Ebola Virus Isolation Using Huh-7 Cells has Methodological Advantages and Similar Sensitivity to Isolation Using Other Cell Types and Suckling BALB/c Laboratory Mice
Abstract
:1. Introduction
2. Material and Methods
2.1. Cell Culture
2.2. Viruses
2.3. Normal Breast Milk and Semen
2.4. Plaque Assay
2.5. TCID50 Assay
2.6. Quantitative Real Time RT-PCR
2.7. Sample Matrix Toxicity In Vitro
2.8. Sample Matrix Toxicity In Vivo
2.9. EBOV/Mak Isolation In Vitro
2.10. EBOV/Mak Isolation In Vivo
2.11. In Vivo Virus Isolation Comparison between Two EBOV Isolates
2.12. Histology/Immunohistochemistry
3. Results
3.1. EBOV/Mak In Vitro Isolation Comparison
3.2. In Vivo Virus Isolation Comparison between Two Ebola Virus Isolates
3.3. EBOV/Mak Isolation Attempt Summary
3.4. Histology and Detection of EBOV RNA in Suckling Laboratory Mice Brains
3.5. Breast Milk and Semen Induced Cytotoxicity Using In Vitro and In Vivo Isolation Methods
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Situation report: Ebola virus disease—10 June 2016. Available online: http://apps.who.int/iris/bitstream/10665/208883/1/ebolasitrep_10Jun2016_eng.pdf?ua=1 (accessed on 20 December 2018).
- Kuhn, J.H. Ebolavirus and marburgvirus infections. Available online: http://accessmedicine.mhmedical.com/content.aspx?bookid=1130§ionid=79739742 (accessed on 8 November 2017).
- Tiffany, A.; Vetter, P.; Mattia, J.; Dayer, J.A.; Bartsch, M.; Kasztura, M.; Sterk, E.; Tijerino, A.M.; Kaiser, L.; Ciglenecki, I. Ebola virus disease complications as experienced by survivors in sierra leone. Clin. Infect. Dis. 2016, 62, 1360–1366. [Google Scholar] [CrossRef] [PubMed]
- Crozier, I. Ebola virus rna in the semen of male survivors of ebola virus disease: The uncertain gravitas of a privileged persistence. J. Infect. Dis. 2016, 214, 1467–1469. [Google Scholar] [CrossRef] [PubMed]
- Fischer, W.; Brown, J.; Wohl, D.; Loftis, A.; Tozay, S.; Reeves, E.; Pewu, K.; Gorvego, G.; Quellie, S.; Cunningham, C.; et al. Ebola vrus rna detection in semen more than two years after resolution of acute ebola virus infection. Open Forum Infect. Dis. 2017. [Google Scholar] [CrossRef] [PubMed]
- Christie, A.; Davies-Wayne, G.J.; Cordier-Lassalle, T.; Blackley, D.J.; Laney, A.S.; Williams, D.E.; Shinde, S.A.; Badio, M.; Lo, T.; Mate, S.E.; et al. Possible sexual transmission of ebola virus—Liberia, 2015. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 479–481. [Google Scholar] [PubMed]
- Diallo, B.; Sissoko, D.; Loman, N.J.; Bah, H.A.; Bah, H.; Worrell, M.C.; Conde, L.S.; Sacko, R.; Mesfin, S.; Loua, A.; et al. Resurgence of ebola virus disease in guinea linked to a survivor with virus persistence in seminal fluid for more than 500 days. Clin. Infect. Dis. 2016, 63, 1353–1356. [Google Scholar] [CrossRef]
- Mate, S.E.; Kugelman, J.R.; Nyenswah, T.G.; Ladner, J.T.; Wiley, M.R.; Cordier-Lassalle, T.; Christie, A.; Schroth, G.P.; Gross, S.M.; Davies-Wayne, G.J.; et al. Molecular evidence of sexual transmission of ebola virus. N. Engl. J. Med. 2015, 373, 2448–2454. [Google Scholar] [CrossRef]
- Liberia ebola Virus Disease Clinical Management Manual; Ministry of Health and Social Welfare: Monrovia, Republic of Liberia, December 2014.
- Soka, M.J.; Choi, M.J.; Baller, A.; White, S.; Rogers, E.; Purpura, L.J.; Mahmoud, N.; Wasunna, C.; Massaquoi, M.; Abad, N.; et al. Prevention of sexual transmission of ebola in liberia through a national semen testing and counselling programme for survivors: An analysis of ebola virus rna results and behavioural data. Lancet Glob. Health 2016, 4, e736–e743. [Google Scholar] [CrossRef]
- Sissoko, D.; Duraffour, S.; Kerber, R.; Kolie, J.S.; Beavogui, A.H.; Camara, A.-M.; Colin, G.; Rieger, T.; Oestereich, L.; Pályi, B.; et al. Persistence and clearance of ebola virus rna from seminal fluid of ebola virus disease survivors: A longitudinal analysis and modelling study. The Lancet Global Health 2017, 5, e80–e88. [Google Scholar] [CrossRef]
- Moe, J.B.; Lambert, R.D.; Lupton, H.W. Plaque assay for ebola virus. J. Clin. Microbiol. 1981, 13, 791–793. [Google Scholar]
- Van der Groen, G.; Jacob, W.; Pattyn, S.R. Ebola virus virulence for newborn mice. J. Med. Virol. 1979, 4, 239–240. [Google Scholar] [CrossRef]
- Kim, K.-A.; Yolamanova, M.; Zirafi, O.; Roan, N.R.; Staendker, L.; Forssmann, W.-G.; Burgener, A.; Dejucq-Rainsford, N.; Hahn, B.H.; Shaw, G.M.; et al. Semen-mediated enhancement of hiv infection is donor-dependent and correlates with the levels of sevi. Retrovirology 2010, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Munch, J.; Rucker, E.; Standker, L.; Adermann, K.; Goffinet, C.; Schindler, M.; Wildum, S.; Chinnadurai, R.; Rajan, D.; Specht, A.; et al. Semen-derived amyloid fibrils drastically enhance hiv infection. Cell 2007, 131, 1059–1071. [Google Scholar] [CrossRef] [PubMed]
- Cong, Y.; Dyall, J.; Hart, B.J.; DeWald, L.E.; Johnson, J.C.; Postnikova, E.; Zhou, H.; Gross, R.; Rojas, O.; Alexander, I.; et al. Evaluation of the activity of lamivudine and zidovudine against Ebola virus. PLoS ONE 2016, 11, e0166318. [Google Scholar] [CrossRef] [PubMed]
- Hoenen, T.; Groseth, A.; Feldmann, F.; Marzi, A.; Ebihara, H.; Kobinger, G.; Gunther, S.; Feldmann, H. Complete genome sequences of three ebola virus isolates from the 2014 outbreak in West Africa. Genome Announc. 2014, 2, e01331-14. [Google Scholar] [CrossRef] [PubMed]
- Schuit, M.; Miller, D.M.; Reddick-Elick, M.S.; Wlazlowski, C.B.; Filone, C.M.; Herzog, A.; Colf, L.A.; Wahl-Jensen, V.; Hevey, M.; Noah, J.W. Differences in the comparative stability of ebola virus makona-c05 and yambuku-mayinga in blood. PLoS ONE 2016, 11, e0148476. [Google Scholar] [CrossRef] [PubMed]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 1938, 27, 493–497. [Google Scholar]
- Honko, A.N.; Johnson, J.C.; Marchand, J.S.; Huzella, L.; Adams, R.D.; Oberlander, N.; Torzewski, L.M.; Bennett, R.S.; Hensley, L.E.; Jahrling, P.B.; et al. High dose sertraline monotherapy fails to protect rhesus macaques from lethal challenge with ebola virus makona. Sci. Rep. 2017, 7, 5886. [Google Scholar] [CrossRef]
- Bray, M.; Davis, K.; Geisbert, T.; Schmaljohn, C.; Huggins, J. A mouse model for evaluation of prophylaxis and therapy of ebola hemorrhagic fever. J. Infect. Dis. 1998, 178, 651–661. [Google Scholar] [CrossRef]
- Bart, S.M.; Cohen, C.; Dye, J.M.; Shorter, J.; Bates, P. Enhancement of ebola virus infection by seminal amyloid fibrils. Proceedings of the National Academy of Sciences 2018, 115, 7410. [Google Scholar] [CrossRef]
- Smither, S.J.; Eastaugh, L.; Ngugi, S.; O’Brien, L.; Phelps, A.; Steward, J.; Lever, M.S. Ebola virus makona shows reduced lethality in an immune-deficient mouse model. J. Infect. Dis. 2016, 214, S268–S274. [Google Scholar] [CrossRef]
- Tsuda, Y.; Hoenen, T.; Banadyga, L.; Weisend, C.; Ricklefs, S.M.; Porcella, S.F.; Ebihara, H. An improved reverse genetics system to overcome cell-type-dependent ebola virus genome plasticity. J. Infect. Dis. 2015, 212 (Suppl. S2), S129–S137. [Google Scholar] [CrossRef]
- Ruedas, J.B.; Ladner, J.T.; Ettinger, C.R.; Gummuluru, S.; Palacios, G.; Connor, J.H. Spontaneous mutation at amino acid 544 of the ebola virus glycoprotein potentiates virus entry and selection in tissue culture. J. Virol. 2017, 91, JVI-00392. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Crone, L.; Dietzel, E.; Paijo, J.; Gonzalez-Hernandez, M.; Nehlmeier, I.; Kalinke, U.; Becker, S.; Pohlmann, S. A polymorphism within the internal fusion loop of the ebola virus glycoprotein modulates host cell entry. J. Virol. 2017, 91, JVI-00177. [Google Scholar] [CrossRef] [PubMed]
Target Titer (PFU/mL) | Titer by Method | ||||||||
---|---|---|---|---|---|---|---|---|---|
PFU/mL | TCID50/mL | qPCR (GE/mL) | |||||||
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | |
10,000 | 2400 | 7110 | 3590 | 2693 | 3953 | 5801 | 4.8 × 106 | 4.6 × 106 | 4.0 × 106 |
1000 | 326 | 644 | 544 | 269 | 580 | 269 | 4.6 × 105 | 5.8 × 105 | 4.9 × 105 |
100 | 43 | 76 | 48 | 58 | 27 | 6 | 3.8 × 104 | 4.6 × 104 | 5.4 × 104 |
10 | 3 a | 4 a | 6 a | 6 | 2.7 | 2.7 | 5.5 × 102 | 4.5 × 102 | 5.0 × 103 |
1 | U | U | 1 a | U | 2.7 | U | U | U | U |
0.1 | U | U | U | U | U | U | U | U | U |
Target PFU/Sample | EBOV/Mak Virus Isolation by Method | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vero E6 | Huh-7 | MDM | Mice | ||||||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 4 b | 5 c | |
100 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
10 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
1 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
0.1 d | - | + | - | + | + | + | - a | + | + | - | + | + | + | + | + |
0.01 d | - | - | - | - | - | - | + a | - | - | - | - | - | - | - | - |
0.001 d | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Sample | Cell Type | Sample Volume (µL) | Total Laboratory Mouse Survivors a/Group | |||
---|---|---|---|---|---|---|
0.5 | 5 | 50 | 100 | |||
Breast milk | Vero E6 | - | - | + b | + b | 11/11 |
Huh-7 | - | - | - | +/- c | ||
MDM | - | - | + | + | ||
Breast milk clarified d | Vero E6 | - | - | - | - | ND |
Huh-7 | - | - | - | - | ||
MDM | - | - | - | - | ||
Semen | Vero E6 | - | - | - | - | 9/9 |
Huh-7 | - | - | - | - | ||
MDM | e | e | e | e | ||
Semen clarified d | Vero E6 | - | - | - | - | ND |
Huh-7 | - | - | - | - | ||
MDM | e | e | e | +/- e | ||
Media | Vero E6 | - | - | - | - | 12/12 |
Huh-7 | - | - | - | - | ||
MDM | - | - | - | - |
Target PFU/Sample | Virus Isolation Success in Spiked Samples by Cell Type a (Total Positive/12 Tested) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Semen | Breast Milk | Media | |||||||
VeroE6 | Huh-7 | MDM | VeroE6 | Huh-7 | MDM | VeroE6 | Huh-7 | MDM | |
100 | 12 | 12 | 12 | 0 | 0 | 0 | 12 | 12 | 10 |
10 | 12 | 12 | 10 | 0 | 0 | 0 | 12 | 11 | 11 |
1 | 12 | 11 | 5 | 0 | 0 | 0 | 12 | 11 | 8 |
0.1 | 7 | 8 | 0 | 0 | 0 | 0 | 2 | 3 | 1 |
0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 |
0.001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Logue, J.; Vargas Licona, W.; Cooper, T.K.; Reeder, B.; Byrum, R.; Qin, J.; Deiuliis Murphy, N.; Cong, Y.; Bonilla, A.; Sword, J.; et al. Ebola Virus Isolation Using Huh-7 Cells has Methodological Advantages and Similar Sensitivity to Isolation Using Other Cell Types and Suckling BALB/c Laboratory Mice. Viruses 2019, 11, 161. https://doi.org/10.3390/v11020161
Logue J, Vargas Licona W, Cooper TK, Reeder B, Byrum R, Qin J, Deiuliis Murphy N, Cong Y, Bonilla A, Sword J, et al. Ebola Virus Isolation Using Huh-7 Cells has Methodological Advantages and Similar Sensitivity to Isolation Using Other Cell Types and Suckling BALB/c Laboratory Mice. Viruses. 2019; 11(2):161. https://doi.org/10.3390/v11020161
Chicago/Turabian StyleLogue, James, Walter Vargas Licona, Timothy K. Cooper, Becky Reeder, Russel Byrum, Jing Qin, Nicole Deiuliis Murphy, Yu Cong, Amanda Bonilla, Jennifer Sword, and et al. 2019. "Ebola Virus Isolation Using Huh-7 Cells has Methodological Advantages and Similar Sensitivity to Isolation Using Other Cell Types and Suckling BALB/c Laboratory Mice" Viruses 11, no. 2: 161. https://doi.org/10.3390/v11020161
APA StyleLogue, J., Vargas Licona, W., Cooper, T. K., Reeder, B., Byrum, R., Qin, J., Deiuliis Murphy, N., Cong, Y., Bonilla, A., Sword, J., Weaver, W., Kocher, G., Olinger, G. G., Jahrling, P. B., Hensley, L. E., & Bennett, R. S. (2019). Ebola Virus Isolation Using Huh-7 Cells has Methodological Advantages and Similar Sensitivity to Isolation Using Other Cell Types and Suckling BALB/c Laboratory Mice. Viruses, 11(2), 161. https://doi.org/10.3390/v11020161