Mutation of N-glycosylation Sites in Salmonid Alphavirus (SAV) Envelope Proteins Attenuate the Virus in Cell Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computer Analyses of SAV3 E1 and E2 Sequences
2.2. Cell Cultures
2.3. Plasmid Constructs
2.4. Transfection
2.5. Indirect Fluorescent Antibody Technique
2.6. Recovery and Passage of Mutated Clones
2.7. Replication of Viral RNA
2.8. Analysis of Virus Titers
2.9. RNA Isolation and RT-qPCR
3. Results
3.1. Prediction of N-glycosylation Sites in SAV3 E1 and E2
3.2. Recovery of Recombinant Viruses
3.3. Presence of Viral RNA in Culture Medium after Passage in CHH-1 Cells
3.4. Cytopathic Effects
3.5. Quantification of Intracellular Viral RNA from Adherent CHH-1 Cells
3.6. Titer of Infectious Virus Produced by CHH-1 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McLoughlin, M.F.; Graham, D.A. Alphavirus infections in salmonids—A review. J. Fish Dis. 2007, 30, 511–531. [Google Scholar] [CrossRef] [PubMed]
- Skjold, P.; Sommerset, I.; Frost, P.; Villoing, S.J.V.R. Vaccination against pancreas disease in Atlantic salmon, Salmo salar L., reduces shedding of salmonid alphavirus. Vet. Res. 2016, 47, 78. [Google Scholar] [CrossRef] [PubMed]
- Sommerset, I.; Walde, C.S.; Bang Jensen, B.; Bornø, B.; Haukaas, A.; Brun, E.R. Fish. Health Report; Norwegian Veterinary Institute: Oslo, Norway, 2019. [Google Scholar]
- Simard, N.; Horne, M. Salmonid Alphavirus and Uses Thereof. U.S. Patent WO2014041189A1, 4 May 2016. [Google Scholar]
- Villoing, S.; Bearzotti, M.; Chilmonczyk, S.; Castric, J.; Bremont, M. Rainbow trout sleeping disease virus is an atypical alphavirus. J. Virol. 2000, 74, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Hjortaas, M.J.; Skjelstad, H.R.; Taksdal, T.; Olsen, A.B.; Johansen, R.; Bang-Jensen, B.; Ørpetveit, I.; Sindre, H. The first detections of subtype 2–related salmonid alphavirus (sav2) in atlantic salmon, salmo salar l., in Norway. J. Fish Dis. 2013, 36, 71–74. [Google Scholar]
- Poppe, T.; Rimstad, E.; Hyllseth, B. Pancreas disease of atlantic salmon salmo salar l. Post-smolts infected with infectious pancreatic necrosis virus (ipnv). Bull. Eur. Assoc. Fish Pathol. 1989, 9, 83–85. [Google Scholar]
- Graham, D.A.; Fringuelli, E.; Rowley, H.M.; Cockerill, D.; Cox, D.I.; Turnbull, T.; Rodger, H.; Morris, D.; Mc Loughlin, M.F. Geographical distribution of salmonid alphavirus subtypes in marine farmed Atlantic salmon, Salmo salar L., in Scotland and Ireland. J. Fish Dis. 2012, 35, 755–765. [Google Scholar] [CrossRef]
- Brown, R.S.; Wan, J.J.; Kielian, M.J.V. The alphavirus exit pathway: What we know and what we wish we knew. Viruses 2018, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Ou, J.-H.; Rice, C.M.; Dalgarno, L.; Strauss, E.G.; Strauss, J.H. Sequence studies of several alphavirus genomic RNAs in the region containing the start of the subgenomic RNA. Proc. Natl. Acad. Sci. USA 1982, 79, 5235–5239. [Google Scholar] [CrossRef] [Green Version]
- Hikke, M.C.; Braaen, S.; Villoing, S.; Hodneland, K.; Geertsema, C.; Verhagen, L.; Frost, P.; Vlak, J.M.; Rimstad, E.; Pijlman, G.P. Salmonid alphavirus glycoprotein e2 requires low temperature and e1 for virion formation and induction of protective immunity. Vaccine 2014, 32, 6206–6212. [Google Scholar] [CrossRef]
- Jose, J.; Snyder, J.E.; Kuhn, R.J. A structural and functional perspective of alphavirus replication and assembly. Future Microbiol. 2009, 4, 837–856. [Google Scholar] [CrossRef] [Green Version]
- Marshall, R.D. The nature and metabolism of the carbohydrate-peptide linkages of glycoproteins. Biochem. Soc. Symp. 1974, 17–26. [Google Scholar]
- Gavel, Y.; von Heijne, G. Sequence differences between glycosylated and non-glycosylated asn-x-thr/ser acceptor sites: Implications for protein engineering. Protein Eng. 1990, 3, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Mellquist, J.L.; Kasturi, L.; Spitalnik, S.L.; Shakin-Eshleman, S.H. The amino acid following an asn-x-ser/thr sequon is an important determinant of n-linked core glycosylation efficiency. Biochemistry 1998, 37, 6833–6837. [Google Scholar] [CrossRef] [PubMed]
- Rogers, K.M.; Heise, M. Modulation of cellular tropism and innate antiviral response by viral glycans. J. Innate Immun. 2009, 1, 405–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boehme, K.W.; Williams, J.C.; Johnston, R.E.; Heidner, H.W. Linkage of an alphavirus host-range restriction to the carbohydrate-processing phenotypes of the host cell. J. Gen. Virol. 2000, 81, 161–170. [Google Scholar] [CrossRef]
- Hacker, K.; White, L.; De Silva, A.M. N-linked glycans on dengue viruses grown in mammalian and insect cells. J. Gen. Virol. 2009, 90, 2097–2106. [Google Scholar] [CrossRef]
- Nelson, M.A.; Herrero, L.J.; Jeffery, J.A.; Hoehn, M.; Rudd, P.A.; Supramaniam, A.; Kay, B.H.; Ryan, P.A.; Mahalingam, S.J. Role of envelope n-linked glycosylation in ross river virus virulence and transmission. J. Gen. Virol. 2016, 97, 1094–1106. [Google Scholar] [CrossRef]
- Knight, R.L.; Schultz, K.L.; Kent, R.J.; Venkatesan, M.; Griffin, D.E. Role of n-linked glycosylation for sindbis virus infection and replication in vertebrate and invertebrate systems. J. Virol. 2009, 83, 5640–5647. [Google Scholar] [CrossRef] [Green Version]
- Smit, J.M.; Mukhopadhyay, S.; Kuhn, R.J.; Wilschut, J. The role of N-linked glycosylation of sindbis virus glycoproteins e2 and e1 in viral infectivity and membrane fusion activity. In Mutational Analysis of Receptor Interaction and Membrane Fusion Activity of Sindbis Virus; University of Groningen: Groningen, The Netherlands, 2002; p. 107. [Google Scholar]
- Edgar, R.C. Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Stecher, G.; Tamura, K.; Kumar, S.J.M.B. Evolution. Molecular evolutionary genetics analysis (mega) for macos. Mol. Biol. Evol. 2020, 37, 1237–1239. [Google Scholar] [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.; Clamp, M.; Barton, G.J. Jalview version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 1999, 292, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, A.; Kucukural, A.; Zhang, Y. I-tasser: A unified platform for automated protein structure and function prediction. Nat. Protoc. 2010, 5, 725–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y. I-tasser server for protein 3d structure prediction. BMC Bioinform. 2008, 9, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guex, N.; Peitsch, M.C. Swiss-model and the Swiss-PDb Viewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, M.; Villoing, S.; Ottem, K.F.; Rimstad, E.; Nylund, A. Development of infectious cDNA clones of salmonid alphavirus subtype 3. BMC Res. Notes 2010, 3, 241. [Google Scholar] [CrossRef] [Green Version]
- Merour, E.; Lamoureux, A.; Biacchesi, S.; Bremont, M. Fine mapping of a salmonid e2 alphavirus neutralizing epitope. J. Gen. Virol. 2016, 97, 893–900. [Google Scholar] [CrossRef]
- Hodneland, K.; Endresen, C. Sensitive and specific detection of salmonid alphavirus using real-time pcr (taqman). J. Virol. Methods 2006, 131, 184–192. [Google Scholar] [CrossRef]
- Chen, L.; Wang, M.; Zhu, D.; Sun, Z.; Ma, J.; Wang, J.; Kong, L.; Wang, S.; Liu, Z.; Wei, L. Implication for alphavirus host-cell entry and assembly indicated by a 3.5 å resolution cryo-em structure. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, D.L.; Vaney, M.C.; Roussel, A.; Vigouroux, A.; Reilly, B.; Lepault, J.; Kielian, M.; Rey, F.A. Conformational change and protein-protein interactions of the fusion protein of semliki forest virus. Nature 2004, 427, 320–325. [Google Scholar] [CrossRef]
- Hasan, S.S.; Sun, C.; Kim, A.S.; Watanabe, Y.; Chen, C.L.; Klose, T.; Buda, G.; Crispin, M.; Diamond, M.S.; Klimstra, W.B.; et al. Cryo-em structures of eastern equine encephalitis virus reveal mechanisms of virus disassembly and antibody neutralization. Cell Rep. 2018, 25, 3136–3147.e3135. [Google Scholar] [CrossRef] [Green Version]
- Lescar, J.; Roussel, A.; Wien, M.W.; Navaza, J.; Fuller, S.D.; Wengler, G.; Wengler, G.; Rey, F.A. The fusion glycoprotein shell of semliki forest virus: An icosahedral assembly primed for fusogenic activation at endosomal ph. Cell 2001, 105, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Pletnev, S.V.; Zhang, W.; Mukhopadhyay, S.; Fisher, B.R.; Hernandez, R.; Brown, D.T.; Baker, T.S.; Rossmann, M.G.; Kuhn, R.J. Locations of carbohydrate sites on alphavirus glycoproteins show that e1 forms an icosahedral scaffold. Cell 2001, 105, 127–136. [Google Scholar] [CrossRef]
- Roussel, A.; Lescar, J.; Vaney, M.C.; Wengler, G.; Wengler, G.; Rey, F.A. Structure and interactions at the viral surface of the envelope protein e1 of semliki forest virus. Structure 2006, 14, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Xiang, Y.; Akahata, W.; Holdaway, H.; Pal, P.; Zhang, X.; Diamond, M.S.; Nabel, G.J.; Rossmann, M.G. Structural analyses at pseudo atomic resolution of chikungunya virus and antibodies show mechanisms of neutralization. eLife 2013, 2, e00435. [Google Scholar] [CrossRef]
- Voss, J.E.; Vaney, M.C.; Duquerroy, S.; Vonrhein, C.; Girard-Blanc, C.; Crublet, E.; Thompson, A.; Bricogne, G.; Rey, F.A. Glycoprotein organization of chikungunya virus particles revealed by x-ray crystallography. Nature 2010, 468, 709–712. [Google Scholar] [CrossRef]
- Zhang, R.; Hryc, C.F.; Cong, Y.; Liu, X.; Jakana, J.; Gorchakov, R.; Baker, M.L.; Weaver, S.C.; Chiu, W. 4.4 å cryo-em structure of an enveloped alphavirus venezuelan equine encephalitis virus. EMBO J. 2011, 30, 3854–3863. [Google Scholar] [CrossRef] [Green Version]
- Acharya, D.; Paul, A.M.; Anderson, J.F.; Huang, F.; Bai, F. Loss of glycosaminoglycan receptor binding after mosquito cell passage reduces chikungunya virus infectivity. PLoS Negl. Trop. Dis. 2015, 9, e0004139. [Google Scholar] [CrossRef] [Green Version]
- Naim, H.Y.; Koblet, H. Investigation of the role of glycans for the biological activity of semliki forest virus grown in aedes albopictus cells using inhibitors of asparagine-linked oligosaccharides trimming. Arch. Virol. 1988, 102, 73–89. [Google Scholar] [CrossRef]
- Walls, A.C.; Tortorici, M.A.; Frenz, B.; Snijder, J.; Li, W.; Rey, F.A.; DiMaio, F.; Bosch, B.-J.; Veesler, D. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat. Struct. Mol Biol. 2016, 23, 899–905. [Google Scholar] [CrossRef]
- Shabman, R.S.; Morrison, T.E.; Moore, C.; White, L.; Suthar, M.S.; Hueston, L.; Rulli, N.; Lidbury, B.; Ting, J.P.; Mahalingam, S. Differential induction of type i interferon responses in myeloid dendritic cells by mosquito and mammalian-cell-derived alphaviruses. J. Virol. 2007, 81, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Shabman, R.S.; Rogers, K.M.; Heise, M.T. Ross river virus envelope glycans contribute to type i interferon production in myeloid dendritic cells. J. Virol. 2008, 82, 12374–12383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cagno, V.; Tseligka, E.D.; Jones, S.T.; Tapparel, C. Heparan sulfate proteoglycans and viral attachment: True receptors or adaptation bias? Viruses 2019, 11, 596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, N.L.; Fuller, F.J.; Dougherty, W.G.; Olmsted, R.A.; Johnston, R.E. A single nucleotide change in the e2 glycoprotein gene of sindbis virus affects penetration rate in cell culture and virulence in neonatal mice. Proc. Natl. Acad. Sci. USA 1986, 83, 6771–6775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heil, M.L.; Albee, A.; Strauss, J.H.; Kuhn, R.J. An amino acid substitution in the coding region of the e2 glycoprotein adapts ross river virus to utilize heparan sulfate as an attachment moiety. J. Virol. 2001, 75, 6303–6309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimstra, W.B.; Ryman, K.D.; Johnston, R.E. Adaptation of sindbis virus to bhk cells selects for use of heparan sulfate as an attachment receptor. J. Virol. 1998, 72, 7357–7366. [Google Scholar] [CrossRef] [Green Version]
- Karlsen, M.; Andersen, L.; Blindheim, S.H.; Rimstad, E.; Nylund, A. A naturally occurring substitution in the e2 protein of salmonid alphavirus subtype 3 changes viral fitness. Virus Res. 2015, 196, 79–86. [Google Scholar] [CrossRef]
- Doms, R.W.; Lamb, R.A.; Rose, J.K.; Helenius, A. Folding and assembly of viral membrane proteins. Virology 1993, 193, 545–562. [Google Scholar] [CrossRef]
Plasmid Constructs | Mutation(s) |
---|---|
prSAV3 | - |
prSAV3 E135Q | E135N→Q |
prSAV3 E135A | E135N→A |
prSAV E2319Q | E2319N→Q |
prSAV E2319A | E2319N→A |
prSAV3 E135Q E2319Q | E135N→Q/E2319N→Q |
prSAV3 E135A E2319A | E135N→A/E2319N→A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksnes, I.; Markussen, T.; Braaen, S.; Rimstad, E. Mutation of N-glycosylation Sites in Salmonid Alphavirus (SAV) Envelope Proteins Attenuate the Virus in Cell Culture. Viruses 2020, 12, 1071. https://doi.org/10.3390/v12101071
Aksnes I, Markussen T, Braaen S, Rimstad E. Mutation of N-glycosylation Sites in Salmonid Alphavirus (SAV) Envelope Proteins Attenuate the Virus in Cell Culture. Viruses. 2020; 12(10):1071. https://doi.org/10.3390/v12101071
Chicago/Turabian StyleAksnes, Ida, Turhan Markussen, Stine Braaen, and Espen Rimstad. 2020. "Mutation of N-glycosylation Sites in Salmonid Alphavirus (SAV) Envelope Proteins Attenuate the Virus in Cell Culture" Viruses 12, no. 10: 1071. https://doi.org/10.3390/v12101071
APA StyleAksnes, I., Markussen, T., Braaen, S., & Rimstad, E. (2020). Mutation of N-glycosylation Sites in Salmonid Alphavirus (SAV) Envelope Proteins Attenuate the Virus in Cell Culture. Viruses, 12(10), 1071. https://doi.org/10.3390/v12101071