Increased Coffee Intake Reduces Circulating HBV DNA and HBsAg Levels in HBeAg-Negative Infection: A Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Assessment of Exposure and Clinical Data
2.3. Virological Tests
2.4. Calculation of Ratio
2.5. Statistical Analysis
3. Results
3.1. Factors Influencing HBV DNA
3.2. Factors Influencing HBsAg
3.3. Influence of Coffee Drinking Habit on HBV DNA, HBsAg and ALT
3.4. Family History of HBV Infection, HBV DNA and HBsAg
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mascitelli, L.; Pezzetta, F.; Sullivan, J.L. Putative hepatoprotective effects of coffee. Aliment. Pharmacol. Ther. 2008, 27, 90–91. [Google Scholar] [CrossRef] [PubMed]
- Bravi, F.; Bosetti, C.; Tavani, A.; Gallus, S.; La Vecchia, C. Coffee reduces risk for hepatocellular carcinoma: An updated meta-analysis. Clin. Gastroenterol. Hepatol. 2013, 11, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Setiawan, V.W.; Wilkens, L.R.; Lu, S.C.; Hernandez, B.Y.; Le Marchand, L.; Henderson, B.E. Association of coffee intake with reduced incidence of liver cancer and death from chronic liver disease in the US multiethnic cohort. Gastroenterology 2015, 148, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, C.E.; Everhart, J.E. Coffee and caffeine consumption reduce the risk of elevated serum alanine aminotransferase activity in the United States. Gastroenterology 2005, 128, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.; Lim, S.; Goh, E.; Wong, O.; Marsh, P.; Knight, V.; Sievert, W.; de Courten, B. Coffee intake Is associated with a lower liver stiffness in patients with non-alcoholic fatty liver disease, hepatitis C, and hepatitis B. Nutrients 2017, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Lai, G.Y.; Weinstein, S.J.; Albanes, D.; Taylor, P.R.; McGlynn, K.A.; Virtamo, J.; Sinha, R.; Freedman, N.D. The association of coffee intake with liver cancer incidence and chronic liver disease mortality in male smokers. Br. J. Cancer 2013, 109, 1344–1351. [Google Scholar] [CrossRef] [Green Version]
- Spiller, M.A. The chemical components of coffee. Prog. Clin. Biol. Res. 1984, 158, 91–147. [Google Scholar] [PubMed]
- Muriel, P.; Arauz, J. Coffee and liver diseases. Fitoterapia 2010, 81, 297–305. [Google Scholar] [CrossRef]
- Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharmaceutics 2011, 403, 136–138. [Google Scholar] [CrossRef]
- Shi, H.; Dong, L.; Jiang, J.; Zhao, J.; Zhao, G.; Dang, X.; Lu, X.; Jia, M. Chlorogenic acid reduces liver inflammation and fibrosis through inhibition of toll-like receptor 4 signaling pathway. Toxicology 2013, 303, 107–114. [Google Scholar] [CrossRef]
- Höner Zu Siederdissen, C.; Cornberg, M. The role of HBsAg levels in the current management of chronic HBV infection. Ann. Gastroenterol. 2014, 27, 105–112. [Google Scholar] [PubMed]
- Tverdal, A.; Skurtveit, S. Coffee intake and mortality from liver cirrhosis. Ann. Epidemiol. 2003, 13, 419–423. [Google Scholar] [CrossRef]
- Modi, A.A.; Feld, J.J.; Park, Y.; Kleiner, D.E.; Everhart, J.E.; Liang, T.J.; Hoofnagle, J.H. Increased caffeine consumption is associated with reduced hepatic fibrosis. Hepatology 2010, 51, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Koh, W.P.; Wang, R.; Govindarajan, S.; Yu, M.C.; Yuan, J.M. Coffee consumption and reduced risk of hepatocellular carcinoma: Findings from the Singapore Chinese Health Study. Cancer Causes Control 2011, 22, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.S.; Jeong, S.H.; Lee, S.H.; Hwang, S.H.; Ahn, S.Y.; Lee, J.; Park, Y.S.; Hwang, J.H.; Kim, J.W.; Kim, N.; et al. The effect of coffee consumption on the development of hepatocellular carcinoma in hepatitis B virus endemic area. Liver Int. 2013, 33, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Bamia, C.; Lagiou, P.; Jenab, M.; Trichopoulou, A.; Fedirko, V.; Aleksandrova, K.; Pischon, T.; Overvad, K.; Olsen, A.; Tjønneland, A.; et al. Coffee, tea and decaffeinated coffee in relation to hepatocellular carcinoma in a European population: Multicentre, prospective cohort study. Int. J. Cancer 2015, 136, 1899–1908. [Google Scholar] [CrossRef] [PubMed]
- Kawanaka, M.; Nishino, K.; Nakamura, J.; Oka, T.; Urata, N.; Goto, D.; Suehiro, M.; Kawamoto, H.; Kudo, M.; Yamada, G.; et al. Quantitative levels of hepatitis B virus DNA and surface antigen and the risk of hepatocellular carcinoma in patients with hepatitis B receiving long-term nucleos(t)ide analogue therapy. Liver Cancer 2014, 3, 41–52. [Google Scholar] [CrossRef]
- Praneenararat, S.; Chamroonkul, N.; Sripongpun, P.; Kanngurn, S.; Jarumanokul, R.; Piratvisuth, T. HBV DNA level could predict significant liver fibrosis in HBeAg negative chronic hepatitis B patients with biopsy indication. BMC Gastroenterol. 2014, 14, 218. [Google Scholar] [CrossRef]
- Yuen, M.F.; Ahn, S.H.; Chen, D.S.; Chen, P.J.; Dusheiko, G.M.; Hou, J.L.; Maddrey, W.C.; Mizokami, M.; Seto, W.K.; Zoulim, F.; et al. Chronic hepatitis B virus infection: Disease revisit and management recommendations. J. Clin. Gastroenterol. 2016, 50, 286–294. [Google Scholar] [CrossRef]
- Wang, G.F.; Shi, L.P.; Ren, Y.D.; Liu, Q.F.; Liu, H.F.; Zhang, R.J.; Li, Z.; Zhu, F.H.; He, P.L.; Tang, W.; et al. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral. Res. 2009, 83, 186–190. [Google Scholar] [CrossRef]
- Park, C.H.; Jeong, S.H.; Yim, H.W.; Kim, J.D.; Bae, S.H.; Choi, J.Y.; Yoon, S.K. Family history influences the early onset of hepatocellular carcinoma. World J. Gastroenterol. 2012, 18, 2661–2667. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, Z.; Zhou, L.; Wang, W.; Zhang, M.; Shen, Y.; Zheng, S. Association of family history of HBV with resectability of hepatocellular carcinoma. Hepatogastroenterology 2012, 59, 485–491. [Google Scholar] [CrossRef]
- Taniguchi, H.; Iwasaki, Y.; Moriya, A.; Okada, H. HBsAg levels decrease with age in chronic hepatitis B: A hospital-based longitudinal study. Gastroenterology 2017, 152, S1084–S1085. [Google Scholar] [CrossRef]
- Duarte, G.S.; Farah, A. Effect of simultaneous consumption of milk and coffee on chlorogenic acids’ bioavailability in humans. J. Agric. Food Chem. 2011, 59, 7925–7931. [Google Scholar] [CrossRef] [PubMed]
- Duangjai, A.; Suphrom, N.; Wungrath, J.; Ontawong, A.; Nuengchamnong, N.; Yosboonruang, A. Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts. Integr. Med. Res. 2016, 5, 324–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dybkowska, E.; Sadowska, A.; Rakowska, R.; Dębowska, M.; Świderski, F.; Świąder, K. Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting. Rocz. Panstw. Zakl. Hig. 2017, 68, 347–353. [Google Scholar]
- Inoue, M.; Kurahashi, N.; Iwasaki, M.; Shimazu, T.; Tanaka, Y.; Mizokami, M.; Tsugane, S.; Japan Public Health Center-Based Prospective Study Group. Effect of coffee and green tea consumption on the risk of liver cancer: Cohort analysis by hepatitis virus infection status. Cancer Epidemiol. Biomarkers Prev. 2009, 18, 1746–1753. [Google Scholar] [CrossRef]
Characteristics | Group A1 (N = 69) | Group A2 (N = 45) | OR (95% CI) | P Value |
---|---|---|---|---|
Age | 57.0 (46.5–65.5) | 53.0 (44.5–63.5) | 0.417 | |
Male | 28 | 21 | 1.281 (0.601–2.733) | 0.565 |
Smoker | 3 | 2 | 1.023 (0.164–6.379) | 1.000 |
Family history of HBV infection | 39 | 23 | 0.804 (0.378–1.709) | 0.701 |
Coffee intake (cups/day) | 2 (0–3) | 1 (0–2) | 0.007 | |
Liver function ratio | ||||
Albumin | 1.000 (0.977–1.045) | 1.000 (0.978–1.045) | 0.941 | |
Total bilirubin | 1.000 (0.840–1.268) | 1.000 (0.800–1.143) | 0.156 | |
Conjugated bilirubin | 1.000 (0.817–1.250) | 1.000 (0.750–1.000) | 0.103 | |
ALT | 0.938 (0.783–1.170) | 1.022 (0.882–1.175) | 0.027 | |
AST | 0.958 (0.884–1.051) | 1.000 (0.897–1.123) | 0.116 | |
GGT | 1.000 (0.898–1.137) | 1.000 (0.889–1.142) | 0.997 | |
Alkaline phosphatase | 0.982 (0.887–1.038) | 0.987 (0.902–1.069) | 0.691 | |
Blood cell count ratio | ||||
Platelet | 1.007 (0.922–1.083) | 1.054 (0.976–1.116) | 0.070 | |
Neutrophil | 0.964 (0.797–1.059) | 1.017 (0.841–1.106) | 0.380 | |
Lymphocyte | 0.964 (0.883–1.110) | 1.064 (0.943–1.205) | 0.014 | |
Monocyte | 0.939 (0.788–1.088) | 1.010 (0.852–1.112) | 0.117 | |
Eosinophil | 1.050 (0.846–1.423) | 1.077 (0.883–1.238) | 0.848 | |
Virological profile | ||||
HBsAg level ratio | 0.937 (0.780–1.070) | 0.926 (0.814–1.041) | 0.835 |
Characteristics | Group B1 N = 74 | Group B2 N = 40 | OR (95% CI) | P Value |
---|---|---|---|---|
Age | 55.0 (45.0–63.0) | 60.0 (49.8–66.0) | 0.098 | |
Male | 32 | 17 | 0.970 (0.446–2.111) | 1.000 |
Smoker | 3 | 2 | 1.246 (0.199–7.781) | 1.000 |
Family history of HBV infection | 47 | 15 | 0.345 (0.155–0.764) | 0.010 |
Coffee intake (cups/day) | 2 (0–2) | 1 (0–2) | 0.003 | |
Liver function ratio | ||||
Albumin | 1.000 (0.977–1.045) | 1.000 (0.979–1.044) | 0.741 | |
Total bilirubin | 1.000 (0.833–1.250) | 1.000 (0.794–1.204) | 0.948 | |
Conjugated bilirubin | 1.000 (0.800–1.200) | 1.000 (0.788–1.031) | 0.810 | |
ALT | 1.000 (0.824–1.198) | 0.934 (0.806–1.110) | 0.553 | |
AST | 1.000 (0.876–1.129) | 0.926 (0.868–1.011) | 0.152 | |
GGT | 1.000 (0.910–1.157) | 1.000 (0.850–1.100) | 0.564 | |
Alkaline phosphatase | 0.976 (0.889–1.045) | 0.995 (0.891–1.064) | 0.605 | |
Blood cell count ratio | ||||
Platelet | 1.019 (0.950–1.084) | 1.038 (0.977–1.104) | 0.170 | |
Neutrophil | 0.970 (0.806–1.048) | 1.013 (0.860–1.367) | 0.202 | |
Lymphocyte | 1.020 (0.908–1.166) | 0.985 (0.888–1.158) | 0.776 | |
Monocyte | 0.941 (0.801–1.068) | 1.025 (0.851–1.144) | 0.148 | |
Eosinophil | 1.061 (0.857–1.405) | 1.067 (0.803–1.242) | 0.917 | |
Virological profile | ||||
HBV DNA level ratio | 1.000 (0.455–1.856) | 0.576 (0.301–1.490) | 0.444 |
Characteristics | Multivariate Analysis | ||
---|---|---|---|
S.E. | Adjusted OR (95% CI) | P Value | |
Group A: HBV DNA | |||
Age | 0.017 | 0.991 (0.958–1.025) | 0.583 |
Gender (female as reference) | 0.417 | 1.233 (0.544–2.793) | 0.616 |
Coffee intake (cups/day) | 0.198 | 0.618 (0.420–0.911) | 0.015 |
ALT ratio | 0.627 | 3.805 (1.114–12.995) | 0.033 |
Lymphocyte count ratio | 1.022 | 6.041 (0.815–44.791) | 0.079 |
Group B: HBsAg | |||
Age | 0.019 | 1.035 (0.997–1.074) | 0.069 |
Gender (female as reference) | 0.464 | 0.703 (0.283–1.746) | 0.703 |
Coffee intake (cups/day) | 0.209 | 0.530 (0.352–0.798) | 0.002 |
Family history of HBV infection | 0.459 | 0.348 (0.141–0.856) | 0.021 |
Characteristics | Coffee Intake (Cups per Day) | |||
---|---|---|---|---|
0 (N = 36) | 1 (N = 17) | 2 (N = 42) | ≥3 (N = 19) | |
Age | 56 (47–62) | 55 (43–62) | 56 (47–69) | 60 (49–66) |
Male | 15 | 9 | 19 | 6 |
Smoker | 4 | 0 | 1 | 0 |
Family history of HBV infection | 16 | 11 | 24 | 11 |
Liver function | ||||
Albumin, g/L Baseline, Follow-up | 44 (43–45) 45 (44–47) | 45 (43–46) 45 (42–46) | 44 (41–45) 44 (43–45) | 45 (43–47) 45 (44–46) |
Total bilirubin, µmol/L Baseline, Follow-up | 11.5 (9.0–15.0) 11.0 (9.0–15.0) | 13.0 (11.0–20.0) 13.0 (10.0–19.0) | 12.0 (10.0–15.8) 11.0 (9.0–15.0) | 10.0 (7.5–12.0) 11.0 (9.5–14.5) |
Conjugated bilirubin, µmol/L Baseline, Follow-up | 3.5 (3.0–5.0) 4.0 (3.0–4.3) | 5.0 (3.0–6.0) 5.0 (3.0–5.0) | 4.0 (3.0–4.0) 3.0 (3.0–4.8) | 3.0 (3.0–4.0) 3.0 (3.0–4.5) |
ALT, U/L Baseline, Follow-up | 24.0 (19.0–31.3) 22.0 (16.8–28.3) | 23.0 (19.0–29.0) 21.0 (16.0–22.0) | 23.5 (17.0–31.8) 22.0 (17.3–29.5) | 20.0 (16.5–29.0) 18.0 (16.0–26.0) |
AST, U/L Baseline, Follow-up | 23.0 (20.0–27.5) 22.0 (19.8–25.0) | 22.0 (19.0–26.0) 21.0 (18.0–24.0) | 24.0 (20.0–26.0) 23.0 (20.0–26.8) | 23.0 (21.5–28.0) 23.0 (21.0–26.0) |
GGT, U/L Baseline, Follow-up | 20.0 (14.0–24.0) 17.5 (13.8–26.3) | 20.0 (15.0–38.0) 21.0 (16.0–41.0) | 20.5 (17.0–27.8) 20.0 (15.3–29.8) | 18.0 (13.5–24.5) 17.0 (12.5–24.0) |
Alkaline phosphatase, U/L Baseline, Follow-up | 75.0 (63.3–94.5) 74.0 (62.0–90.5) | 67.0 (58.0–80.0) 69.0 (63.0–79.0) | 76.5 (66.0–92.5) 74.0 (67.0–93.8) | 74.0 (58.5–80.0) 65.0 (56.5–77.0) |
Blood cell count | ||||
Platelet, × 109/L Baseline, Follow-up | 240 (217–267) 245 (218–292) | 258 (219–270) 280 (208–296) | 254 (214–288) 256 (217–313) | 259 (220–284) 256 (219–271) |
Neutrophil, × 109/L Baseline, Follow-up | 3.27 (2.91–4.02) 3.23 (2.37–4.26) | 2.97 (2.22–3.21) 3.19 (2.73–4.75) | 4.03 (3.02–4.79) 3.91 (2.89–4.29) | 3.27 (2.74–4.03) 2.85 (2.47–3.59) |
Lymphocyte, × 109/L Baseline, Follow-up | 1.83 (1.55–2.23) 2.00 (1.68–2.37) | 1.61 (1.45–1.79) 1.56 (1.32–2.15) | 2.18 (1.90–2.63) 2.24 (1.81–2.56) | 1.62 (1.35–2.01) 1.50 (1.33–2.03) |
Monocyte, × 109/L Baseline, Follow-up | 0.44 (0.36–0.57) 0.44 (0.35–0.51) | 0.39 (0.30–0.53) 0.43 (0.30–0.61) | 0.49 (0.39–0.69) 0.45 (0.37–0.56) | 0.44 (0.37–0.54) 0.40 (0.38–0.45) |
Eosinophil, × 109/L Baseline, Follow-up | 0.16 (0.07–0.26) 0.16 (0.11–0.31) | 0.15 (0.08–0.24) 0.18 (0.06–0.21) | 0.15 (0.09–0.22) 0.13 (0.09–0.23) | 0.15 (0.10–0.27) 0.18 (0.11–0.28) |
Virological profile | ||||
HBsAg, IU/mL Baseline, Follow-up | 581.70 (158.20–1,294.25) 622.50 (146.25–1,630.25) | 378.80 (20.44–1,642.00) 375.00 (23.00–1,252.00) | 175.50 (24.84–605.15) 138.00 (15.00–600.25) | 93.75 (3.20–365.80) 83.00 (2.00–320.00) |
HBV DNA, IU/mL Baseline, Follow-up | 781.5 (141.3–4,153.3) 624.0 (118.5–2,723.8) | 540.0 (135.0–2,567.0) 925.0 (119.0–3,109.0) | 622.5 (71.3–4,120.8) 353.0 (88.3–4,121.8) | 937.0 (177.0–5,445.0) 414.0 (34.5–2,846.5) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chook, J.B.; Ngeow, Y.F.; Tee, K.K.; Lee, J.W.T.; Mohamed, R. Increased Coffee Intake Reduces Circulating HBV DNA and HBsAg Levels in HBeAg-Negative Infection: A Cohort Study. Viruses 2019, 11, 808. https://doi.org/10.3390/v11090808
Chook JB, Ngeow YF, Tee KK, Lee JWT, Mohamed R. Increased Coffee Intake Reduces Circulating HBV DNA and HBsAg Levels in HBeAg-Negative Infection: A Cohort Study. Viruses. 2019; 11(9):808. https://doi.org/10.3390/v11090808
Chicago/Turabian StyleChook, Jack Bee, Yun Fong Ngeow, Kok Keng Tee, Jamie Wan Ting Lee, and Rosmawati Mohamed. 2019. "Increased Coffee Intake Reduces Circulating HBV DNA and HBsAg Levels in HBeAg-Negative Infection: A Cohort Study" Viruses 11, no. 9: 808. https://doi.org/10.3390/v11090808
APA StyleChook, J. B., Ngeow, Y. F., Tee, K. K., Lee, J. W. T., & Mohamed, R. (2019). Increased Coffee Intake Reduces Circulating HBV DNA and HBsAg Levels in HBeAg-Negative Infection: A Cohort Study. Viruses, 11(9), 808. https://doi.org/10.3390/v11090808