A Highly Conserved Epitope (RNNQIPQDF) of Porcine teschovirus Induced a Group-Specific Antiserum: A Bioinformatics-Predicted Model with Pan-PTV Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Propagation, Purification, and Inactivation of the Porcine Teschoviruses
2.2. Bioinformatics Search for a Conserved Epitope on the Porcine Teschovirus Capsid Protein VP1
2.3. Construction and Expression of GST-Fusion Proteins Containing a Series of Linearly Arranged Epitopes (LAEs)
2.4. Purification of GST-LAE Fusion Proteins
2.5. Mice Immunization and Production of LAE Antisera
2.6. Western Blotting
2.7. Indirect ELISA for the Detection of the PTV VP1-Specific Antibodies in the Anti-LAE Antisera
2.8. Dot Blotting
2.9. Immunofluorescence Assay (IFA)
2.10. Virus Neutralization (VNT) Assay
3. Results
3.1. Identification of the Conserved Epitope on VP1 of PTV
3.2. Construction of the Linearly Arranged Epitopes (LAEs) Expression Cassettes
3.3. Purification and Western Blot Analysis of the GST-LAE Fusion Proteins Containing the Linear Arrangement of Epitope (LAE) Antigens
3.4. Production and Analysis of the Antibody Activities of the Anti-LAE Antisera against the rVP1 Protein
3.5. Evaluation of the Specificity of the Anti-LAE Antiserum against the GH Loop Domain by Dot Blotting, IFA and VNT
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Office International des Epizooties (OIE). Chapter 3.8.9. Teschovirus encephalomyelitis. In OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 8th ed.; OIE: Paris, France, 2018; Available online: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.08.09_TESCHOVIRUS_ENCEPH.pdf (accessed on 23 March 2020).
- Takahashi, M.; Seimiya, Y.M.; Seki, Y.; Yamada, M. A Piglet with Concurrent Polioencephalomyelitis Due to Porcine Teschovirus and Postweaning Multisystemic Wasting Syndrome. J. Vet. Med. Sci. 2008, 70, 497–500. [Google Scholar] [CrossRef] [Green Version]
- Chiu, S.C.; Hu, S.C.; Chang, C.C.; Chang, C.Y.; Huang, C.C.; Pang, V.F.; Wang, F.I. The Role of Porcine Teschovirus in Causing Diseases in Endemically Infected Pigs. Vet. Microbiol. 2012, 161, 88–95. [Google Scholar] [CrossRef]
- Vlasakova, M.; Leskova, V.; Sliz, I.; Jackova, A.; Vilcek, S. The Presence of Six Potentially Pathogenic Viruses in Pigs Suffering from Post-Weaning Multisystemic Wasting Syndrome. BMC Vet. Res. 2014, 10, 221. [Google Scholar] [CrossRef] [Green Version]
- Cano-Gómez, C.; Palero, F.; Buitrago, M.D.; García-Casado, M.A.; Fernández-Pinero, J.; Fernández-Pacheco, P.; Agüero, M.; Gómez-Tejedor, C.; Jiménez-Clavero, M.Á. Analyzing the Genetic Diversity of Teschoviruses in Spanish Pig Populations Using Complete VP1 Sequences. Infect. Genet. Evol. 2011, 11, 2144–2150. [Google Scholar] [CrossRef]
- Zell, R.; Dauber, M.; Krumbholz, A.; Henke, A.; Birch-Hirschfeld, E.; Stelzner, A.; Prager, D.; Wurm, R. Porcine Teschoviruses Comprise at Least Eleven Distinct Serotypes: Molecular and Evolutionary Aspects. J. Virol. 2001, 75, 1620–1631. [Google Scholar] [CrossRef] [Green Version]
- Boros, Á.; Nemes, C.; Pankovics, P.; Kapusinszky, B.; Delwart, E.; Reuter, G. Porcine Teschovirus in Wild Boars in Hungary. Arch. Virol. 2012, 157, 1573–1578. [Google Scholar] [CrossRef] [Green Version]
- Zell, R.; Krumbholz, A.; Henke, A.; Birch-Hirschfeld, E.; Stelzner, A.; Doherty, M.; Hoey, E.; Dauber, M.; Prager, D.; Wurm, R. Detection of Porcine Enteroviruses by nRT–PCR: Differentiation of CPE groups I–III with Specific Primer Sets. J. Virol. Methods 2000, 88, 205–218. [Google Scholar] [CrossRef]
- Usherwood, E.J.; Nash, A.A. Lymphocyte Recognition of Picornaviruses. J. Gen. Virol. 1995, 76, 499–508. [Google Scholar] [CrossRef]
- Balamurugan, V.; Venkatesan, G.; Sen, A.; Annamalai, L.; Bhanuprakash, V.; Singh, R.K. Recombinant Protein-Based Viral Disease Diagnostics in Veterinary Medicine. Expert Rev. Mol. Diagn. 2010, 10, 731–753. [Google Scholar] [CrossRef]
- Kaku, Y.; Murakami, Y.; Sarai, A.; Wang, Y.; Ohashi, S.; Sakamoto, K. Antigenic Properties of Porcine Teschovirus 1 (PTV-1) Talfan Strain and Molecular Strategy for Serotyping of PTVs. Arch. Virol. 2007, 152, 929–940. [Google Scholar] [CrossRef]
- Fowler, V.L.; Knowles, N.J.; Paton, D.J.; Barnett, P.V. Marker Vaccine Potential of a Foot-And-Mouth Disease Virus with a Partial VP1 G-H Loop Deletion. Vaccine 2010, 28, 3428–3434. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.L.; Sieo, C.C.; Tan, W.S. Display of the VP1 Epitope of Foot-And-Mouth Disease Virus on Bacteriophage T7 and Its Application in Diagnosis. J. Virol. Methods 2013, 193, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.J.; Jeoung, H.Y.; Lee, H.S.; Chang, B.S.; Hong, S.M.; Heo, E.J.; Lee, K.N.; Joo, H.D.; Kim, S.M.; Park, J.H.; et al. A Recombinant Protein-Based ELISA for Detecting Antibodies to Foot-And-Mouth Disease Virus Serotype Asia 1. J. Virol. Methods 2009, 159, 112–118. [Google Scholar] [CrossRef]
- Lin, G.Z.; Zheng, F.Y.; Zhou, J.Z.; Cao, X.A.; Gong, X.W.; Wang, G.H.; Qiu, C.Q. An Indirect ELISA of Classical Swine Fever Virus Based on Quadruple Antigenic Epitope Peptide Expressed in E.coli. Virol. Sin. 2010, 25, 71–76. [Google Scholar] [CrossRef]
- Pyo, H.; Seo, J.; Suh, G.; Kim, K.; Lee, J.; Kim, T. Serodiagnosis of Porcine Reproductive and Respiratory Syndrome Virus Infection with the Use of Glycoprotein 5 Antigens. Can. J. Vet. Res. 2010, 74, 223–227. [Google Scholar]
- Larsen, J.E.P.; Lund, O.; Nielsen, M. Improved Method for Predicting Linear B-Cell Epitopes. Immunome Res. 2006, 2, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vita, R.; Zarebski, L.; Greenbaum, J.A.; Emami, H.; Hoof, I.; Salimi, N.; Damle, R.; Sette, A.; Peters, B. The Immune Epitope Database. The Immune Epitope Database 2.0. Nucleic Acids Res. 2010, 38, D854–D862. [Google Scholar] [CrossRef]
- Sharmin, R.; Islam, A.B.M.M.K. A Highly Conserved WDYPKCDRA Epitope in the RNA Directed RNA Polymerase of Human Coronaviruses Can Be Used as Epitope-Based Universal Vaccine Design. BMC Bioinform. 2014, 15, 161. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.T.; Ting, C.Y.; Ting, C.J.; Chen, T.Y.; Lin, C.P.; Whang-Peng, J.; Hwang, J. Vaccination Against Gonadotropin-Releasing Hormone (GnRH) Using Toxin Receptor-Binding Domain-Conjugated GnRH Repeats. Cancer Res. 2000, 60, 3701–3705. [Google Scholar]
- Lai, P.Y.; Hsu, C.T.; Wang, S.H.; Lee, J.C.; Tseng, M.J.; Hwang, J.; Ji, W.T.; Chen, H.R. Production of a Neutralizing Antibody Against Envelope Protein of Dengue Virus type 2 Using the Linear Array Epitope Technique. J. Gen. Virol. 2014, 95, 2155–2165. [Google Scholar] [CrossRef] [Green Version]
- Alexander, J.; del Guercio, M.F.; Maewal, A.; Qiao, L.; Fikes, J.; Chesnut, R.W.; Paulson, J.; Bundle, D.R.; DeFrees, S.; Sette, A. Linear PADRE T Helper Epitope and Carbohydrate B Cell Epitope Conjugates Induce Specific High Titer IgG Antibody Responses. J. Immunol. 2000, 164, 1625–1633. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Healy, F.; Valmori, D.; Escobar, P.; Corradin, G.; Mach, J.P. Peptide-Antibody Conjugates for Tumour Therapy: A MHC-Class-II-Restricted Tetanus Toxin Peptide Coupled to an Anti-IG Light Chain Antibody Can Induce Cytotoxic Lysis of a Human B-Cell Lymphoma by Specific CD4 T Cells. Int. J. Cancer 1994, 56, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Fontes, L.V.Q.; Campos, G.S.; Beck, P.A.; Brandão, C.F.L.; Sardi, S.I. Precipitation of Bovine Rotavirus by Polyethylene Glycol (PEG) and Its Application to Produce Polyclonal and Monoclonal Antibodies. J. Virol. Methods 2005, 123, 147–153. [Google Scholar] [CrossRef]
- Aarthi, D.; Ananda Rao, K.; Robinson, R.; Srinivasan, V.A. Validation of Binary Ethyleneimine (BEI) Used as an Inactivant for Foot and Mouth Disease Tissue Culture Vaccine. Biologicals 2004, 32, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, Scalable Generation of High-Quality Protein Multiple Sequence Alignments Using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Emini, E.A.; Hughes, J.V.; Perlow, D.S.; Boger, J. Induction of Hepatitis A Virus-Neutralizing Antibody by a Virus-Specific Synthetic Peptide. J. Virol. 1985, 55, 836–839. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.M.R.; Guo, D.; Hodges, R.S. New Hydrophilicity Scale Derived from High-Performance Liquid Chromatography Peptide Retention Data: Correlation of Predicted Surface Residues with Antigenicity and X-ray-Derived Accessible Sites. Biochemistry 1986, 25, 5425–5432. [Google Scholar] [CrossRef]
- Sali, A.; Potterton, L.; Yuan, F.; van Vlijmen, H.; Karplus, M. Evaluation of Comparative Protein Modeling by MODELLER. Proteins 1995, 23, 318–326. [Google Scholar] [CrossRef]
- Retamal, C.A.; Thiebaut, P.; Alves, E.W. Protein Purification from Polyacrylamide Gels by Sonication Extraction. Anal. Biochem. 1999, 268, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Zhou, G.; Liu, W.; Yang, B.; Li, C.; Wang, H.; Yang, D.; Ma, W.; Yu, L. Identification of a Conserved Linear Neutralizing Epitope Recognized by Monoclonal Antibody 9A9 Against Serotype A Foot-And-Mouth Disease Virus. Arch. Virol. 2016, 161, 2705–2716. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Xu, Y.; Ni, H.; Zhong, J.; Zhang, X.; Tan, S.; Wu, D.; Qiu, B.; Guan, D.; Wen, M.; et al. Linear B-Cell Epitope Mapping of Neuraminidases of the 2009 A H1N1 Viruses Based on Immunoinformatics. Vaccine 2011, 29, 1278–1282. [Google Scholar] [CrossRef] [PubMed]
- Dauber, M. Identification of Group I Porcine Enteroviruses by Monoclonal Antibodies in Cell Culture. Vet. Microbiol. 1999, 67, 1–12. [Google Scholar] [CrossRef]
- Rossmann, M.G. The Canyon Hypothesis. Hiding the Host Cell Receptor Attachment Site on a Viral Surface from Immune Surveillance. J. Biol. Chem. 1989, 264, 14587–14590. [Google Scholar] [PubMed]
- De Groot, A.S.; Bosma, A.; Chinai, N.; Frost, J.; Jesdale, B.M.; Gonzalez, M.A.; Martin, W.; Saint-Aubin, C. From Genome to Vaccine: In Silico Predictions, Ex Vivo Verification. Vaccine 2001, 19, 4385–4395. [Google Scholar] [CrossRef]
- Haste Andersen, P.; Nielsen, M.; Lund, O. Prediction of Residues in Discontinuous B-Cell Epitopes Using Protein 3D Structures. Protein Sci. 2006, 15, 2558–2567. [Google Scholar] [CrossRef]
- Rodriguez, L.L.; Barrera, J.; Kramer, E.; Lubroth, J.; Brown, F.; Golde, W.T. A Synthetic Peptide Containing the Consensus Sequence of the G–H Loop Region of Foot-And-Mouth Disease Virus type-O VP1 and a Promiscuous T-Helper Epitope Induces Peptide-Specific Antibodies but Fails to Protect Cattle Against Viral Challenge. Vaccine 2003, 21, 3751–3756. [Google Scholar] [CrossRef]
- Gottesman, S. Proteases and Their Targets in Escherichia coli. Annu. Rev. Genet. 1996, 30, 465–506. [Google Scholar] [CrossRef]
- Briand, J.P.; Barin, C.; Van Regenmortel, M.H.V.; Muller, S. Application and Limitations of the Multiple Antigen Peptide (MAP) System in the Production and Evaluation of Anti-Peptide and Anti-Protein Antibodies. J. Immunol. Methods 1992, 156, 255–265. [Google Scholar] [CrossRef]
- del Guercio, M.F.; Alexander, J.; Kubo, R.T.; Arrhenius, T.; Maewal, A.; Appella, E.; Hoffman, S.L.; Jones, T.; Valmori, D.; Sakaguchi, K.; et al. Potent Immunogenic Short Linear Peptide Constructs Composed of B Cell Epitopes and Pan DR T Helper Epitopes (PADRE) for Antibody Responses In Vivo. Vaccine 1997, 15, 441–448. [Google Scholar] [CrossRef]
- Parret, A.H.; Besir, H.; Meijers, R. Critical Reflections on Synthetic Gene Design for Recombinant Protein Expression. Curr. Opin. Struct. Biol. 2016, 38, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Virus | Serotype | Strain | Former Designation | Source |
Teschovirus | PTV-1 | PS34 | PEV 1-1 | ATCC 2 |
Teschovirus | PTV-1 | 03B | PEV-2 | NVSL 3 |
Teschovirus | PTV-1 | PS14 | PEV-3 | NVSL |
Teschovirus | PTV-1 | PS36 | PEV-4 | NVSL |
Teschovirus | PTV-1 | F-12 | PEV-5 | NVSL |
Teschovirus | PTV-1 | PS37 | PEV-6 | NVSL |
Teschovirus | PTV-1 | WR2 | PEV-7 | NVSL |
Sapelovirus | PSV-1 | PS27 | PEV-8 | NVSL |
Sapelovirus | PSV-1 | PS32 | PEV-8a | NVSL |
Sapelovirus | PSV-1 | ECPOI | PEV-8b | NVSL |
Sapelovirus | PSV-1 | PS30 | PEV-8c | NVSL |
Cardiovirus | EMCV-1 | EMCV-1 | EMCV 4 | NVSL |
Template Repeat PCR | ||
---|---|---|
Oligonucleotide A | A1 | A2 |
= (A1 + A2) | 5’-AGGAATAACCAGA | TACCGCAAGACTTC-3’ |
Oligonucleotide B | B2 | B1 |
= (B2 + B1) | 3’-ATGGCGTTCTGAAG | TCCTTATTGGTCT-5’ |
TR-PCR 2 | The oligonucleotide 1 A sequence (oligo A) encodes the target antigen (RNNQIPQDF) and the oligonucleotide B (oligo B) sequence is complementary to that of oligo A in the manner indicated above. Thus, the 5’ half of oligo A (A1) is complementary to the 5’ half of oligo B (B1), and the 3’ half of oligo A (A2) is complementary to the 3’ half of oligo B (B2). In TR-PCR, oligo A and oligo B were used as both primers and templates to generate multimers of tandem repeat epitopes. The cycling protocol comprised of 30 cycles of denaturation at 94 °C for 30 s, annealing at 37 °C for 30 s, and polymerization at 72 °C for 30 s, followed by a final polymerization step at 72 °C for 10 min. The product of the first round of TR-PCR is presented in lanes 1–2 of Figure 2, and that of the second round of TR-PCR is presented in lanes 3–4 of Figure 2. | |
Anticipated genome arrangement after Adapter PCR | ||
Adapter PCR | ||
Adapter primer A: 5’-GGTaagctt HindIII ATGGCCAAGTTCGTGGCCGCCTGGACACTGAAGAGGAATAACCAGATACCG-3’ Adapter primer B: 3’-TGAAGTCCTTATTGGTCTGTTATGTAGTTCCGGTTGTCGTTCAAGTAGCCTTATTGTCTCGAGATT XhoI gagctcCGG-5 The adapter primer A sequence contains the HindIII restriction site, the PADRE encoded sequence, and a part of oligo A to overlap with oligo B in PCR. The adapter primer B sequence contains part of oligo B to overlap with oligo A in PCR, the Toxin B encoded sequence and an XhoI restriction site. The underlined small letters indicate the HindIII and XhoI restriction sites. The underline capitalized letters indicate coding sequences of either the PADRE or Toxin B encoding sequences. The rest of the sequences are sequences of “oligo A1 and part of A2” to overlap with the sequence of “oligo B2 and part of B1” to adapt the PADRE and Toxin B sequences, as well as the restriction sites. The 100-fold diluted amplicon from the second round of TR-PCR (lanes 3–4, Figure 2) was subjected to adapter PCR with the adapter primers A and B. The amplification protocol was identical to that for TR-PCR, except that the polymerization step was performed for 1 min. The products of adapter PCR (lanes 5–6, Figure 2), which contained a HindIII site at the 5’ end, an XhoI site at the 3’ end, and a stop codon at the end of the coding region, were then subcloned into a pGEM-T easy vector. |
Serotype | Strain | Alignment | End Sequence Number |
---|---|---|---|
PTV-1 | PS34 | LPAMYSGFETSSKIPKRNNQIPQDFGFGMLVLRSSFTA--GLAISV | 896 |
PTV-2 | T-80 | LPTAYSGFETTFSIPKRNNQIPQDFGFGMLILRPSMPPTRKLVISA | 899 1 |
PTV-3 | 02b | LPTAYSGFETSYRIPKRNNQIPQDFGFGMLVLRSSSTL--GLAASV | 897 |
PTV-4 | PS36 | LPTAYSGIESTSLIPKRNNQIPQDFGFGLLILRSSMPSPHELVASV | 898 |
PTV-5 | F26 | LPTAYSGFESSSLIPKRNNQIPQDFGFGMLVLRSSSPT--ELVLSV | 897 |
PTV-6 | PS37 | LPTAYSGFESSFFVPKRNNQIPQDFGFGLLVLRPSMPPTHKLVISV | 899 |
PTV-7 | F43 | LPTAYSGFESTFSIPRRNNQIPQDFGFGMLVLRPSLPT--ELIISV | 898 |
PTV-8 | UKG/173/74 | LPTFYSGIESTSLIPRRNNQIPQDFGFGMLVLRPSLSPANKIVVSV | 899 |
PTV-9 | Vir-2899/84 | LPTAYSGFETSFSVPKRNNQIPQDFGFGMLVLRSSLQT--ELAMSV | 895 |
PTV-10 | Vir-461/88 | LPVSYSGFETSYQVPKRSNQIPQDFGFGMLVLRSSSTT--KLTFSL | 896 |
PTV-11 | Dresden | LPTMYSGFESSSKIPKRNNQIPQDFGFGMLVLRSSSTL--GLTASV | 897 |
PTV-12 | CC25 | LPTAYAGIESSSLIPKRNNQIPQDFGFGLLVLRSSMPPAHNLVVSV | 899 |
PTV-13 | JCAR2013SPN | LPTAYSGFETSNLIPKRNNQIPQDFGHGLLILRSSLRMDLVVSLWV | 901 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, T.-H.; Chang, C.-Y.; Wang, F.-I. A Highly Conserved Epitope (RNNQIPQDF) of Porcine teschovirus Induced a Group-Specific Antiserum: A Bioinformatics-Predicted Model with Pan-PTV Potential. Viruses 2020, 12, 1225. https://doi.org/10.3390/v12111225
Tsai T-H, Chang C-Y, Wang F-I. A Highly Conserved Epitope (RNNQIPQDF) of Porcine teschovirus Induced a Group-Specific Antiserum: A Bioinformatics-Predicted Model with Pan-PTV Potential. Viruses. 2020; 12(11):1225. https://doi.org/10.3390/v12111225
Chicago/Turabian StyleTsai, Tung-Hsuan, Chia-Yi Chang, and Fun-In Wang. 2020. "A Highly Conserved Epitope (RNNQIPQDF) of Porcine teschovirus Induced a Group-Specific Antiserum: A Bioinformatics-Predicted Model with Pan-PTV Potential" Viruses 12, no. 11: 1225. https://doi.org/10.3390/v12111225
APA StyleTsai, T. -H., Chang, C. -Y., & Wang, F. -I. (2020). A Highly Conserved Epitope (RNNQIPQDF) of Porcine teschovirus Induced a Group-Specific Antiserum: A Bioinformatics-Predicted Model with Pan-PTV Potential. Viruses, 12(11), 1225. https://doi.org/10.3390/v12111225