The Needs for Developing Experiments on Reservoirs in Hantavirus Research: Accomplishments, Challenges and Promises for the Future
Abstract
:1. Introduction
2. Insights into Infection Dynamics of Hantaviruses and Their Impact on Reservoir Fitness
2.1. Dynamics of Hantavirus Infection in Reservoirs
2.1.1. Viremia, Sites of Hantavirus Replication and Persistence
2.1.2. Modes and Kinetics of Hantavirus Shedding
2.2. Hantavirus Infection’s Impact on Reservoirs
3. Hantavirus Transmission: Modes, Dynamics and Spill-Over
3.1. Modes of Hantavirus Transmission
3.1.1. Routes of Inoculation
3.1.2. Vertical versus Horizontal Transmission
3.1.3. Direct versus Indirect Transmission
3.1.4. Transmission by Ingestion
3.2. Environmental Factors Influencing Hantavirus Transmission
3.3. Transmission to Non Reservoir Hosts
4. Immune Mechanisms behind the Biology of Reservoir/Hantavirus Interactions
4.1. The Effective Role of Antibodies during Infection Process
4.1.1. Maternal Antibodies
4.1.2. Antibody Seroconversion
4.2. Immune Mechanisms Mediating Hantavirus Persistence in Reservoir Hosts
5. Challenges and Future Directions
5.1. Strong Individual Variation in Hantavirus Infection Histories: Challenges and Opportunities
5.1.1. Sexual Dimorphism
5.1.2. Immune Phenotypes, Immunogenetic Profiles and Inter-Individual Variability in Sensibility to Hantavirus Infections
5.1.3. Coinfections and Microbiome
5.2. Viral Diversity and Evolution: under-Explored Factors in Understanding Hantavirus/Reservoir Interactions
5.2.1. Adaptation during Virus Isolation
5.2.2. Viral Diversity and Quasispecies Dynamics
5.2.3. Viral Diversity, Persistence and Immune Escape
5.2.4. Within Reservoir Hantavirus Diversity: New Insights from High Throughput Sequencing (HTS)
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Milholland, M.T.; Castro-Arellano, I.; Suzan, G.; Garcia-Pena, G.E.; Lee, T.E.; Rohde, R.E.; Aguirre, A.A.; Mills, J.N. Global diversity and distribution of hantaviruses and their hosts. Ecohealth 2018, 15, 163–208. [Google Scholar] [CrossRef]
- Adams, M.J.; Lefkowitz, E.J.; King, A.M.Q.; Harrach, B.; Harrison, R.L.; Knowles, N.J.; Kropinski, A.M.; Krupovic, M.; Kuhn, J.H.; Mushegian, A.R.; et al. Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses. Arch. Virol. 2017, 162, 2505–2538. [Google Scholar] [CrossRef]
- Jonsson, C.B.; Figueiredo, L.T.; Vapalahti, O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev. 2010, 23, 412–441. [Google Scholar] [CrossRef]
- Meyer, B.J.; Schmaljohn, C.S. Persistent hantavirus infections: Characteristics and mechanisms. Trends Microbiol. 2000, 8, 61–67. [Google Scholar] [CrossRef]
- Eckerle, I.; Lenk, M.; Ulrich, R.G. More novel hantaviruses and diversifying reservoir hosts—Time for development of reservoir-derived cell culture models? Viruses 2014, 6, 951–967. [Google Scholar] [CrossRef]
- Barre-Sinoussi, F.; Montagutelli, X. Animal models are essential to biological research: Issues and perspectives. Future Sci. 2015, 1. [Google Scholar] [CrossRef]
- Botten, J.; Mirowsky, K.; Kusewitt, D.; Bharadwaj, M.; Yee, J.; Ricci, R.; Feddersen, R.M.; Hjelle, B. Experimental infection model for Sin Nombre hantavirus in the deer mouse (Peromyscus maniculatus). Proc. Natl. Acad. Sci. USA 2000, 97, 10578–10583. [Google Scholar] [CrossRef]
- Smith, D.R.; Holbrook, M.R.; Gowen, B.B. Animal models of viral hemorrhagic fever. Antiviral Res. 2014, 112, 59–79. [Google Scholar] [CrossRef]
- Safronetz, D.; Ebihara, H.; Feldmann, H.; Hooper, J.W. The Syrian hamster model of hantavirus pulmonary syndrome. Antiviral Res. 2012, 95, 282–292. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.W.; Lee, P.W.; Baek, L.J.; Song, C.K.; Seong, I.W. Intraspecific transmission of Hantaan virus, etiologic agent of korean hemorrhagic-fever, in the rodent Apodemus agrarius. Am. J. Trop. Med. Hyg. 1981, 30, 1106–1112. [Google Scholar] [CrossRef]
- Yanagihara, R.; Amyx, H.L.; Gajdusek, D.C. Experimental-infection with Puumala virus, the etiologic agent of nephropathia epidemica, in bank voles (Clethrionomys glareolus). J. Virol. 1985, 55, 34–38. [Google Scholar]
- Gavrilovskaya, I.N. Pathogenesis of hemorrhagic fever with renal syndrome virus infection and mode of horizontal transmission of hantavirus in bank voles. Arch. Virol. 1990, S1, 57–62. [Google Scholar]
- Hutchinson, K.L.; Rollin, P.E.; Peters, C.J. Pathogenesis of a north american hantavirus, Black Creek Canal virus, in experimentally infected Sigmodon hispidus. Am. J. Trop. Med. Hyg. 1998, 59, 58–65. [Google Scholar] [CrossRef]
- Botten, J.; Mirowsky, K.; Kusewitt, D.; Ye, C.Y.; Gottlieb, K.; Prescott, J.; Hjelle, B. Persistent Sin Nombre virus infection in the deer mouse (Peromyscus maniculatus) model: Sites of replication and strand-specific expression. J. Virol. 2003, 77, 1540–1550. [Google Scholar] [CrossRef]
- Dubois, A.; Castel, G.; Murri, S.; Pulido, C.; Pons, J.B.; Benoit, L.; Loiseau, A.; Lakhdar, L.; Galan, M.; Charbonnel, N.; et al. Experimental infections of wild bank voles (Myodes glareolus) from nephropatia epidemica endemic and non-endemic regions revealed slight differences in Puumala virological course and immunological responses. Virus Res. 2017, 235, 67–72. [Google Scholar] [CrossRef]
- Kariwa, H.; Kimura, M.; Yoshizumi, S.; Arikawa, J.; Yoshimatsu, K.; Takashima, I.; Hashimoto, N. Modes of Seoul virus infections: Persistency in newborn rats and transiency in adult rats. Arch. Virol. 1996, 141, 2327–2338. [Google Scholar] [CrossRef]
- Easterbrook, J.D.; Klein, S.L. Seoul virus enhances regulatory and reduces proinflammatory responses in male Norway rats. J. Med. Virol. 2008, 80, 1308–1318. [Google Scholar] [CrossRef] [Green Version]
- Compton, S.R.; Jacoby, R.O.; Paturzo, F.X.; Smith, A.L. Persistent seoul virus infection in Lewis rats. Arch. Virol. 2004, 149, 1325–1339. [Google Scholar] [CrossRef]
- Hinson, E.R.; Shone, S.M.; Zink, M.C.; Glass, G.E.; Klein, S.L. Wounding: The primary mode of Seoul virus transmission among male Norway rats. Am. J. Trop. Med. Hyg. 2004, 70, 310–317. [Google Scholar] [CrossRef]
- Klein, S.L.; Cernetich, A.; Hilmer, S.; Hoffman, E.P.; Scott, A.L.; Glass, G.E. Differential expression of immunoregulatory genes in male and female Norway rats following infection with Seoul virus. J. Med. Virol. 2004, 74, 180–190. [Google Scholar] [CrossRef]
- Lee, P.W.; Yanagihara, R.; Gibbs, C.J., Jr.; Gajdusek, D.C. Pathogenesis of experimental Hantaan virus infection in laboratory rats. Arch. Virol. 1986, 88, 57–66. [Google Scholar] [CrossRef]
- Hardestam, J.; Karlsson, M.; Falk, K.I.; Olsson, G.; Klingstrom, J.; Lundkvist, A. Puumala hantavirus excretion kinetics in bank voles (Myodes glareolus). Emerg. Inf. Dis. 2008, 14, 1209–1215. [Google Scholar] [CrossRef]
- Kariwa, H.; Fujiki, M.; Yoshimatsu, K.; Arikawa, J.; Takashima, I.; Hashimoto, N. Urine-associated horizontal transmission of Seoul virus among rats. Arch. Virol. 1998, 143, 365–374. [Google Scholar] [CrossRef]
- Bernshtein, A.D. Dynamics of Puumala hantavirus infection in naturally infected bank voles (Clethrionomys glareolus). Arch. Virol. 1999, 144, 2415–2428. [Google Scholar] [CrossRef]
- Safronetz, D.; Drebot, M.A.; Artsob, H.; Cote, T.; Makowski, K.; Lindsay, L.R. Sin Nombre virus shedding patterns in naturally infected deer mice (Peromyscus maniculatus) in relation to duration of infection. Vector Borne Zoon. Dis. 2008, 8, 97–100. [Google Scholar] [CrossRef]
- Botten, J.; Mirowsky, K.; Ye, C.Y.; Gottlieb, K.; Saavedra, M.; Ponce, L.; Hjelle, B. Shedding and intracage transmission of Sin Nombre hantavirus in the deer mouse (Peromyscus maniculatus) model. J. Virol. 2002, 76, 7587–7594. [Google Scholar] [CrossRef]
- Kuenzi, A.J.; Douglass, R.J.; Bond, C.W.; Calisher, C.H.; Mills, J.N. Long-term dynamics of Sin Nombre viral RNA and antibody in deer mice in Montana. J. Wildl. Dis. 2005, 41, 473–481. [Google Scholar] [CrossRef]
- Fulhorst, C.F.; Milazzo, M.L.; Duno, G.; Salas, R.A. Experimental infection of the Sigmodon alstoni cotton rat with Cano Delgadito virus, a South American hantavirus. Am. J. Trop. Med. Hyg. 2002, 67, 107–111. [Google Scholar] [CrossRef]
- Voutilainen, L.; Kallio, E.R.; Niemimaa, J.; Vapalahti, O.; Henttonen, H. Temporal dynamics of Puumala hantavirus infection in cyclic populations of bank voles. Nat. Sci. Rep. 2016, 6, 21323. [Google Scholar] [CrossRef] [Green Version]
- Klingstrom, J.; Heyman, P.; Escutenaire, S.; Sjolander, K.B.; De Jaegere, F.; Henttonen, H.; Lundkvist, A. Rodent host specificity of European hantaviruses: Evidence of Puumala virus interspecific spillover. J. Med. Virol. 2002, 68, 581–588. [Google Scholar] [CrossRef]
- Kallio, E.R.; Klingstrom, J.; Gustafsson, E.; Manni, T.; Vaheri, A.; Henttonen, H.; Vapalahti, O.; Lundkvist, A. Prolonged survival of Puumala hantavirus outside the host: Evidence for indirect transmission via the environment. J. Gen. Virol. 2006, 87, 2127–2134. [Google Scholar] [CrossRef]
- Sironen, T.; Kallio, E.R.; Vaheri, A.; Lundkvist, A.; Plyusnin, A. Quasispecies dynamics and fixation of a synonymous mutation in hantavirus transmission. J. Gen. Virol. 2008, 89, 1309–1313. [Google Scholar] [CrossRef]
- Sanada, T.; Kariwa, H.; Nagata, N.; Tanikawa, Y.; Seto, T.; Yoshimatsu, K.; Arikawa, J.; Yoshii, K.; Takashima, I. Puumala virus infection in Syrian hamsters (Mesocricetus auratus) resembling hantavirus infection in natural rodent hosts. Virus Res. 2011, 160, 108–119. [Google Scholar] [CrossRef]
- Forbes, K.M.; Huitu, O.; Sironen, T.; Voutilainen, L.; Stuart, P.; Niemimaa, J.; Vapalahti, O.; Henttonen, H. Experimental investigation of a hantavirus host-switch between arvicoline rodents Lemmus lemmus and Myodes glareolus. J. Vect. Ecol. 2013, 38, 408–410. [Google Scholar] [CrossRef]
- Dubois, A.; Castel, G.; Murri, S.; Pulido, C.; Pons, J.B.; Benoit, L.; Loiseau, A.; Lakhdar, L.; Galan, M.; Marianneau, P.; et al. Bank vole immunoheterogeneity may limit Nephropatia Epidemica emergence in a French non-endemic region. Parasitology 2018, 145, 393–407. [Google Scholar] [CrossRef]
- Witkowski, P.T.; Perley, C.C.; Brocato, R.L.; Hooper, J.W.; Jurgensen, C.; Schulzke, J.D.; Kruger, D.H.; Bucker, R. Gastrointestinal tract as entry route for hantavirus infection. Front. Microbiol. 2017, 8, 9. [Google Scholar] [CrossRef]
- Klein, S.L.; Bird, B.H.; Glass, G.E. Hormones and mating system affect sex and species differences in immune function among vertebrates. Behav. Proc. 2000, 51, 149–166. [Google Scholar] [CrossRef]
- Zhang, X.K.; Takashima, I.; Hashimoto, N. Role of maternal antibody in protection from hemorrhagic fever with renal syndrome virus infection in rats. Arch. Virol. 1988, 103, 253–265. [Google Scholar] [CrossRef]
- Klein, S.L.; Bird, B.H.; Glass, G.E. Sex differences in immune responses and viral shedding following Seoul virus infection in Norway rats. Am. J. Trop. Med. Hyg. 2001, 65, 57–63. [Google Scholar] [CrossRef]
- Easterbrook, J.D.; Zink, M.C.; Klein, S.L. Regulatory T cells enhance persistence of the zoonotic pathogen Seoul virus in its reservoir host. Proc. Natl. Acad. Sci. USA 2007, 104, 15502–15507. [Google Scholar] [CrossRef] [Green Version]
- Hannah, M.F.; Bajic, V.B.; Klein, S.L. Sex differences in the recognition of and innate antiviral responses to Seoul virus in Norway rats. Brain Behav. Immun. 2008, 22, 503–516. [Google Scholar] [CrossRef] [Green Version]
- Dohmae, K.; Okabe, M.; Nishimune, Y. Experimental transmission of hantavirus infection in laboratory rats. J. Inf. Dis. 1994, 170, 1589–1592. [Google Scholar] [CrossRef]
- Dohmae, R.; Koshimizu, U.; Nishimune, Y. In-utero and mammary transfer of hantavirus antibody from dams to infant rats. Lab. Anim. Sci. 1993, 43, 557–561. [Google Scholar]
- Dohmae, K.; Nishimune, Y. Protection against hantavirus infection by dams immunity transferred vertically to neonates. Arch. Virol. 1995, 140, 165–172. [Google Scholar] [CrossRef]
- Dohmae, K.; Nishimune, Y. Maternal transfer of hantavirus antibodies in rats. Lab. Anim. Sci. 1998, 48, 395–397. [Google Scholar]
- Schountz, T.; Acuna-Retamar, M.; Feinstein, S.; Prescott, J.; Torres-Perez, F.; Podell, B.; Peters, S.; Ye, C.Y.; Black, W.C.; Hjelle, B. Kinetics of immune responses in deer mice experimentally infected with Sin Nombre Virus. J. Virol. 2012, 86, 10015–10027. [Google Scholar] [CrossRef]
- Warner, B.M.; Stein, D.R.; Griffin, B.D.; Tierney, K.; Leung, A.; Sloan, A.; Kobasa, D.; Poliquin, G.; Kobinger, G.P.; Safronetz, D. Development and characterization of a Sin Nombre Virus transmission model in Peromyscus maniculatus. Viruses (Basel) 2019, 11, 183. [Google Scholar] [CrossRef]
- Schountz, T.; Prescott, J.; Cogswell, A.C.; Oko, L.; Mirowsky-Garcia, K.; Galvez, A.P.; Hjelle, B. Regulatory T cell-like responses in deer mice persistently infected with Sin Nombre virus. Proc. Natl. Acad. Sci. USA 2007, 104, 15496–15501. [Google Scholar] [CrossRef] [Green Version]
- Lehmer, E.M.; Lavengood, K.; Miller, M.; Rodgers, J.; Fenster, S.D. Evaluating the impacts of coinfection on immune system function of the deer mouse (Peromyscus maniculatus) using Sin Nombre virus and Bartonella as model pathogen systems. J. Wildl. Dis. 2018, 54, 66–75. [Google Scholar] [CrossRef]
- Hutchinson, K.L.; Rollin, P.E.; Shieh, W.J.; Zaki, S.; Greer, P.W.; Peters, C.J. Transmission of Black Creek Canal virus between cotton rats. J. Med. Virol. 2000, 60, 70–76. [Google Scholar] [CrossRef]
- Hooper, J.W.; Ferro, A.M.; Wahl-Jensen, V. Immune serum produced by DNA vaccination protects hamsters against lethal respiratory challenge with Andes virus. J. Virol. 2008, 82, 1332–1338. [Google Scholar] [CrossRef]
- Spengler, J.R.; Haddock, E.; Gardner, D.; Hjelle, B.; Feldmann, H.; Prescott, J. Experimental Andes Virus infection in deer mice: Characteristics of infection and clearance in a heterologous rodent host. PLoS ONE 2013, 8, 9. [Google Scholar] [CrossRef]
- McGuire, A.; Miedema, K.; Fauver, J.R.; Rico, A.; Aboellail, T.; Quackenbush, S.L.; Hawkinson, A.; Schountz, T. Maporal Hantavirus causes mild pathology in deer mice (Peromyscus maniculatus). Viruses (Basel) 2016, 8, 286. [Google Scholar] [CrossRef]
- De Souza, W.M.; Machado, A.M.; Figueiredo, L.T.M. Experimental infection of Rio Mamore hantavirus in Sigmodontinae rodents. Mem. Instit. Oswaldo Cruz 2016, 111, 399–402. [Google Scholar] [CrossRef]
- Kallio, E.R.; Voutilainen, L.; Vapalahti, O.; Vaherl, A.; Henttonen, H.; Koskela, E.; Mappes, T. Endemic hantavirus infection impairs the winter survival of its rodent host. Ecology 2007, 88, 1911–1916. [Google Scholar] [CrossRef]
- Tersago, K.; Crespin, L.; Verhagen, R.; Leirs, H. Impact of Puumala virus infection on maturation and survival in bank voles: A capture-mark-recapture analysis. J. Wildl. Dis. 2012, 48, 148–156. [Google Scholar] [CrossRef]
- Voutilainen, L.; Sironen, T.; Tonteri, E.; Tuiskunen Back, A.; Razzauti, M.; Karlsson, M.; Wahlstrom, M.; Niemimaa, J.; Henttonen, H.; Lundkvist, A. Life-long shedding of Puumala hantavirus in wild bank voles (Myodes glareolus). J. Gen. Virol. 2015, 96, 1238–1247. [Google Scholar] [CrossRef]
- Luis, A.D.; Douglass, R.J.; Hudson, P.J.; Mills, J.N.; Bjornstad, O.N. Sin Nombre hantavirus decreases survival of male deer mice. Oecologia 2012, 169, 431–439. [Google Scholar] [CrossRef]
- Douglass, R.J.; Wilson, T.; Semmens, W.J.; Zanto, S.N.; Bond, C.W.; van Horn, R.C.; Mills, J.N. Longitudinal studies of Sin Nombre virus in deer mouse-dominated ecosystems of Montana. Am. J. Trop. Med. Hyg. 2001, 65, 33–41. [Google Scholar] [CrossRef]
- Dearing, M.D.; Previtali, M.A.; Jones, J.D.; Ely, P.W.; Wood, B.A. Seasonal variation in Sin Nombre Virus infections in deer mice: Preliminary results. J. Wildl. Dis. 2009, 45, 430–436. [Google Scholar] [CrossRef]
- Borucki, M.K.; Boone, J.D.; Rowe, J.E.; Bohlman, M.C.; Kuhn, E.A.; DeBaca, R.; St Jeor, S.C. Role of maternal antibody in natural infection of Peromyscus maniculatus with Sin Nombre virus. J. Virol. 2000, 74, 2426–2429. [Google Scholar] [CrossRef]
- Calisher, C.H.; Root, J.J.; Mills, J.N.; Rowe, J.E.; Reeder, S.A.; Jentes, E.S.; Wagoner, K.; Beaty, B.J. Epizootiology of Sin Nombre and El Moro Canyon hantaviruses, Southeastern Colorado. J. Wildl. Dis. 2005, 41, 1–11. [Google Scholar] [CrossRef]
- Clay, C.A.; Lehmer, E.M.; St Jeor, S.; Dearing, M.D. Testing mechanisms of the dilution effect: Deer mice encounter rates, Sin Nombre virus prevalence and species diversity. Ecohealth 2009, 6, 250–259. [Google Scholar] [CrossRef]
- Feuer, R.; Boone, J.D.; Netski, D.; Morzunov, S.P.; St Jeor, S.C. Temporal and spatial analysis of sin nombre virus quasispecies in naturally infected rodents. J. Virol. 1999, 73, 9544–9554. [Google Scholar]
- Bagamian, K.H.; Towner, J.S.; Kuenzi, A.J.; Douglass, R.J.; Rollin, P.E.; Waller, L.A.; Mills, J.N. Transmission ecology of Sin Nombre Hantavirus in naturally infected North American deermouse populations in outdoor enclosures. PLoS ONE 2012, 7, 10. [Google Scholar] [CrossRef]
- Bagamian, K.H.; Douglass, R.J.; Alvarado, A.; Kuenzi, A.J.; Amman, B.R.; Waller, L.A.; Mills, J.N. Population density and seasonality effects on Sin Nombre Virus transmission in North American deermice (Peromyscus maniculatus) in outdoor enclosures. PLoS ONE 2012, 7, 11. [Google Scholar] [CrossRef]
- Rubio, A.A.V.; Castro-Arellano, I.; Mills, J.N.; List, R.; Avila-Flores, R.; Suzan, G. Is species richness driving intra- and interspecific interactions and temporal activity overlap of a hantavirus host? An experimental test. PLoS ONE 2017, 12. [Google Scholar] [CrossRef]
- Padula, P.; Figueroa, R.; Navarrete, M.; Pizarro, E.; Cadiz, R.; Bellomo, C.; Jofre, C.; Zaror, L.; Rodriguez, E.; Murua, R. Transmission study of Andes hantavirus infection in wild sigmodontine rodents. J. Virol. 2004, 78, 11972–11979. [Google Scholar] [CrossRef]
- Childs, J.E.; Glass, G.E.; Korch, G.W.; LeDuc, J.W. Effects of hantaviral infection on survival, growth and fertility in wild rat (Rattus norvegicus) populations of Baltimore, Maryland. J. Wildl. Dis. 1989, 25, 469–476. [Google Scholar] [CrossRef]
- Glass, G.E.; Childs, J.E.; Korch, G.W.; Leduc, J.W. Association of intraspecific wounding with hantaviral infection in wild rats (Rattus norvegicus). Epidemiol. Inf. 1988, 101, 459–472. [Google Scholar] [CrossRef]
- Suzan, G.; Marce, E.; Giermakowski, J.T.; Mills, J.N.; Ceballos, G.; Ostfeld, R.S.; Armien, B.; Pascale, J.M.; Yates, T.L. Experimental evidence for reduced rodent diversity causing increased hantavirus prevalence. PLoS ONE 2009, 4, 7. [Google Scholar] [CrossRef]
- Plowright, R.K.; Parrish, C.R.; McCallum, H.; Hudson, P.J.; Ko, A.I.; Graham, A.L.; Lloyd-Smith, J.O. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 2017, 15, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Forbes, K.M.; Sironen, T.; Plyusnin, A. Hantavirus maintenance and transmission in reservoir host populations. Curr. Op. Virol. 2018, 28, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Taruishi, M.; Yoshimatsu, K.; Hatsuse, R.; Okumura, M.; Nakamura, I.; Arikawa, J. Lack of vertical transmission of Hantaan virus from persistently infected dam to progeny in laboratory mice. Arch. Virol. 2008, 153, 1605–1609. [Google Scholar] [CrossRef]
- Vapalahti, K.; Paunio, M.; Brummer-Korvenkontio, M.; Vaheri, A.; Vapalahti, O. Puumala virus infections in Finland: Increased occupational risk for farmers. Am. J. Epidemiol. 1999, 149, 1142–1151. [Google Scholar] [CrossRef]
- Mills, J.N.; Ksiazek, T.G.; Ellis, B.A.; Rollin, P.E.; Nichol, S.T.; Yates, T.L.; Gannon, W.L.; Levy, C.E.; Engelthaler, D.M.; Davis, T.; et al. Patterns of association with host and habitat: Antibody reactive with Sin Nombre virus in small mammals in the major biotic communities of the southwestern United States. Am. J. Trop. Med. Hyg. 1997, 56, 273–284. [Google Scholar] [CrossRef]
- Nuzum, E.O.; Rossi, C.A.; Stephenson, E.H.; LeDuc, J.W. Aerosol transmission of Hantaan and related viruses to laboratory rats. Am. J. Trop. Med. Hyg. 1988, 38, 636–640. [Google Scholar] [CrossRef]
- Sauvage, F.; Langlais, M.; Yoccoz, N.G.; Pontier, D. Modelling hantavirus in fluctuating populations of bank voles: The role of indirect transmission on virus persistence. J. Anim. Ecol. 2003, 72, 1–13. [Google Scholar] [CrossRef]
- Linard, C.; Tersago, K.; Leirs, H.; Lambin, E.F. Environmental conditions and Puumala virus transmission in Belgium. Int. J. Health Geogr. 2007, 6. [Google Scholar] [CrossRef]
- Verhagen, R.; van der Groen, G.; Ivanov, A.; van Rompaey, J.; Leirs, H.; Verheyen, W. Occurrence and distribution of Hantavirus in wild living mammals in Belgium. Acta Virol. 1987, 31, 43–52. [Google Scholar]
- Kallio, E.R.; Poikonen, A.; Vaheri, A.; Vapalahti, O.; Henttonen, H.; Koskela, E.; Mappes, T. Maternal antibodies postpone hantavirus infection and enhance individual breeding success. Procs. Roy. Soc. Lond. 2006, 273, 2771–2776. [Google Scholar] [CrossRef] [Green Version]
- Schountz, T. Immunology of bats and their viruses: Challenges and opportunities. Viruses (Basel) 2014, 6, 4880–4901. [Google Scholar] [CrossRef]
- Klein, S.L.; Marson, A.L.; Scott, A.L.; Ketner, G.; Glass, G.E. Neonatal sex steroids affect responses to Seoul virus infection in male but not female Norway rats. Brain Behav. Immun. 2002, 16, 736–746. [Google Scholar] [CrossRef]
- Guivier, E.; Galan, M.; Male, P.J.; Kallio, E.R.; Voutilainen, L.; Henttonen, H.; Olsson, G.E.; Lundkvist, A.; Tersago, K.; Augot, D.; et al. Associations between MHC genes and Puumala virus infection in Myodes glareolus are detected in wild populations, but not from experimental infection data. J. Gen. Virol. 2010, 91, 2507–2512. [Google Scholar] [CrossRef]
- Rohfritsch, A.; Galan, M.; Gharbi, K.; Olsson, G.; Vitalis, R.; Gautier, M.; Gschloessl, B.; Zeimes, C.; VanWambeke, S.; Charbonnel, N. Preliminary insights into the genetics of bank vole tolerance to Puumala hantavirus in Sweden. Ecol. Evol. 2018, 8, 11273–11292. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Smith, J.O.; Schreiber, S.J.; Kopp, P.E.; Getz, W.M. Superspreading and the effect of individual variation on disease emergence. Nature 2005, 438, 355–359. [Google Scholar] [CrossRef]
- Moutailler, S.; Valiente Moro, C.; Vaumourin, E.; Michelet, L.; Tran, F.H.; Devillers, E.; Cosson, J.F.; Gasqui, P.; Van, V.T.; Mavingui, P.; et al. Co-infection of ticks: The rule rather than the exception. PLoS Negl. Trop. Dis. 2016, 10, e0004539. [Google Scholar] [CrossRef]
- Vayssier-Taussat, M.; Albina, E.; Citti, C.; Cosson, J.F.; Jacques, M.A.; Lebrun, M.H.; Le Loir, Y.; Ogliastro, M.; Petit, M.A.; Roumagnac, P.; et al. Shifting the paradigm from pathogens to pathobiome: New concepts in the light of meta-omics. Front. Cell. Inf. Microbiol. 2014, 4, 1–7. [Google Scholar] [CrossRef]
- Ezenwa, V.O.; Jolles, A.E. Opposite effects of anthelmintic treatment on microbial infection at individual versus population scales. Science 2015, 347, 175–177. [Google Scholar] [CrossRef]
- Guivier, E.; Galan, M.; Henttonen, H.; Cosson, J.F.; Charbonnel, N. Landscape features and helminth co-infection shape bank vole immunoheterogeneity, with consequences for Puumala virus epidemiology. Heredity 2014, 112, 274–281. [Google Scholar] [CrossRef]
- Ribas Salvador, A.; Guivier, E.; Xuereb, A.; Chaval, Y.; Cadet, P.; Poulle, M.L.; Sironen, T.; Voutilainen, L.; Henttonen, H.; Cosson, J.F.; et al. Concomitant influence of helminth infection and landscape on the distribution of Puumala hantavirus in its reservoir, Myodes glareolus. BMC Microbiol. 2011, 11, 1–13. [Google Scholar] [CrossRef]
- Tadin, A.; Turk, N.; Korva, M.; Margaletic, J.; Beck, R.; Vucelja, M.; Habus, J.; Svoboda, P.; Zupanc, T.A.; Henttonen, H.; et al. Multiple co-infections of rodents with hantaviruses, Leptospira, and Babesia in Croatia. Vector Borne Zoon. Dis. 2012, 12, 388–392. [Google Scholar] [CrossRef]
- McKenney, E.A.; Koelle, K.; Dunn, R.R.; Yoder, A.D. The ecosystem services of animal microbiomes. Mol. Ecol. 2018, 27, 2164–2172. [Google Scholar] [CrossRef]
- Reusken, C.; Heyman, P. Factors driving hantavirus emergence in Europe. Curr. Opin. Virol. 2013, 3, 92–99. [Google Scholar] [CrossRef]
- Stoltz, M.; Sundstrom, K.B.; Hidmark, A.; Tolf, C.; Vene, S.; Ahlm, C.; Lindberg, A.M.; Lundkvist, A.; Klingstrom, J. A model system for in vitro studies of bank vole borne viruses. PLoS ONE 2011, 6. [Google Scholar] [CrossRef]
- Lundkvist, A.; Cheng, Y.; Sjolander, K.B.; Niklasson, B.; Vaheri, A.; Plyusnin, A. Cell culture adaptation of Puumala hantavirus changes the infectivity for its natural reservoir, Clethrionomys glareolus, and leads to accumulation of mutants with altered genomic RNA S segment. J. Virol. 1997, 71, 9515–9523. [Google Scholar]
- Lundkvist, A.; Kallio-Kokko, H.; Sjölander, K.B.; Lankinen, H.; Niklasson, B.; Vaheri, A.; Vapalahti, O. Characterization of Puumala virus nucleocapsid protein: Identification of B-cell epitopes and domains involved in protective immunity. Virology 1996, 15, 397–406. [Google Scholar] [CrossRef]
- Morita, C.; Morikawa, S.; Sugiyama, K.; Komatsu, T.; Ueno, H.; Kitamura, T. Inability of a strain of Seoul virus to transmit itself vertically in rats. Jpn. J. Med. Sci. Biol. 1993, 46, 215–219. [Google Scholar] [CrossRef]
- Beerenwinkel, N.; Gunthard, H.F.; Roth, V.; Metzner, K.J. Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data. Front. Microbiol. 2012, 3, 329. [Google Scholar] [CrossRef] [Green Version]
- Vignuzzi, M.; Stone, J.K.; Arnold, J.J.; Cameron, C.E.; Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 2006, 439, 344–348. [Google Scholar] [CrossRef]
- Chizhikov, V.E.; Spiropoulou, C.F.; Morzunov, S.P.; Monroe, M.C.; Peters, C.J.; Nichol, S.T. Complete genetic characterization and analysis of isolation of Sin Nombre virus. J. Virol. 1995, 69, 8132–8136. [Google Scholar] [Green Version]
- Nakamura, Y.; Gojobori, T.; Ikemura, T. Codon usage tabulated from international DNA sequence databases status for the year 2000. Nucl. Ac. Res. 2000, 28, 292. [Google Scholar] [CrossRef]
- Ebihara, H.; Yoshimatsu, K.; Ogino, M.; Araki, K.; Ami, Y.; Kariwa, H.; Takashima, I.; Li, D.; Arikawa, J. Pathogenicity of Hantaan virus in newborn mice: Genetic reassortant study demonstrating that a single amino acid change in glycoprotein G1 is related to virulence. J. Virol. 2000, 74, 9245–9255. [Google Scholar] [CrossRef]
- Posada-Cespedes, S.; Seifert, D.; Beerenwinkel, N. Recent advances in inferring viral diversity from high-throughput sequencing data. Virus Res. 2017, 239, 17–32. [Google Scholar] [CrossRef]
- Kim, W.K.; No, J.S.; Lee, D.; Jung, J.; Park, H.; Yi, Y.; Kim, J.A.; Lee, S.H.; Kim, Y.; Park, S.; et al. Active targeted surveillance to identify sites of emergence of hantavirus. Clin. Infect. Dis. 2019. [Google Scholar] [CrossRef]
- Song, D.H.; Kim, W.K.; Gu, S.H.; Lee, D.; Kim, J.A.; No, J.S.; Lee, S.H.; Wiley, M.R.; Palacios, G.; Song, J.W.; et al. Sequence-independent, single-primer amplification next-generation sequencing of Hantaan virus cell culture-based isolates. Am. J. Trop. Med. Hyg. 2017, 96, 389–394. [Google Scholar] [CrossRef]
- Kim, W.K.; Kim, J.A.; Song, D.H.; Lee, D.; Kim, Y.C.; Lee, S.Y.; Lee, S.H.; No, J.S.; Kim, J.H.; Kho, J.H.; et al. Phylogeographic analysis of hemorrhagic fever with renal syndrome patients using multiplex PCR-based next generation sequencing. Nat. Sci. Rep. 2016, 6, 26017. [Google Scholar] [CrossRef]
- Dupinay, T.; Pounder, K.C.; Ayral, F.; Laaberki, M.H.; Marston, D.A.; Lacote, S.; Rey, C.; Barbet, F.; Voller, K.; Nazaret, N.; et al. Detection and genetic characterization of Seoul virus from commensal brown rats in France. Virol. J. 2014, 11, 32. [Google Scholar] [CrossRef]
- Vaheri, A.; Strandin, T.; Hepojoki, J.; Sironen, T.; Henttonen, H.; Makela, S.; Mustonen, J. Uncovering the mysteries of hantavirus infections. Nat. Rev. Microbiol. 2013, 11, 539–550. [Google Scholar] [CrossRef]
- Reynes, J.M.; Carli, D.; Thomas, D.; Castel, G. Puumala hantavirus genotypes in humans, France, 2012–2016. Emerg. Infect. Dis. 2019, 25, 140–143. [Google Scholar] [CrossRef]
- Manso, C.F.; Bibby, D.F.; Mbisa, J.L. Efficient and unbiased metagenomic recovery of RNA virus genomes from human plasma samples. Nat. Sci. Rep. 2017, 7, 4173. [Google Scholar] [CrossRef] [Green Version]
- Schlotterer, C.; Kofler, R.; Versace, E.; Tobler, R.; Franssen, S.U. Combining experimental evolution with next-generation sequencing: A powerful tool to study adaptation from standing genetic variation. Heredity 2015, 114, 431–440. [Google Scholar] [CrossRef]
- Grubaugh, N.D.; Andersen, K.G. Experimental evolution to study virus emergence. Cell 2017, 169, 1–3. [Google Scholar] [CrossRef]
- Stern, A.; Yeh, M.T.; Zinger, T.; Smith, M.; Wright, C.; Ling, G.; Nielsen, R.; Macadam, A.; Andino, R. The evolutionary pathway to virulence of an RNA virus. Cell 2017, 169, 35–46e19. [Google Scholar] [CrossRef]
Hantavirus | Reservoir | Experimental Design | Refs | |||||
---|---|---|---|---|---|---|---|---|
Species | Viral Strain | Passage History | Species | Sex/Age | Mode of Infection | Virus Dose | Duration | |
PUUV | ||||||||
Hällnäs | Passaged twice in laboratory-bred C. glareolus | Myodes glareolus (colony established in 1959) | Suckling (5 to 8 day-old) and weanling (4 to 8 week old) | intramuscular and intracerebral | 103,5 ID50 | 270 days | [12] | |
Kazan 6 C.g | My. glareolus | - | intramuscular | 100 ID50 | 13 months | [13] | ||
Kazan-wt | Passaged twice in colonized bank voles | My. glareolus, colonized Microtus agrestis, | - | subcutaneous | 104 bank vole ID50 | 21 days | [31] | |
Lemmus sibiricus | ||||||||
Kazan-wt | My. glareolus (colony established in 1990) | - | subcutaneous | 100 bank vole ID50 | 30 days | [32] | ||
Kazan-wt | Colonized My. glareolus | - | subcutaneous | 200 bank vole ID50 | 133 days | [32] | ||
Kazan-wt | Colonized My. glareolus | - | subcutaneous | 100 bank vole ID50 | 38 days | [33] | ||
Sotkamo | Cell culture adapted after numerous passages on Vero E6 strain | Laboratory Mesocricetus auratus | Males/Four week old and eight week old | subcutaneous | 3300 ffu | 70 days | [34] | |
Sotkamo | Wild L. lemmus | - | 1—Peat and bedding materials collected from PUUV-infected vole cages | 1–4 weeks | [35] | |||
2—vole-soiled cages | 2–8 weeks | |||||||
3—intranasal (urine) | 3–8 weeks | |||||||
Sotkamo | Wild My. glareolus | - | subcutaneous | 1.7 × 103 ffu | 35 days | [16] | ||
Sotkamo | Wild My. glareolus | - | subcutaneous | 1.7 × 103 ffu | 55 days | [36] | ||
K27 | Vero-E6 cells | Laboratory Me. auratus | Females/6–8 weeks | intragastrically | 1 | 35 days | [37] | |
pfu; 10,000 pfu or 10,000 pfu γ-irradiated | ||||||||
PUUV (3 × 10 6 rad) | ||||||||
SEOV | ||||||||
SR-11 | Four times in Vero E6 cells | Long Evans rats (Rattus norvegicus) | Males and females/70–80 days | - | 10-4, 10-3, 10−2, 102, 104 or 106 pfu | 40 days | [38] | |
SR-11 | SPF Wistar rats (R. norvegicus) | - | intraperitoneal | - | [39] | |||
SR-11 | Long Evans rats (R. norvegicus) | Males and females/>70 days | intraperitoneal | 104 pfu | 40 days | [21] | ||
SR-11 | Long Evans rats (R. norvegicus) | Males and females/70–80 days | intraperitoneal | 104 pfu | 40 days | [40] | ||
SR-11 | Long Evans rats (R. norvegicus) | Males/60–70 days | intraperitoneal | 104 pfu | 60 days | [18] | ||
SR-11 | Long Evans rats (R. norvegicus) | Males/60–70 days | intraperitoneal | 104 pfu | 40 days | [41] | ||
SR-11 | Long Evans rats (R. norvegicus) | Males and females/60–70 days | intraperitoneal | 104 pfu | 40 days | [42] | ||
Type B-1 | Vero E6 cells | Laboratory rats (R. norvegicus) | Females/neonates | intraperitoneal | 5 × 103 or 5 × 105 LD50 | - | [43] | |
Type B-1 | Laboratory rats (R. norvegicus) | Female/neonates | intraperitoneal | 5 × 103 or 5 × 105 LD50 | - | [44] | ||
Type B-1 | Laboratory rats (R. norvegicus) | Females/neonates | intraperitoneal | 5 × 103 or 5 × 105 LD50 | - | [45] | ||
Type B-1 | - | Laboratory F344/Jcl rats (R. norvegicus) | 2 to 3 months old | intraperitoneal | - | - | [46] | |
KI-83-262 | Seven days on Vero E6 cells | Wistar rats (R. norvegicus) | Newborn (<24 h) and 8 weeks old | intraperitoneal | 6.6 × 103 ffu | - | [24] | |
KI-83-262 | Wistar rats (R. norvegicus) | Newborn (<24 h) and 7 weeks old | intraperitoneal | 6.6 × 103 ffu | - | [17] | ||
80–39 | Three times in Wistar rats and six times in Vero E6 cells | Inbred Lewis rats (R. norvegicus) | 6, 10 or 21 days | intraperitoneal | 106 TCID50 of virus stock in 0.1 ml | 84 days | [19] | |
HTNV | ||||||||
76–118 | Eight passages in weanling rats and two in suckling rats | Wild Apodemus agrarius | Adults | intramuscular | 105.9 ID50/0,3 mL or 108,2 ID50/0,3 mL | - | [11] | |
76–118 | Large array of species, including colonized and wild rodents | - | intramuscular or intralung | 103,5–105,2 infectious units/mL | - | [11] | ||
76118 | Fischer F 344/N rats (R. norvegicus) | Suckling (1 to 3 day old) and weanling (4 week old) | intramuscular and intracerebral | 106 and 108,5 ID50 | 180 or 360 days | [22] | ||
SNV | ||||||||
SN77734 | Peromyscus maniculatus (outbred colony) | 4 to 6 week-old | intramuscular | 5 doses of ID50 | 217 days | [15] | ||
SN77734 | In vivo within deer mice | P. maniculatus (outbred colony) | - | intramuscular | 5 doses of ID50 | 120 days | [27] | |
SN77734 | Outbred P. maniculatus | Males and females/6 to 10 weeks | intramuscular | 20 animal ID50 | 20 days | [47] | ||
SN77734 | Colonized P. maniculatus | - | intramuscular | the equivalent of 2 × 105 genome copies | 6 weeks | [48] | ||
SN77734 | P. maniculatus | Males and females/6 to 10 weeks | intramuscular | 20 animal ID50 | 45 days | [49] | ||
SN77734 | Wild P. maniculatus | - | - | - | - | [50] | ||
BCCV | ||||||||
- | Three times in Vero E6 cells | Laboratory cotton rats (Sigmodon hispidus) | Males/four week-old | subcutaneous | 1000 TCID50 | 150 days | [14] | |
- | Three times in Vero E6 cells | Laboratory cotton rats (S. hispidus) | 3 weeks to 4 months | subcutaneous | 1000 TCID50 | - | [51] | |
ANDV | ||||||||
ANDV-9717869 | Vero E6 cells | Laboratory Me. auratus | Females/6 to 8 weeks old | intramuscular, intragastric, subcutaneous, intranasal | 35 days | [52] | ||
ANDV-9717869 | Outbred P. maniculatus rufinus | Males/6 to 12 weeks old | intramuscular | 200 ffu | 56 days | [53] | ||
CDGV | ||||||||
VHV-574 | Vero E6 cells | Laboratory Sigmodon alstoni | 21 days | subcutaneous | 3.1, 1.1, −0.9, or −2.9 log10 CCID50 | 54 days | [29] | |
TULV | ||||||||
Moravia/Ma5302V/9 | - | My. glareolus, colonized Mi. agrestis | - | subcutaneous | 2 × 103 ffu | 21 days | [31] | |
DOBV | ||||||||
Slovenia | - | My. glareolus | subcutaneous | 5 × 103 ffu | 21 days | [31] | ||
MAPV | ||||||||
HV 9702105 | Vero E6 cells | P. maniculatus | Males and females/8–16 weeks | subcutaneous | 104 TCID50 | 56 and 14 days | [54] | |
RIOMV | ||||||||
HTN-0007 | Vero E6 cells | Wild Sigmodontinae rodents | - | intraperitoneal | 103 RNA copies | 18 days | [55] |
Hantavirus/Reservoir | Experimental Design | Duration | Refs |
---|---|---|---|
PUUV/My. glareolus | |||
Capture-Mark-Recapture (CMR) | 5 years | [25] | |
CMR | 7 years | [30] | |
CMR | Three consecutive winters | [56] | |
CMR | 3 years | [57] | |
CMR | 16 months | [58] | |
SNV/P. maniculatus | |||
CMR | 2 years | [26] | |
CMR | 2 years | [28] | |
CMR | 15 years | [59] | |
CMR | 6 years | [60] | |
CMR | Spring and fall | [61] | |
CMR | 7 months to 4 years | [62] | |
CMR | 5 years | [63] | |
CMR | Spring and fall | [64] | |
CMR | 2 years | [65] | |
Outdoor enclosure | 1 year | [66] | |
Outdoor enclosures | 8 months | [67] | |
SNV/Rodent community | |||
Outdoor enclosures | 2 months | [68] | |
ANDV/Sigmodontine rodents | |||
Outdoor enclosure | 2 years | [69] | |
SEOV/R. norvegicus | |||
CMR | 2 years | [70] | |
CMR | 3 years | [71] | |
MRPV/Zygodontomys brevicauda and Oligoryzomys fulvescens | CMR | 5 months | [72] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrières, S.; Castel, G.; Murri, S.; Vulin, J.; Marianneau, P.; Charbonnel, N. The Needs for Developing Experiments on Reservoirs in Hantavirus Research: Accomplishments, Challenges and Promises for the Future. Viruses 2019, 11, 664. https://doi.org/10.3390/v11070664
Madrières S, Castel G, Murri S, Vulin J, Marianneau P, Charbonnel N. The Needs for Developing Experiments on Reservoirs in Hantavirus Research: Accomplishments, Challenges and Promises for the Future. Viruses. 2019; 11(7):664. https://doi.org/10.3390/v11070664
Chicago/Turabian StyleMadrières, Sarah, Guillaume Castel, Séverine Murri, Johann Vulin, Philippe Marianneau, and Nathalie Charbonnel. 2019. "The Needs for Developing Experiments on Reservoirs in Hantavirus Research: Accomplishments, Challenges and Promises for the Future" Viruses 11, no. 7: 664. https://doi.org/10.3390/v11070664
APA StyleMadrières, S., Castel, G., Murri, S., Vulin, J., Marianneau, P., & Charbonnel, N. (2019). The Needs for Developing Experiments on Reservoirs in Hantavirus Research: Accomplishments, Challenges and Promises for the Future. Viruses, 11(7), 664. https://doi.org/10.3390/v11070664