Approach to Strain Selection and the Propagation of Viral Stocks for Venezuelan Equine Encephalitis Virus Vaccine Efficacy Testing under the Animal Rule
Abstract
:1. Introduction
2. Background
2.1. Alphaviral Committee and Workshop
2.2. Strain Selection
2.3. Approach to Selecting a Methodology for the Propagation of Challenge Material
2.4. Comparison of VEE in Humans and Animal Models
3. Summary of Workshop/Committee Proceedings
3.1. VEEV Strain Down-Selection for Animal Model
3.1.1. VEEV IAB Strains
3.1.2. VEEV IC Strains
3.2. Preparation of Challenge Material
3.3. VEE Disease and Pathophysiology in Humans
3.3.1. Background of VEE Disease
3.3.2. VEEV IAB (TrD) Infection
3.3.3. VEEV IC (INH-9813) Infection
3.4. Animal Models
3.4.1. VEEV Mouse Model
3.4.2. VEEV NHP Model
3.4.3. VEEV IAB TrD Animal Models
3.4.4. VEEV IC INH-9813 Animal Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weaver, S.C.; Ferro, C.; Barrera, R.; Boshell, J.; Navarro, J.C. Venezuelan equine encephalitis. Annu. Rev. Entomol. 2004, 49, 141–174. [Google Scholar] [CrossRef] [PubMed]
- Randall, R.; Mills, J.W. Fatal encephalitis in man due to the Venezuelan virus of equine encephalomyelitis in Trinidad. Science 1944, 99, 225–256. [Google Scholar] [CrossRef] [PubMed]
- Ehrenkranz, N.J.; Ventura, A.K. Venezuelan equine encephalitis virus infection in man. Annu. Rev. Med. 1974, 25, 9–14. [Google Scholar] [CrossRef]
- Aguilar, P.V.; Estrada-Franco, J.G.; Navarro-Lopez, R.; Ferro, C.; Haddow, A.D.; Weaver, S.C. Endemic Venezuelan equine encephalitis in the Americas: Hidden under the dengue umbrella. Future Virol. 2011, 6, 721–740. [Google Scholar] [CrossRef] [PubMed]
- Bowen, G.S.; Fashinell, T.R.; Dean, P.B.; Gregg, M.B. Clinical aspects of human Venezuelan equine encephalitis in Texas. Bull. Pan Am. Health Organ. 1976, 10, 46–57. [Google Scholar] [PubMed]
- Rivas, F.; Diaz, L.A.; Cardenas, V.M.; Daza, D.E.; Bruzon, L.; Alcala, A.; De la Hoz, O.; Caceres, F.M.; Aristizabal, G.; Martinez, J.W.; et al. Epidemic Venezuelan equine encephalitis in La Guajira, Colombia, 1995. J. Infect. Dis. 1997, 175, 828–832. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Product Development under the Animal Rule. Guidance for Industry. 2015. Available online: https://www.fda.gov/downloads/drugs/guidances/ucm399217.pdf (accessed on 21 October 2018).
- Powers, A.M.; Huang, H.V.; Roehrig, J.T.; Strauss, E.G.; Weaver, S.C. Togaviridae. In Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2011; pp. 1103–1110. [Google Scholar]
- Hirschberg, R.; Ward, L.A.; Kilgore, N.; Kurnat, R.; Schiltz, H.; Albrecht, M.T.; Christopher, G.W.; Nuzum, E. Challenges, progress, and opportunities: Proceedings of the filovirus medical countermeasures workshop. Viruses 2014, 6, 2673–2697. [Google Scholar] [CrossRef] [PubMed]
- Anishchenko, M.; Paessler, S.; Greene, I.P.; Aguilar, P.V.; Carrara, A.; Weaver, S.C. Generation and characterization of closely related epizootic and enzootic infectious cDNA clones for studying interferon sensitivity and emergence mechanisms of Venezuelan equine encephalitis virus. J. Virol. 2004, 78, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Anishchenko, M.; Bowen, R.A.; Paessler, S.; Austgen, L.; Greene, I.P.; Weaver, S.C. Venezuelan encephalitis emergence mediated by a phylogenetically predicted viral mutation. Proc. Natl. Acad. Sci. USA 2006, 103, 4994–4999. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.H.; Dietz, W.H.; Alvaerez, O., Jr.; Johnson, K.M. Epidemiological significance of Venezuelan equine encephalomyelitis virus in vitro markers. Am. J. Trop. Med. Hyg. 1982, 31, 561–568. [Google Scholar] [CrossRef]
- Wang, E.; Barrera, R.; Boshell, J.; Ferro, C.; Freier, J.E.; Navarro, J.C.; Salas, R.; Vasquez, C.; Weaver, S.C. Genetic and phenotypic changes accompanying the emergence of epizootic subtype IC Venezuelan equine encephalitis viruses from an enzootic subtype ID progenitor. J. Virol. 1999, 73, 4366–4371. [Google Scholar]
- Powers, A.M.; Brault, A.C.; Kinney, R.M.; Weaver, S.C. The use of chimeric Venezuelan equine encephalitis viruses as an approach for the molecular identification of natural virulence determinants. J. Virol. 2000, 74, 4258–4263. [Google Scholar] [CrossRef] [PubMed]
- Greene, I.P.; Wang, E.; Deardorff, E.R.; Milleron, R.; Domingo, E.; Weaver, S.C. Effect of alternating passage on adaptation of Sindbis virus to vertebrate and invertebrate cells. J. Virol. 2005, 79, 14253–14260. [Google Scholar] [CrossRef] [PubMed]
- Bronze, M.S.; Huycke, M.M.; Machado, L.J.; Voskuhl, G.W.; Greenfield, R.A. Viral agents as biological weapons and agents of bioterrorism. Am. J. Med. Sci. 2002, 323, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Berge, T.O.; Gleiser, C.A.; Gochenour, W.S., Jr.; Miesse, M.L.; Tigertt, W.D. Studies on the virus of Venezuelan equine encephalomyelitis. II. Modification by specific immune serum of response of central nervous system of mice. J. Immunol. 1961, 87, 509–517. [Google Scholar] [PubMed]
- Jahrling, P.B.; DePaoli, A.; Powanda, M.C. Pathogenesis of a Venezuelan encephalitis virus strain lethal for adult white rats. J. Med. Virol. 1978, 2, 109–116. [Google Scholar] [CrossRef]
- Tigertt, W.D.; Downs, W.G. Studies on the virus of Venezuelan equine encephalomyelitis in Trinidad, W.I. I. The 1943–1944 epizootic. Am. J. Trop. Med. Hyg. 1962, 11, 822–834. [Google Scholar] [CrossRef]
- Powers, A.M.; Oberste, M.S.; Brault, A.C.; Rico-Hesse, R.; Schmura, S.M.; Smith, J.F.; Kang, W.; Sweeney, W.P.; Weaver, S.C. Repeated emergence of epidemic/epizootic Venezuelan equine encephalitis from a single genotype of enzootic subtype ID virus. J. Virol. 1997, 71, 6697–6705. [Google Scholar] [Green Version]
- France, J.K.; Wyrick, B.C.; Trent, D.W. Biochemical and antigenic comparison of the envelope glycoproteins of Venezuelan equine encephalomyelitis virus strains. J. Gen. Virol. 1979, 44, 725–740. [Google Scholar] [CrossRef]
- Kinney, R.M.; Johnson, B.J.; Brown, V.L.; Trent, D.W. Nucleotide sequence of the 26 S mRNA of the virulent Trinidad donkey strain of Venezuelan equine encephalitis virus and deduced sequence of the encoded structural proteins. Virology 1986, 152, 400–413. [Google Scholar] [CrossRef]
- Weaver, S.C.; Salas, R.; Rico-Hesse, R.; Ludwig, G.V.; Oberste, M.S.; Boshell, J.; Tesh, R.B. Re-emergence of epidemic Venezuelan equine encephalomyelitis in South America. Lancet 1996, 348, 436–440. [Google Scholar] [CrossRef]
- Wang, E.; Bowen, R.A.; Medina, G.; Powers, A.M.; Kang, W.; Chandler, L.M.; Shope, R.E.; Weaver, S.C. Virulence and viremia characteristics of 1992 epizootic subtype IC Venezuelan equine encephalitis viruses and closely related enzootic subtype ID strains. Am. J. Trop. Med. Hyg. 2001, 65, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Brault, A.C.; Powers, A.M.; Weaver, S.C. Vector infection determinants of Venezuelan equine encephalitis virus reside within the E2 envelope glycoprotein. J. Virol. 2002, 76, 6387–6392. [Google Scholar] [CrossRef] [PubMed]
- Brault, A.C.; Powers, A.M.; Medina, G.; Wang, E.; Kang, W.; Salas, R.A.; de Siger, J.; Weaver, S.G. Potential sources of the 1995 Venezuelan equine encephalitis subtype IC epidemic. J. Virol. 2001, 75, 5823–5832. [Google Scholar] [CrossRef] [PubMed]
- Rico-Hesse, R.; Roehrig, J.T.; Trent, D.W.; Dickerman, R.W. Genetic variation of Venezuelan equine encephalitis virus strains of the ID variety in Colombia. Am. J. Trop. Med. Hyg. 1988, 38, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Rico-Hesse, R.; Weaver, S.C.; de Siger, J.; Medina, G.; Salas, R.A. Emergence of a new epidemic/epizootic Venezuelan equine encephalitis virus in South America. Proc. Natl. Acad. Sci. USA 1995, 92, 5278–5281. [Google Scholar] [CrossRef] [PubMed]
- Vilcarromero, S.; Aguilar, P.V.; Halsey, E.S.; Laguna-Torres, V.A.; Razuri, H.; Perez, J.; Valderrama, Y.; Gotuzzo, E.; Suarez, L.; Cespedes, M.; et al. Venezuelan equine encephalitis and 2 human deaths, Peru. Emerg. Infect. Dis. 2010, 16, 553–556. [Google Scholar] [CrossRef]
- Moncayo, A.C.; Lanzaro, G.; Kang, W.; Orozco, A.; Ulloa, A.; Arredondo-Jimenez, J.; Weaver, S.C. Vector competence of eastern and western forms of Psorophora columbiae (Diptera: Culicidae) mosquitoes for enzootic and epizootic Venezuelan equine encephalitis virus. Am. J. Trop. Med. Hyg. 2008, 78, 413–421. [Google Scholar] [CrossRef]
- Weaver, S.C.; Pfeffer, M.; Marriott, K.; Kang, W.; Kinney, R.M. Genetic evidence of the origins of Venezuelan equine encephalitis virus subtype IAB outbreaks. Am. J. Trop. Med. Hyg. 1999, 60, 441–448. [Google Scholar] [CrossRef]
- Davis, N.L.; Brown, K.W.; Greenwald, G.F.; Zajac, A.J.; Zacny, V.L.; Smith, J.F.; Johnston, R.E. Attenuated mutants of Venezuelan equine encephalitis virus containing lethal mutations in the PE2 cleavage signal combined with a second-site suppressor mutation in E1. Virology 1995, 212, 102–110. [Google Scholar] [CrossRef]
- Johnston, R.E.; Smith, J.F. Selection for accelerated penetration in cell culture coselects for attenuated mutants of Venezuelan equine encephalitis virus. Virology 1988, 162, 437–443. [Google Scholar] [CrossRef]
- Bernard, K.A.; Klimstra, W.B.; Johnston, R.E. Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparin sulfate interaction, low morbidity, and rapid clearance from blood of mice. Virology 2000, 276, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Coffey, L.L.; Vasilakis, N.; Brault, A.C.; Powers, A.M.; Tripet, F.; Weaver, S.C. Arbovirus evolution in vivo is constrained by host alteration. Proc. Natl. Acad. Sci. USA 2008, 105, 6970–6975. [Google Scholar] [CrossRef] [PubMed]
- Gilyard, R.T. A clinical study of Venezuelan virus equine encephalomyelitis in Trinidad, B.W.I. JAMA 1945, 818, 267–277. [Google Scholar]
- Dupuy, L.C.; Richards, M.J.; Ellefsen, B.; Chau, L.; Luxembourg, A.; Hannaman, D.; Livingston, B.D.; Schmaljohn, C.S. A DNA vaccine for Venezuelan equine encephalitis virus delivered by intramuscular electroporation elicits high levels of neutralizing antibodies in multiple animal models and provides protective immunity to mice and nonhuman primates. Clin. Vaccine Immunol. 2011, 18, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.D.; Buckley, M.J.; Melanson, V.R.; Glass, P.J.; Norwood, D.; Hart, M.K. Antibody to the E3 glycoprotein protects mice against lethal Venezuelan equine encephalitis virus infection. J. Virol. 2010, 84, 12683–12690. [Google Scholar] [CrossRef]
- Reed, D.S.; Glass, P.F.; Bakken, R.R.; Barth, J.F.; Lind, C.M.; da Silva, L.; Hart, M.K.; Rayner, J.; Alterson, K.; Custer, M.; et al. Combined alphavirus replicon particle vaccine induces durable and cross-protective immune responses against equine encephalitis viruses. J. Virol. 2014, 88, 12077–12086. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.K.; Caswell-Stephan, K.; Bakken, R.; Tammariello, R.; Pratt, W.; Davis, N.; Johnston, R.E.; Smith, J.; Steele, K. Improved mucosal protection against Venezuelan equine encephalitis virus is induced by the molecularly defined, live-attenuated V3526 vaccine candidate. Vaccine 2000, 18, 3067–3075. [Google Scholar] [CrossRef]
- Hunt, A.R.; Frederickson, S.; Hinkel, C.; Bowdish, K.S.; Roehrig, J.T. A humanized murine monoclonal antibody protects mice either before or after challenge with virulent Venezuelan equine encephalomyelitis virus. J. Gen. Virol. 2006, 87, 2467–2476. [Google Scholar] [CrossRef]
- O’Brien, L.M.; Goodchild, S.A.; Phillpotts, R.J.; Perkins, S.D. A humanized murine monoclonal antibody protects mice from Venezuelan equine encephalitis virus, Everglades virus and Mucambo virus when administered up to 48 h after airborne challenge. Virology 2012, 426, 100–105. [Google Scholar] [CrossRef]
- Phillpotts, R.J.; O’Brien, L.; Appleton, R.E.; Carr, S.; Bennett, A. Intranasal immunisation with defective adenovirus serotype 5 expressing the Venezuelan equine encephalitis virus E2 glycoprotein protects against airborne challenge with virulent virus. Vaccine 2005, 23, 1615–1623. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.M.; Lescott, T.; Phillpotts, R.J. Improved protection against Venezuelan equine encephalitis by genetic engineering of a recombinant vaccinia virus. Viral Immunol. 1998, 11, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.M.; Elvin, S.J.; Wright, A.J.; Jones, S.M.; Phillpotts, R.J. An immunological profile of Balb/c mice protected from airborne challenge following vaccination with a live attenuated Venezuelan equine encephalitis virus vaccine. Vaccine 2000, 19, 337–347. [Google Scholar] [CrossRef]
- Martin, S.S.; Bakken, R.R.; Lind, C.M.; Garcia, P.; Jenkins, E.; Glass, P.J.; Parker, M.D.; Hart, M.K.; Fine, D.L. Evaluation of formalin inactivated V3526 virus with adjuvant as a next generation vaccine candidate for Venezuelan equine encephalitis virus. Vaccine 2010, 28, 3143–3151. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.S.; Bakken, R.R.; Lind, C.M.; Garcia, P.; Jenkins, E.; Glass, P.G.; Parker, M.D.; Hart, M.K.; Fine, D.L. Comparison of the immunological responses and efficacy of gamma-irradiated V3526 vaccine formulations against subcutaneous and aerosol challenge with Venezuelan equine encephalitis virus subtype IAB. Vaccine 2010, 28, 1031–1040. [Google Scholar] [CrossRef] [Green Version]
- Steele, K.E.; Davis, K.J.; Stephan, K.; Kell, W.; Vogel, P.; Hart, M.K. Comparative neurovirulence and tissue tropism of wild-type and attenuated strains of Venezuelan equine encephalitis virus administered by aerosol in C3H/HeN and BALB/c mice. Vet. Pathol. 1998, 35, 386–397. [Google Scholar] [CrossRef]
- Klimstra, W.B.; Ryman, K.D.; Johnston, R.E. Adaptation of Sindbis virus to BHK cells selects for use of heparin sulfate as an attachment receptor. J. Virol. 1998, 72, 7357–7366. [Google Scholar]
- Paessler, S.; Ni, H.; Petrakova, O.; Fayzulin, R.Z.; Yun, N.; Anishchenko, M.; Weaver, S.C.; Frolov, I. Replication and clearance of Venezuelan equine encephalitis virus from the brains of animals vaccinated with chimeric SIN/VEE viruses. J. Virol. 2006, 80, 2784–2796. [Google Scholar] [CrossRef]
- Lennette, E.H.; Koprowski, H. Human infection with Venezuelan equine encephalomyelitis virus: A report on eight cases of infection acquired in the laboratory. JAMA 1943, 123, 1088–1095. [Google Scholar] [CrossRef]
- Rusnak, J.M.; Dupuy, L.C.; Niemuth, N.A.; Glenn, A.M.; Ward, L.A. Comparison of aerosol- and percutaneous-acquired Venezuelan equine encephalitis in humans and nonhuman primates for suitability in predicting clinical efficacy under the animal rule. Comp. Med. 2018, 68, 380–395. [Google Scholar] [CrossRef]
- Beck, C.E.; Wyckoff, R.W.G. Venezuelan equine encephalomyelitis. Science 1938, 88, 530. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, K.; Joyce, J.; Hamilton, S.; Nevins, C.; Sosna, W.; Puricelli, K.; Rayner, J.O. Differential accumulation of genetic and phenotypic changes in Venezuelan equine encephalitis virus and Japanese encephalitis virus following passage in vitro and in vivo. Virology 2011, 415, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, C.J.; Dalrymple, J.M. Alphaviruses. In Fields Virology, 3rd ed.; Fields, B.N., Knipe, D.M., Hawley, P.M., Eds.; Lippincott-Raven: Philadelphia, PA, USA, 1990; pp. 713–759. [Google Scholar]
- Casals, J.; Curnen, E.C.; Thomas, L. Venezuelan equine encephalomyelitis in man. J. Exp. Med. 1943, 77, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Koprowski, H.; Cox, H.R. Human laboratory infection with Venezuelan equine encephalomyelitis virus; report of four cases. N. Engl. J. Med. 1947, 236, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Slepushkin, A.N. An epidemiological study of laboratory infections with Venezuelan equine encephalomyelitis. Vopr. Virusol. 1959, 3, 311–314. [Google Scholar]
- Sutton, L.S.; Brooke, C.C. Venezuelan equine encephalomyelitis due to vaccination in man. JAMA 1954, 155, 1473–1476. [Google Scholar] [CrossRef] [PubMed]
- Franck, P.T.; Johnson, K.M. An outbreak of Venezuelan encephalitis in man in the Panama Canal Zone. Am. J. Trop. Med. Hyg. 1970, 19, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Charles, P.C.; Walters, E.; Margolis, F.; Johnston, R.E. Mechanism of neuroinvasion of Venezuelan equine encephalitis virus in the mouse. Virology 1995, 208, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Ryzhikov, A.B.; Tkacheva, N.V.; Sergeev, A.N.; Ryabchikova, E.I. Venezuelan equine encephalitis virus propagation in the olfactory tract of normal and immunized mice. Biomed. Sci. 1991, 2, 607–614. [Google Scholar]
- Vogel, P.; Abplanlp, D.; Kell, W.; Ibrahim, M.S.; Downs, M.B.; Pratt, W.D.; Davis, K.J. Venezuelan equine encephalitis in BALB/c mice. Kinetic analysis of central nervous system infection following aerosol or subcutaneous inoculation. Arch. Pathol. Lab. Med. 1996, 120, 164–172. [Google Scholar]
- Steele, K.E.; Twenhafel, N.A. Review Paper: Pathology of animal models of alphavirus encephalitis. Vet. Pathol. 2010, 47, 790–805. [Google Scholar] [CrossRef] [PubMed]
- Danes, L.; Kufner, J.; Hruskova, J.; Rychterova, V. The role of the olfactory route on infection of the respiratory tract with Venezuelan equine encephalomyelitis virus in normal and operated Macaca rhesus monkeys. I. Results of virological examination. Acta. Virol. 1973, 17, 50–56. [Google Scholar] [PubMed]
- Danes, L.; Rychterova, V.; Kufner, J.; Hruskova, J. The role of the olfactory route of the respiratory tract with Venezuelan equine encephalitis virus in normal and operated Macaca rhesus monkeys. II. Results of histological examination. Acta Virol. 1973, 17, 57–60. [Google Scholar]
- Tasker, J.B.; Miesse, M.L.; Berge, T.O. Studies on the virus of Venezuelan equine encephalomyelitis. III. Distribution in tissues of experimentally infected mice. Am. J. Trop. Med. Hyg. 1962, 11, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.G.; Mamay, H.K.; Marshall, R.G.; Wagner, J.C. Venezuelan equine encephalomyelitis. Laboratory aspects of fourteen human cases following vaccination and attempts to isolate the virus from the vaccine. Am. J. Hyg. 1956, 63, 150–164. [Google Scholar] [CrossRef]
- Guo-Yun, Y.; Wiley, M.R.; Kugelman, J.R.; Ladner, J.T.; Beitzel, B.F.; Eccleston, L.T.; Morazzani, E.M.; Glass, P.J.; Palacios, G.F. Complete coding sequences of eastern equine encephalitis virus and Venezuelan equine encephalitis virus strains isolated from human cases. Genome Announc. 2015, 3, e00243-15. [Google Scholar] [CrossRef]
- Suzanne, M.; Castro, F.; Bonilla, N.J.; de Urdaneta, A.G.; Hutchins, G.M. The systemic pathology of Venezuelan equine encephalitis virus infection in humans. Am. J. Trop. Med. Hyg. 1985, 34, 194–202. [Google Scholar] [CrossRef]
- Food and Drug Administration-Center for Biologics Evaluation and Research (FDA-CBER). Development of a Western, Eastern, and Venezuelan Equine Encephalitis (WEVEEV) Vaccine, Animal Model Strain Selection, Version 1.0; Written Communication with US Army Medical and Materiel Development Authority (USAMMDA); Food and Drug Administration-Center for Biologics Evaluation and Research (FDA-CBER): Fort Detrick, MD, USA, 20 April 2015.
- Pratt, W.D.; Gibbs, P.; Pitt, M.L.; Schmaljohn, A.L. Use of telemetry to assess vaccine-induced protection against parenteral and aerosol infections of Venezuelan equine encephalitis virus in nonhuman primates. Vaccine 1998, 16, 1056–1064. [Google Scholar] [CrossRef]
- Aronson, J.F.; Grieder, F.B.; Davis, N.L.; Charles, P.C.; Knott, T.; Brown, K.; Johnston, R.E. A single-site mutant and revertants arising in vivo define early steps in the pathogenesis of Venezuelan equine encephalitis virus. Virology 2000, 270, 111–123. [Google Scholar] [CrossRef]
- Grieder, F.B.; Davis, N.L.; Aronson, J.F.; Charles, P.C.; Sellon, D.C.; Suzuki, K.; Johnston, R.E. Specific restrictions in the progression of Venezuelan equine encephalitis virus-induced disease resulting from single amino acid changes in the glycoproteins. Virology 1995, 206, 994–1006. [Google Scholar] [CrossRef]
- Davis, N.L.; Willis, L.V.; Smith, J.F.; Johnston, R.E. In vitro synthesis of infectious Venezuelan equine encephalitis virus from a cDNA clone: Analysis of a viable deletion mutant. Virology 1989, 171, 189–204. [Google Scholar] [CrossRef]
- Davis, N.L.; Powell, N.; Greenwald, G.F.; Willis, L.V.; Johnson, B.J.; Smith, J.F.; Johnston, R.E. Attenuating mutations in the E2 glycoprotein gene of Venezuelan equine encephalitis virus: Construction of single and multiple mutants in a full-length cDNA clone. Virology 1991, 183, 20–31. [Google Scholar] [CrossRef]
- Davis, N.L.; Grieder, F.B.; Smith, J.F.; Greenwald, G.F.; Valenski, M.L.; Sellon, D.C.; Charles, P.C.; Johnston, R.E. A molecular genetic approach to the study of Venezuelan equine encephalitis virus pathogenesis. Arch. Virol. Suppl. 1994, 9, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Ryzhikov, A.B.; Ryabchikova, E.I.; Sergeev, A.N.; Tkacheva, N.V. Spread of Venezuelan equine encephalitis virus in mice olfactory tract. Arch. Virol. 1995, 140, 2243–2254. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.L.; Russell-Lodrigue, K.E.; Killeen, S.Z.; Wang, E.; Leal, G.; Bergren, N.A.; Vinet-Oliphant, H.; Weaver, S.C.; Roy, C.J. IRES-containing VEEV vaccine protects cynomolgus macaques from IE Venezuelan equine encephalitis virus aerosol challenge. PLoS Negl. Trop. Dis. 2015, 9, e0003797. [Google Scholar] [CrossRef] [PubMed]
- Reed, D.S.; Lind, C.M.; Lackemeyer, M.G.; Sullivan, L.J.; Pratt, W.D.; Parker, M.D. Genetically engineered, live, attenuated vaccines protect nonhuman primates against aerosol challenge with a virulent IE strain of Venezuelan equine encephalitis virus. Vaccine 2005, 23, 3139–3147. [Google Scholar] [CrossRef]
- Dupuy, L.C.; Richards, M.J.; Reed, D.S.; Schmaljohn, C.S. Immunogenicity and protective efficacy of a DNA vaccine against Venezuelan equine encephalitis virus aerosol challenge in nonhuman primates. Vaccine 2010, 28, 7345–7350. [Google Scholar] [CrossRef] [PubMed]
- Pratt, W.D.; Davis, N.L.; Johnston, R.E.; Smith, J.F. Genetically engineered, live attenuated vaccines for Venezuelan equine encephalitis: Testing in animal models. Vaccine 2003, 21, 3854–3862. [Google Scholar] [CrossRef]
- Weaver, S.C.; University of Texas Medical Branch, Galveston, TX, USA; Klimstra, W.B.; University of Pittsburgh, Pittsburgh, PA, USA. Personal communication, 2019.
- Brittingham, K.; Garver, J.N.; Cauthon, A.G.; Sabourin, C.L.; Burback, B.L. Evaluation of the Median Lethal Dose (LD50) of Venezuelan Equine Encephalitis Virus in BALB/c Mice. Unpublished work.
- Coffey, L.L.; Beeharry, T.; Borderia, A.V.; Blanc, H.; Vignuzzi, M. Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc. Natl. Acad. Sci. USA 2011, 108, 16038–16043. [Google Scholar] [CrossRef] [Green Version]
- Warmbrod, K.L.; Patterson, E.l.; Kautz, T.F.; Stanton, A.; Rockx-Brouwer, D.; Kalveram, B.K.; Khanipov, K.; Thangamani, S.; Fofanov, Y.; Forrester, N.L. Viral RNA-dependent RNA polymerase mutants display an altered mutation spectrum resulting in attenuation in both mosquito and vertebrate hosts. PLoS Pathog. 2019, 15, e1007610. [Google Scholar] [CrossRef]
- Burke, D.S.; Ramsburg, H.H.; Edelman, R. Persistence in humans of antibody to subtypes of Venezuelan equine encephalomyelitis (VEE) virus after immunization with attenuated (TC-83) VEE virus vaccine. J. Infect. Dis. 1977, 136, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Forrester, N.L.; Wertheim, J.O.; Dugan, V.G.; Auguste, A.J.; Lin, D.; Adams, P.; Chen, R.; Gorchakov, R.; Leal, G.; Estrada-Franco, J.G.; et al. Evolution and spread of Venezuelan equine encephalitis complex alphavirus in the Americas. PLoS Negl. Trop. Dis. 2017, 11, e0005693. [Google Scholar] [CrossRef] [PubMed]
- Rico, A.B.; Phillips, A.T.; Schountz, T.; Jarvis, D.L.; Tjalkens, R.B.; Powers, A.M.; Olson, K.E. Venezuelan and western equine encephalitis virus E1 liposome antigen nucleic acid complexes protect mice from lethal challenge with multiple alphaviruses. Virology 2016, 499, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.K.; Lind, C.; Bakken, R.; Robertson, M.; Tammariello, R.; Ludwig, G.V. Onset and duration of protective immunity to IA/IB and IE strains of Venezuelan equine encephalitis virus in vaccinated mice. Vaccine 2002, 20, 612–622. [Google Scholar] [CrossRef]
- Schmaljohn, A.L.; Johnson, E.D.; Dalrymple, J.M.; Cole, G.A. Non-neutralizing monoclonal antibodies prevent lethal alphavirus encephalitis. Nature 1982, 297, 70–72. [Google Scholar] [CrossRef] [PubMed]
Source | Strain Selection Criteria |
---|---|
Department of Defense (DOD) | Strains that will support Food and Drug Administration (FDA) licensure for vaccine protection against at least two VEEV subtype I variants |
DOD | Strains relevant to a bioterrorism event |
FDA | Strains isolated from lethal human cases or associated with causing human disease |
FDA | Strains with known and low passage history |
Filovirus Animal Non-clinical Group (FANG) | Strains with no passage history in animals (if available) |
Strains with low passage history in cell culture | |
FDA | Strains that mirror the expected disease state in humans |
Logistics | Strains available and accessible to laboratories licensed to work with select agents |
Logistics | Ability to grow strain to yield sufficient challenge material for animal model |
Strain Type | Strain | VEEV Subtype i) | Source | Passage History | Place and Year of Isolation | Reference |
---|---|---|---|---|---|---|
Epizootic VEEV Strains | Trinidad Donkey (USAMRIID) | IAB | Donkey brain | GP1, CE14, SMB1, BHK-1 or 2 | Trinidad, 1943 | [17,18,19,20] |
Trinidad Donkey (USAMRIID) | IAB | Donkey brain | GP1, CE13, DE cells 1 | |||
Trinidad Donkey (CDC) | IAB | Donkey brain | GP1, V6, BHK1 | Trinidad, 1943 | [21,22] | |
69Z1 | IAB | Human | SM2, V1 | Guatemala, 1969 | [20] | |
69Z1 | IAB | Human | BHK1, unknown | Guatemala, 1969 | [20] | |
INH-9813 | IC | Human serum | V1 | Venezuela, 1995 | [23] | |
INH-6803 | IC | Human serum | V1 | Venezuela, 1995 | [23] | |
SH3 | IC | Human | V1 | Venezuela, 1993 | [10,24] | |
3908 | IC | Human serum | C6/36-1 | Venezuela, 1995 | [10,15,23,25] | |
6119 | IC | Human serum | BHK1 | Venezuela, 1995 | [20,23,26] | |
V198 | IC | Human serum | SM1, V1, DE1 | Colombia, 1962 | [26] | |
V178 | IC | Horse brain | SMB2, V3 | Colombia, 1961 | [23] | |
P676 | IC | Aedes triannulatus | SM1, V3, BHK1 | Venezuela, 1963 | [26] | |
Enzootic VEEV Strains | 3880 | ID | Human | SM3, V4, BHK1 | Panama, 1961 | [20,27,28] |
FSL0201 | ID | Human serum | V1 | Peru, 2000 | [29] | |
83U434 | ID | Hamster | CE cells 1, V1, BHK1 | Colombia, 1983 | [13,23] | |
An9004 | ID | Hamster | SM3, V1, BHK1 | Colombia, 1969 | [20,27] | |
66637 | ID | Hamster | SM1, V1 | Venezuela, 1981 | [13,20] | |
306425 | ID | Hamster | Unknown, BHK1 | Colombia, 1972 | [20] | |
ZPC738 | ID | Hamster | Unknown, BHK1 | Venezuela, 1997 | [13] | |
V209A | ID | Mouse | SM2, V2 | Colombia, 1960 | [20,27] | |
68U201 | IE | Hamster | SM1, BHK2, CE cells 3 | Guatemala, 1968 | [30] | |
93-42124 | IE | Horse (brain) | SM1, CE cells 1 | Chiapas, Mexico, 1993 | [30] | |
CPA-201 | IE | Horse | SMB1, RK1, BHK2 | Chiapas, Mexico, 1993 | [30] | |
96-32863 | IE | Horse (brain) | SM1, CE1 | Oaxaca, Mexico, 1996 | [30] |
Population Type | Pros | Cons |
---|---|---|
Uncloned (wild-type) | - Maintenance of wild-type diversity | - Cell culture adaptation often results in artificial amino acid substitutions and in vivo attenuation - Risk that multiple major variants present in the population can confound identification of genetic determinants of important phenotypes - Limited supply without additional passages |
Plaque-cloned | - Clear consensus sequence (verified by sequencing original population) and lack of multiple variants | - Possible reduced single nucleotide polymorphism diversity - Risk of selection of a suboptimal fitness mutant (change in the consensus and master sequence) - Limited supply without additional passages |
cDNA-cloned | - Clear consensus sequence (verified by sequencing the first-generation population) and lack of multiple major variants - Unlimited supply of the same master virus without passages | - Possible reduction in single nucleotide polymorphism diversity |
BALB/c Mouse | Cynomolgus Macaque | Humans | |
---|---|---|---|
Route of Exposure | SC (scruff of neck, footpad) Aerosol (whole body) | Aerosol | Aerosol (laboratory exposure) Parenteral (vector-borne, laboratory exposure, vaccine-related) |
Disease and Mortality | Lethal infection after SC and aerosol exposure due to encephalitis even at low challenge doses, with death 5–7 days post-challenge [48,64] | Generally non-lethal infection after SC and aerosol exposure at high challenge doses (100% infection after aerosol challenge 1 × 108 pfu); death uncommon. Increased severity of CNS disease after aerosol challenge [52,64]. | Generally non-lethal infection after SC or aerosol exposure [52] Infection common after exposure to low doses. Encephalitis uncommon (<0.5%); mainly in children/elderly |
Exposure Dose | LD50 SC ~10 pfu; LD50 aerosol <1 pfu a | ID50 unknown | Low infective dose (exposure dose unknown in humans) |
Disease Onset | 24–72 h | 24–48 h | 24–72 h (range 24 h–8 days) |
Signs and Symptoms; Progression of Disease | Nearly 100% mice infected develop disease. Mice infected by the SC route demonstrated initial signs of decreased grooming and ruffled fur 2–3 days after challenge; followed by lethargy, hunched posture, and hind-limb paralysis; death or euthanasia 5–7 days after challenge. Mice infected by aerosol route demonstrated onset of similar signs 2–3 days after challenge, and death or euthanasia 6–7 days after challenge. | Aerosol VEEV TrD challenge results in fever and lethargy within 24–48 h after challenge. Fever resolved by D9. May have mild tremors. Generally NHPs have full recovery. | Self-limiting febrile illness, usually <1 week duration (asthenia may persist 1–2 weeks). Symptoms of high fever, chills, severe headache, back pain, malaise, myalgia, anorexia, nausea, sore throat, fatigue, photophobia, and/or vomiting. Encephalitis uncommon (<1% cases); manifested by decreased sensorium, confusion, gait abnormalities; severe cases with seizures, paralysis, or coma. Most cases recover without neurological sequelae. |
Clinical Laboratory | Not done. | Viremia observed initially on D1–D2 that resolved by D3–D4 Lymphopenia observed early in illness. Increase in WBC observed later in some NHPs [37] | Viremia common D1–D4 (range D1–D7 illness) after aerosol and SC challenge. VEEV isolation from pharynx common D1–D4 (range D1–D7) in VEE IAB TrD and VEE IAB Co1938 strains [52]. Lymphopenia common D1–D3 of illness, with improvement after D3 and recovery by D6. Leukopenia may occur D3–D5; resolves by D5–D8 illness [52]. |
Pathology | Death due to encephalitis. CNS entry occurs via the olfactory system. Histological lesions present in both neural and extraneural tissues; CNS lesions characterized by necrotizing panencephalitis and myelitis; congestion and minor hemorrhage, damaged endothelial cells, perivascular edema, minimal necrosis and infiltration of a few neutrophils and mononuclear cells (no vasculitis) [48,64] | Limited pathology studies in cynomolgus macaques with TrD strain. Intraperitoneal challenge of Rhesus macaques showed histopathology findings initially in lymphoid tissues; lesions in olfactory cortex and thalamus by D6, and in hypothalamus and throughout brain by D8. Predominant lesions of gliosis and multifocal perivascular cuffing composed of lymphocytes. CNS lesions most severe between D14 and D21 post-challenge (observed in 18/20 NHPs). Aerosol challenge rhesus macaques (VEEV-subtype unknown) noted VEEV in nasal mucosa, lungs, cervical/hilar lymph nodes by 18 h, olfactory bulb by 48 h; more severe CNS infection than intraperitoneal challenge (higher CNS viral titers, increased neuronal damage, neuronophagia, and neutrophil infiltration); CNS infection preceded onset of viremia [52,64,65,66]. | CNS pathology available in humans with VEEV IC (see Table 5). |
BALB/c Mouse | Cynomolgus Macaque | Humans (VEEV IC Strains) | |
---|---|---|---|
Route of Exposure | SC (scruff of neck); Aerosol (whole body) | Aerosol (head only) | Parenteral (mosquito-borne). No aerosol-acquired VEEV IC cases reported |
Disease and mortality | Lethal infection after SC and aerosol exposure due to encephalitis even at low challenge doses (100% mortality after 100 pfu challenge dose), with death or euthanasia 6–8 days after challenge [71] | Non-lethal infection (100%) in 11 NHPs after aerosol challenge (dose range 5 × 104 to 5.94 × 108 pfu; 30 pfu in a single NHP) [71] | 1995 Colombia/Venezuela outbreak with VEE IC INH-9813 strain (mosquito-borne disease) [6,23]. Generally non-lethal infection after SC exposure. No reported cases of aerosol-acquired VEEV IC. Infection common after exposure to low doses. Encephalitis uncommon; mainly in children/elderly |
Exposure Dose | LD50 SC =5 pfu; LD50 aerosol = 53 pfu a | ID50 aerosol ≤ 30 pfu (n = 1) | Low infective dose (human infective dose unknown) |
Disease Onset | 48 h to 6 days | 24 to 48 h | 27.5 h to 4 days in 11 mosquito-borne VEE IC cases (strain unknown) [5] |
Clinical Manifestation | VEEV INH-9813 resulted in infection after SC and aerosol exposure (100% infection). Mice with infection demonstrated initial signs of decreased grooming and ruffled fur 6 days after SC challenge or 48 h after aerosol challenge, followed by lethargy, hunched posture, and hind-limb paralysis (likely due to encephalitis), with death or euthanasia 6–8 days after SC or aerosol challenge | VEEV INH-9813 resulted in 100% infection after aerosol challenge. NHPs demonstrated initial signs of fever and lethargy 24–48 h after challenge, with fever resolving by D7. Biphasic fever noted only at highest dose tested. Tremors of variable duration (4–8 days; maximum 26 days) in 50% of NHPs. All NHPs survived | Mosquito-borne VEEV IC infection (strain unknown) similar to VEE IA/B infection in well-characterized outbreak in Texas (n-88) [5]. Self-limiting febrile illness of 1-week duration (asthenia may persist for 1–2 weeks). Symptoms included high fever, chills, severe headache, myalgias, malaise, and anorexia. Also, nausea, vomiting, sore throat, photophobia, ocular pain, arthralgia, somnolence and drowsiness reported. Encephalitis in 2% adults (mild) and 7.6% children. Encephalitis manifested by decreased sensorium, disorientation, delirium, nuchal rigidity, ataxia, seizures; coma and paralysis in severe cases |
Clinical Laboratory | Unknown | Viremia detected starting on D1–D2 post-challenge and resolved by D3–D4. Lymphopenia typically noted early in infection. Elevated WBC count detected later in some NHPs (n = 6) | VEE IC outbreak (strain unknown) [5]: Viremia documented in 40 cases from D0–D8 of illness (most common on D3 of illness). Lymphopenia (<1490 cells/mm3) in 80% cases on D1–D4 of illness; increase generally on D4 with recovery by D9. Leukopenia (<4500 cells/mm3) in 75% cases at D1–D2, (recovery of total WBC by D3/neutropenia by D6–D8) |
Pathology | Pathology studies not performed | Mild to moderate lymphocytic perivascular cuffing with gliosis in CNS at day 28 post-challenge. No viral antigen detected in CNS | Autopsy of 21 mosquito-borne VEEV IC cases (strain unknown): Cerebrovascular congestion (n = 14), edema with inflammatory infiltrates in brain/spinal cord (n = 17), intracerebral hemorrhage (n = 7), vasculitis (n = 4), meningitis (n = 13), encephalitis (n = 7), cerebritis (n = 5). Vasculitis, fibrin thrombi, perivascular hemorrhage and edema, occasional necrosis of blood vessel walls. Inflammatory infiltrates with lymphocytic and mononuclear cells, neutrophils, histiocytes. Lymph nodes and spleen with marked lymphoid depletion/follicular necrosis; hepatocellular degeneration and congestion (11/18 cases); interstitial pneumonia (19/21 cases) and pulmonary edema (11/21 cases) [70] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusnak, J.M.; Glass, P.J.; Weaver, S.C.; Sabourin, C.L.; Glenn, A.M.; Klimstra, W.; Badorrek, C.S.; Nasar, F.; Ward, L.A. Approach to Strain Selection and the Propagation of Viral Stocks for Venezuelan Equine Encephalitis Virus Vaccine Efficacy Testing under the Animal Rule. Viruses 2019, 11, 807. https://doi.org/10.3390/v11090807
Rusnak JM, Glass PJ, Weaver SC, Sabourin CL, Glenn AM, Klimstra W, Badorrek CS, Nasar F, Ward LA. Approach to Strain Selection and the Propagation of Viral Stocks for Venezuelan Equine Encephalitis Virus Vaccine Efficacy Testing under the Animal Rule. Viruses. 2019; 11(9):807. https://doi.org/10.3390/v11090807
Chicago/Turabian StyleRusnak, Janice M., Pamela J. Glass, Scott C. Weaver, Carol L. Sabourin, Andrew M. Glenn, William Klimstra, Christopher S. Badorrek, Farooq Nasar, and Lucy A. Ward. 2019. "Approach to Strain Selection and the Propagation of Viral Stocks for Venezuelan Equine Encephalitis Virus Vaccine Efficacy Testing under the Animal Rule" Viruses 11, no. 9: 807. https://doi.org/10.3390/v11090807
APA StyleRusnak, J. M., Glass, P. J., Weaver, S. C., Sabourin, C. L., Glenn, A. M., Klimstra, W., Badorrek, C. S., Nasar, F., & Ward, L. A. (2019). Approach to Strain Selection and the Propagation of Viral Stocks for Venezuelan Equine Encephalitis Virus Vaccine Efficacy Testing under the Animal Rule. Viruses, 11(9), 807. https://doi.org/10.3390/v11090807