.; Kneeshaw, D.; Bergeron, Y. Characterization of canopy openness before and after a spruce budworm outbreak in the southern boreal forest. Can. J. For. Res. 2004, 34, 339–352. [Google Scholar] [CrossRef]
- McCarthy, J. Gap dynamics of forest trees: A review with particular attention to boreal forests. Environ. Rev. 2001, 9, 1–59. [Google Scholar] [CrossRef]
- Zhao, K.; MacLean, D.A.; Hennigar, C.R. Spatial variability of spruce budworm defoliation at different scales. For. Ecol. Manag. 2014, 328, 10–19. [Google Scholar] [CrossRef]
- Franklin, C.M.A.; Harper, K.A.; Murphy, L.K. Structural dynamics at boreal forest edges created by a spruce budworm outbreak. Silva Fenn. 2015, 49. [Google Scholar] [CrossRef] [Green Version]
- Spencer, G. The Effect of a Spruce Budworm Outbreak on Regeneration Development. BScF Thesis, University of New Brunswick, Fredericton, NB, Canada, 1985. Available online: https://scholar.google.com.tw/scholar?hl=zh-TW&as_sdt=0%2C5&q=The+Effect+of+a+Spruce+Budworm+Outbreak+on+Regeneration+Development.+&btnG= (accessed on 1 August 2018).
- Ruel, J.; Huot, M. Impact de la tordeuse des bourgeons d′épinette (Choristoneura fumiferana (Clem.)) sur la régéneration des sapinières après la coupe à blanc. For. Chron. 1993, 69, 163–172. [Google Scholar] [CrossRef]
- MacLean, D.A. Effects of spruce budworm outbreaks on vegetation, structure and succession of balsam fir forests on Cape Breton Island, Canada. In Plant Form and Vegetation Structure; Werger, M.J.A., van der Aart, P.J.M., Verhoeven, J.T.A., Eds.; Academic Publishing: La Haye, The Netherlands, 2008; pp. 253–261. [Google Scholar]
- Bergeron, Y.; Leduc, A.; Joyal, C.; Morin, H. Balsam fir mortality following the last spruce budworm outbreak in northwestern Quebec. Can. J. For. Res. 1995, 25, 1375–1384. [Google Scholar] [CrossRef]
- Taylor, S.L.; MacLean, D.A. Spatiotemporal patterns of mortality in declining balsam fir and spruce stands. For. Ecol. Manag. 2007, 253, 188–201. [Google Scholar] [CrossRef]
- Hennigar, C.R.; MacLean, D.A.; Quiring, D.T.; Kershaw Jr, J.A. Differences in spruce budworm defoliation among balsam fir and white, red, and black spruce. For. Sci. 2008, 54, 158–166. [Google Scholar]
- Maclean, D.A.; Mackinnon, W.E. Effects of stand and site characteristics on susceptibility and vulnerability of balsam fir and spruce to spruce budworm in New Brunswick. Can. J. For. Res. 1997, 27, 1859–1871. [Google Scholar] [CrossRef]
- Bouchard, M.; Kneeshaw, D.; Bergeron, Y. Forest dynamics after successive spruce budworm outbreaks in mixedwood forests. Ecology 2006, 87, 2319–2329. [Google Scholar] [CrossRef]
- Archambault, L.; Gagnon, R.; Pelletier, R.; Chabot, G.; Bélanger, L. Influence du drainage et de la texture du dépôt sur la vulnérabilité du sapin baumier et de l’épinette blanche aux attaques de la tordeuse des bourgeons de l′épinette. Can. J. For. Res. 1990, 20, 750–756. [Google Scholar] [CrossRef]
- Su, Q.; MacLean, D.A.; Needham, T.D. The influence of hardwood content on balsam fir defoliation by spruce budworm. Can. J. For. Res. 1996, 26, 1620–1628. [Google Scholar] [CrossRef]
- Franklin, J.F.; Lindenmayer, D.B.; MacMahon, J.A.; McKee, A.; Magnusson, J.; Perry, D.A.; Waide, R.; Foster, D.R. Threads of continuity: Ecosystem disturbances, biological legacies and ecosystem recovery. Conserv. Biol. Pract. 2000, 1, 8–16. [Google Scholar] [CrossRef]
- Harmon, M.E.; Franklin, J.F.; Swanson, F.J.; Sollins, P.; Gregory, S.V.; Lattin, J.D.; Anderson, N.H.; Cline, S.P.; Aumen, N.G.; Sedell, J.R. Ecology of coarse woody debris in temperate ecosystems. In Advances in Ecological Research; Bohan, D., Dumbrell, A.J., Massol, F., Eds.; Elsevier: New York, NY, USA, 1986; Volume 15, pp. 133–302. [Google Scholar]
- Aakala, T.; Kuuluvainen, T.; Gauthier, S.; De Grandpré, L. Standing dead trees and their decay-class dynamics in the northeastern boreal old-growth forests of Quebec. For. Ecol. Manag. 2008, 255, 410–420. [Google Scholar] [CrossRef]
- Taylor, S.L.; MacLean, D.A. Dead wood dynamics in declining balsam fir and spruce stands in New Brunswick, Canada. Can. J. For. Res. 2007, 37, 750–762. [Google Scholar] [CrossRef]
- Angers, V.A.; Gauthier, S.; Drapeau, P.; Jayen, K.; Bergeron, Y. Tree mortality and snag dynamics in North American boreal tree species after a wildfire: A long-term study. Int. J. Wildland Fire 2011, 20, 751–763. [Google Scholar] [CrossRef]
- Vaillancourt, M.-A.; Drapeau, P.; Gauthier, S.; Robert, M. Availability of standing trees for large cavity-nesting birds in the eastern boreal forest of Québec, Canada. For. Ecol. Manag. 2008, 255, 2272–2285. [Google Scholar] [CrossRef]
- Nappi, A.; Drapeau, P.; Savard, J.P.L. Salvage logging after wildfire in the boreal forest: Is it becoming a hot issue for wildlife? For. Chron. 2004, 80, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Berg, Å.; Ehnström, B.; Gustafsson, L.; Hallingbäck, T.; Jonsell, M.; Weslien, J. Threatened plant, animal, and fungus species in Swedish forests: Distribution and habitat associations. Conserv. Biol. 1994, 8, 718–731. [Google Scholar] [CrossRef]
- Ylisirniö, A.-L.; Berglund, H.; Aakala, T.; Kuuluvainen, T.; Kuparinen, A.-M.; Norokorpi, Y.; Hallikainen, V.; Mikkola, K.; Huhta, E. Spatial distribution of dead wood and the occurrence of five saproxylic fungi in old-growth timberline spruce forests in northern Finland. Scand. J. For. Res. 2009, 24, 527–540. [Google Scholar] [CrossRef]
- Marzano, R.; Garbarino, M.; Marcolin, E.; Pividori, M.; Lingua, E. Deadwood anisotropic facilitation on seedling establishment after a stand-replacing wildfire in Aosta Valley (NW Italy). Ecol. Eng. 2013, 51, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Ruel, J.-C.; Achim, A.; Herrera, R.E.; Cloutier, A.; Brossier, B. Wood degradation after windthrow in a northern environment. For. Prod. J. 2010, 60, 200–206. [Google Scholar] [CrossRef]
- Edman, M.; Jönsson, M.; Jonsson, B.G. Fungi and wind strongly influence the temporal availability of logs in an old-growth spruce forest. Ecol. Appl. 2007, 17, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.L.; MacLean, D.A. Legacy of insect defoliators: Increased wind-related mortality two decades after a spruce budworm outbreak. For. Sci. 2009, 55, 256–267. [Google Scholar]
- Fraver, S.; Wagner, R.G.; Day, M. Dynamics of coarse woody debris following gap harvesting in the acadian forest of central Maine, U.S.A. Can. J. For. Res. 2002, 32, 2094–2105. [Google Scholar] [CrossRef]
- Brassard, B.W.; Chen, H.Y.H. Stand structural dynamics of North American boreal forests. CRC Crit. Rev. Plant Sci. 2006, 25, 115–137. [Google Scholar] [CrossRef]
- De Grandpré, L.; Kneeshaw Daniel, D.; Perigon, S.; Boucher, D.; Marchand, M.; Pureswaran, D.; Girardin Martin, P. Adverse climatic periods precede and amplify defoliator-induced tree mortality in eastern boreal North America. J. Ecol. 2018. [Google Scholar] [CrossRef]
- Simard, M.J.; Bergeron, Y.; Sirois, L. Conifer seedling recruitment in a southeastern Canadian boreal forest: The importance of substrate. J. Veg. Sci. 1998, 9, 575–582. [Google Scholar] [CrossRef]
- Duchesneau, R.; Morin, H. Early seedling demography in balsam fir seedling banks. Can. J. For. Res. 1999, 29, 1502–1509. [Google Scholar] [CrossRef]
- Angers, V.A.; Drapeau, P.; Bergeron, Y. Snag degradation pathways of four North American boreal tree species. For. Ecol. Manag. 2010, 259, 246–256. [Google Scholar] [CrossRef]
- Peterson, C.J.; Carson, W.P.; McCarthy, B.C.; Pickett, S.T.A. Microsite variation and soil dynamics within newly created treefall pits and mounds. Oikos 1990, 58, 39–46. [Google Scholar] [CrossRef]
- Kuuluvainen, T.; Juntunen, P. Seedling establishment in relation to microhabitat variation in a windthrow gap in a boreal Pinus sylvestris forest. J. Veg. Sci. 1998, 9, 551–562. [Google Scholar] [CrossRef]
- Waldron, K.; Ruel, J.C.; Gauthier, S.; De Grandpré, L.; Peterson, C.J. Effects of post-windthrow salvage logging on microsites, plant composition and regeneration. Appl. Veg. Sci. 2014, 17, 323–337. [Google Scholar] [CrossRef]
- Wohlgemuth, T.; Kull, P.; Wüthrich, H. Disturbance of microsites and early tree regeneration after windthrow in Swiss mountain forests due to the winter storm Vivian 1990. For. Snow Landsc. Res. 2002, 77, 17–47. [Google Scholar]
- Beatty, S.W.; Stone, E.L. The variety of soil microsites created by tree falls. Can. J. For. Res. 1986, 16, 539–548. [Google Scholar] [CrossRef]
- Jonsson, B.G.; Dynesius, M. Uprooting in boreal spruce forests: Long-term variation in disturbance rate. Can. J. For. Res. 1993, 23, 2383–2388. [Google Scholar] [CrossRef]
- Peterson, C.J.; Leach, A.D. Salvage logging after windthrow alters microsite diversity, abundance and environment, but not vegetation. Forestry 2008, 81, 361–376. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, B.G.; Esseen, P.-A. Treefall disturbance maintains high bryophyte diversity in a boreal spruce forest. J. Ecol. 1990, 73, 924–936. [Google Scholar] [CrossRef]
- De Grandpre, L.; Bergeron, Y. Diversity and stability of understorey communities following disturbance in the southern boreal forest. J. Ecol. 1997, 85, 777–784. [Google Scholar] [CrossRef]
- Messier, C.; Puettmann, K.J.; Coates, K.D. Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Hunter, M.L., Jr.; Schmiegelow, F.K.A. Wildlife, Forests, and Forestry: Principles of Managing Forests for Biological Diversity, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
- Boulanger, Y.; Gauthier, S.; Burton, P.J. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Can. J. For. Res. 2014, 44, 365–376. [Google Scholar] [CrossRef]
- Bouchard, M. Silviculture in a context of forest ecosystem management in boreal and southern boreal forests. In Ecosystem Management in the Boreal Forest; Gauthier, S., Vaillancourt, M.-A., Leduc, A., De Grandpré, L., Kneeshaw, D., Morin, H., Drapeau, P., Bergeron, Y., Eds.; Les Presses de l’Université du Québec: Québec, QC, Canada, 2009; pp. 319–342. [Google Scholar]
- Seidl, R.; Fernandes, P.M.; Fonseca, T.F.; Gillet, F.; Jönsson, A.M.; Merganičová, K.; Netherer, S.; Arpaci, A.; Bontemps, J.D.; Bugmann, H.; et al. Modelling natural disturbances in forest ecosystems: A review. Ecol. Model. 2011, 222, 903–924. [Google Scholar] [CrossRef]
- Drever, C.R.; Peterson, G.; Messier, C.; Bergeron, Y.; Flannigan, M. Can forest management based on natural disturbances maintain ecological resilience? Can. J. For. Res. 2006, 36, 2285–2299. [Google Scholar] [CrossRef] [Green Version]
- Kuuluvainen, T. Forest management and biodiversity conservation based on natural ecosystem dynamics in northern Europe: The complexity challenge. AMBIO 2009, 38, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Churchill, D.J.; Larson, A.J.; Dahlgreen, M.C.; Franklin, J.F.; Hessburg, P.F.; Lutz, J.A. Restoring forest resilience: From reference spatial patterns to silvicultural prescriptions and monitoring. For. Ecol. Manag. 2013, 291, 442–457. [Google Scholar] [CrossRef]
- Bouchard, M.; Kneeshaw, D.; Bergeron, Y. Ecosystem management based on large-scale disturbance pulses: A case study from sub-boreal forests of western Quebec (Canada). For. Ecol. Manag. 2008, 256, 1734–1742. [Google Scholar] [CrossRef]
- Burton, P.J.; Svoboda, M.; Kneeshaw, D.; Gottschalk, K.W. Options for promoting the recovery and rehabilitation of forests affected by severe insect outbreaks. In Restoration of Boreal and Temperate Forests; Stanturf, J.A., Ed.; CRC Press: Boca Raton, FL, USA, 2015; Volume 13, pp. 495–517. [Google Scholar]
- Thorn, S.; Bässler, C.; Brandl, R.; Burton Philip, J.; Cahall, R.; Campbell John, L.; Castro, J.; Choi, C.Y.; Cobb, T.; Donato Daniel, C.; et al. Impacts of salvage logging on biodiversity: A meta-analysis. J. Appl. Ecol. 2017, 55, 279–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duelli, P.; Obrist, M.K.; Wermelinger, B. Windthrow-induced changes in faunistic biodiversity in alpine spruce forests. For. Snow Landsc. Res. 2002, 77, 117–131. [Google Scholar]
- Buma, B. Disturbance interactions: Characterization, prediction, and the potential for cascading effects. Ecosphere 2015, 6, 1–15. [Google Scholar] [CrossRef]
- Keane, R.E.; Clark, J.; Loehman, R.; Smithwick, E.A.H.; Miller, C. Exploring interactions among multiple disturbance agents in forest landscapes: Simulating effects of fire, beetles, and disease under climate change. In Simulation Modeling of Forest Landscape Disturbances; Perera, A.H., Sturtrvant, B.R., Buse, L.J., Eds.; Springer: Berlin, German, 2015; pp. 201–231. [Google Scholar]
- Perera, A.H.; Buse, L.J.; Sturtevant, B.R. Simulation modeling of forest landscape disturbances: Where do we go from here? In Simulation Modeling of Forest Landscape Disturbances; Perera, A.H., Sturtrvant, B.R., Buse, L.J., Eds.; Springer: Berlin, German, 2015; pp. 287–311. [Google Scholar]
- Wilson, E.A.; Maclean, D.A. Windthrow and growth response following a spruce budworm inspired, variable retention harvest in New Brunswick, Canada. Can. J. For. Res. 2015, 45, 659–666. [Google Scholar] [CrossRef]
- Scott, R.E.; Mitchell, S.J. Empirical modelling of windthrow risk in partially harvested stands using tree, neighbourhood, and stand attributes. For. Ecol. Manag. 2005, 218, 193–209. [Google Scholar] [CrossRef]
- D′Amato, A.W.; Fraver, S.; Palik, B.J.; Bradford, J.B.; Patty, L. Singular and interactive effects of blowdown, salvage logging, and wildfire in sub-boreal pine systems. For. Ecol. Manag. 2011, 262, 2070–2078. [Google Scholar] [CrossRef]
- Paine, R.T.; Tegner, M.J.; Johnson, E.A. Compounded perturbations yield ecological surprises. Ecosystems 1998, 1, 535–545. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Noss, R.F. Salvage logging, ecosystem processes, and biodiversity conservation. Conserv. Biol. 2006, 20, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Schelhaas, M.J.; Lexer, M.J. Unraveling the drivers of intensifying forest disturbance regimes in europe. Global Chang. Biol. 2011, 17, 2842–2852. [Google Scholar] [CrossRef]
- Pureswaran, D.S.; De Grandpré, L.; Paré, D.; Taylor, A.; Barrette, M.; Morin, H.; Régnière, J.; Kneeshaw, D.D. Climate-induced changes in host tree-insect phenology may drive ecological state-shift in boreal forests. Ecology 2015, 96, 1480–1491. [Google Scholar] [CrossRef]
- Saad, C.; Boulanger, Y.; Beaudet, M.; Gachon, P.; Ruel, J.-C.; Gauthier, S. Potential impact of climate change on the risk of windthrow in eastern Canada’s forests. Clim. Chang. 2017, 143, 487–501. [Google Scholar] [CrossRef]
- Nitschke, C.R.; Innes, J.L. Integrating climate change into forest management in south-central British Columbia: An assessment of landscape vulnerability and development of a climate-smart framework. For. Ecol. Manag. 2008, 256, 313–327. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Lexer, M.J. Adaptation options to reduce climate change vulnerability of sustainable forest management in the Austrian Alps. Can. J. For. Res. 2011, 41, 694–706. [Google Scholar] [CrossRef]
- Gauthier, S.; Bernier, P.; Burton, P.J.; Edwards, J.; Isaac, K.; Isabel, N.; Jayen, K.; Le Goff, H.; Nelson, E.A. Climate change vulnerability and adaptation in the managed Canadian boreal forest. Environ. Rev. 2014, 22, 256–285. [Google Scholar] [CrossRef]
- Gauthier, S.; Bernier, P.; Kuuluvainen, T.; Shvidenko, A.Z.; Schepaschenko, D.G. Boreal forest health and global change. Science 2015, 349, 819. [Google Scholar] [CrossRef] [PubMed]
Disturbance Regime Descriptor | Windthrow | Spruce Budworm Outbreak | Effects on Forest Structure and Pattern |
---|---|---|---|
Disturbance duration (temporal) | Hours to days (gap expansion few years) | Years to several decades (depending on spatial scale) | Progressive changes in forest characteristics as mortality continue to occur (temporal increase in structural complexity) |
Rotation period or periodicity (temporal) | Stand replacing events >1000 years Partial events between 71 and 450 years | 30 to 60 years (influenced by severity) | Short recurrence events maintain forest composition and structure in a dynamic equilibrium at the landscape scale |
Patch size distribution (spatial) | 0.1 to >10,000 ha (dominated by small events <4 ha) | 0.01 to >50 ha (complex in shape and hard to delineate) | Increase in structural complexity of the landscape forest matrix |
Shape (spatial) | Stand replacing events (sometimes linear) Partial events (complex and hard to delineate) | Complex and hard to delineate | Increase in structural complexity of the forest matrix (stand and landscape) |
Severity | Canopy tree mortality variable Soil disturbance when trees are uprooted | Canopy tree mortality variable No soil disturbances but understory regeneration mortality | Increase in stand vertical structural complexity |
Specificity | Species vulnerability to uprooting Associated to site condition | Limited to host species Tree and stand age Landscape composition | Changes in species composition Increase in stand vertical structural complexity |
Legacies | Windthrow | Spruce Budworm | Influence on Recovery Process (Examples) |
---|---|---|---|
Snags | Few | Abundant (especially among host species) | Recruitment of downed woody debris [128] Preserve some vertical structure in the post-disturbance stand [13,91] |
Coarse woody debris | Abundant (short term) | Increase with snag fall rate | When sufficiently decomposed and/or moss covered, substrate for germination [126] |
Tip up mounds | Many | Unusual | Source of heterogeneity in establishment microsites [129] Germination microsites for some species (e.g., small seeded Picea sp. and Betula sp.) [130] Influence the spatial distribution of regeneration (and eventually of trees) in the post-disturbance stand [56] Contribute to maintain (or increase) species diversity [56] |
Live remnant trees | Few to many | Depending on stand species composition | Possible seed source for recolonization of area [7] Limit soil erosion [7] Preserve some vertical structure in the post-disturbance stand [13] |
Intact understory patches | Possible (patchy) | Common | Maintain pre-established regeneration (seedling banks) [131,132] Patches of intact forest floor associated with maintenance of some shrub species [131,132] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Grandpré, L.; Waldron, K.; Bouchard, M.; Gauthier, S.; Beaudet, M.; Ruel, J.-C.; Hébert, C.; Kneeshaw, D.D. Incorporating Insect and Wind Disturbances in a Natural Disturbance-Based Management Framework for the Boreal Forest. Forests 2018, 9, 471. https://doi.org/10.3390/f9080471
De Grandpré L, Waldron K, Bouchard M, Gauthier S, Beaudet M, Ruel J-C, Hébert C, Kneeshaw DD. Incorporating Insect and Wind Disturbances in a Natural Disturbance-Based Management Framework for the Boreal Forest. Forests. 2018; 9(8):471. https://doi.org/10.3390/f9080471
Chicago/Turabian StyleDe Grandpré, Louis, Kaysandra Waldron, Mathieu Bouchard, Sylvie Gauthier, Marilou Beaudet, Jean-Claude Ruel, Christian Hébert, and Daniel D. Kneeshaw. 2018. "Incorporating Insect and Wind Disturbances in a Natural Disturbance-Based Management Framework for the Boreal Forest" Forests 9, no. 8: 471. https://doi.org/10.3390/f9080471
APA StyleDe Grandpré, L., Waldron, K., Bouchard, M., Gauthier, S., Beaudet, M., Ruel, J. -C., Hébert, C., & Kneeshaw, D. D. (2018). Incorporating Insect and Wind Disturbances in a Natural Disturbance-Based Management Framework for the Boreal Forest. Forests, 9(8), 471. https://doi.org/10.3390/f9080471