Plant-Based Vaccines: The Way Ahead?
Abstract
:1. Introduction
2. Plant Biopharming
2.1. Development of Biologics Production Systems in Plants
2.2. Viral Expression Vectors in Plants
3. Systems for Vaccine Manufacture
Plant Systems for Viral Outbreak Response
4. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Quianzon, C.C.; Cheikh, I. History of insulin. J. Community Hosp. Intern. Med. Perspect. 2012, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chance, R.E.; Frank, B.H. Research, development, production, and safety of biosynthetic human insulin. Diabetes Care 1993, 16 (Suppl. 3), 133–142. [Google Scholar] [CrossRef]
- Papini, M.; Salazar, M.; Nielsen, J. Systems Biology of Industrial Microorganisms. In Biosystems Engineering I: Creating Superior Biocatalysts; Wittmann, C., Krull, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 51–99. [Google Scholar]
- Jayapal, K.P.; Wlaschin, K.F.; Hu, W.; Yap, M. Recombinant protein therapeutics from CHO cells: 20 years and counting. Chem. Eng. Prog. 2007, 103, 40–47. [Google Scholar]
- Walsh, G. Biopharmaceutical benchmarks 2018. Nat. Biotechnol. 2018, 36, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, D.; Damjanovic, L.; Kaisermayer, C.; Kunert, R. Benchmarking of commercially available CHO cell culture media for antibody production. Appl. Microbiol. Biotechnol. 2015, 99, 4645–4657. [Google Scholar] [CrossRef] [Green Version]
- Thermo Fischer Scientific. ExpiCHO Expression System. Available online: https://www.thermofisher.com/au/en/home/life-science/protein-biology/protein-expression/mammalian-protein-expression/transient-mammalian-protein-expression/expicho-expression-system.html (accessed on 4 October 2020).
- Fischer, R.; Buyel, J.F. Molecular farming—The slope of enlightenment. Biotechnol. Adv. 2020, 40, 107519. [Google Scholar] [CrossRef]
- Legastelois, I.; Buffin, S.; Peubez, I.; Mignon, C.; Sodoyer, R.; Werle, B. Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Hum Vaccines Immunother. 2017, 13, 947–961. [Google Scholar] [CrossRef] [Green Version]
- Shanmugaraj, B.; Malla, A.; Phoolcharoen, W. Emergence of Novel Coronavirus 2019-nCoV: Need for Rapid Vaccine and Biologics Development. Pathogens 2020, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Lai, T.; Yang, Y.; Ng, S.K. Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals 2013, 6, 579–603. [Google Scholar] [CrossRef] [Green Version]
- Barta, A.; Sommergruber, K.; Thompson, D.; Hartmuth, K.; Matzke, M.A.; Matzke, A.J.M. The expression of a nopaline synthase—Human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Mol. Biol. 1986, 6, 347–357. [Google Scholar] [CrossRef]
- Miguel, S.; Nisse, E.; Biteau, F.; Rottloff, S.; Mignard, B.; Gontier, E.; Hehn, A.; Bourgaud, F. Assessing Carnivorous Plants for the Production of Recombinant Proteins. Front. Plant Sci. 2019, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-R.; Sim, J.-S.; Ajjappala, H.; Kim, Y.-H.; Hahn, B.-S. Expression and large-scale production of the biochemically active human tissue-plasminogen activator in hairy roots of Oriental melon (Cucumis melo). J. Biosci. Bioeng. 2012, 113, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Hood, E.E. From green plants to industrial enzymes. Enzym. Microb. Technol. 2002, 30, 279–283. [Google Scholar] [CrossRef]
- Buntru, M.; Vogel, S.; Spiegel, H.; Schillberg, S. Tobacco BY-2 cell-free lysate: An alternative and highly-productive plant-based in vitro translation system. BMC Biotechnol. 2014, 14, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimran, A.; Brill-Almon, E.; Chertkoff, R.; Petakov, M.; Blanco-Favela, F.; Muñoz, E.T.; Solorio-Meza, S.E.; Amato, D.; Duran, G.; Giona, F.; et al. Pivotal trial with plant cell-expressed recombinant glucocerebrosidase, taliglucerase alfa, a novel enzyme replacement therapy for Gaucher disease. Blood 2011, 118, 5767–5773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Protalix Biotherapeutics. Procellex Platform. Available online: http://protalix.com/technology/procellex-platform/ (accessed on 4 October 2020).
- Goodin, M.M.; Zaitlin, D.; Naidu, R.A.; Lommel, S.A. Nicotiana benthamiana: Its history and future as a model for plant-pathogen interactions. Mol. Plant Microbe Interact. 2008, 21, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Bally, J.; Nakasugi, K.; Jia, F.; Jung, H.; Ho, S.Y.; Wong, M.; Paul, C.M.; Naim, F.; Wood, C.C.; Crowhurst, R.N.; et al. The extremophile Nicotiana benthamiana has traded viral defence for early vigour. Nat. Plants 2015, 1, 15165. [Google Scholar] [CrossRef]
- Jansing, J.; Sack, M.; Augustine, S.M.; Fischer, R.; Bortesi, L. CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1,2-xylose and core α-1,3-fucose. Plant Biotechnol. J. 2019, 17, 350–361. [Google Scholar] [CrossRef] [Green Version]
- Kallolimath, S.; Castilho, A.; Strasser, R.; Grünwald-Gruber, C.; Altmann, F.; Strubl, S.; Galuska, C.E.; Zlatina, K.; Galuska, S.P.; Werner, S.; et al. Engineering of complex protein sialylation in plants. Proc. Natl. Acad. Sci. USA 2016, 113, 9498–9503. [Google Scholar] [CrossRef] [Green Version]
- Castilho, A.; Neumann, L.; Daskalova, S.; Mason, H.S.; Steinkellner, H.; Altmann, F.; Strasser, R. Engineering of sialylated mucin-type O-glycosylation in plants. J. Biol. Chem. 2012, 287, 36518–36526. [Google Scholar] [CrossRef] [Green Version]
- Sainsbury, F. Innovation in plant-based transient protein expression for infectious disease prevention and preparedness. Curr. Opin. Biotechnol. 2020, 61, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Dawson, W.O. A personal history of virus-based vector construction. Curr. Top. Microbiol. Immunol. 2014, 375, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Odell, J.T.; Nagy, F.; Chua, N.-H. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 1985, 313, 810–812. [Google Scholar] [CrossRef] [PubMed]
- Naim, F.; Nakasugi, K.; Crowhurst, R.N.; Hilario, E.; Zwart, A.B.; Hellens, R.P.; Taylor, J.M.; Waterhouse, P.M.; Wood, C.C. Advanced Engineering of Lipid Metabolism in Nicotiana benthamiana Using a Draft Genome and the V2 Viral Silencing-Suppressor Protein. PLoS ONE 2012, 7, e52717. [Google Scholar] [CrossRef] [PubMed]
- Csorba, T.; Kontra, L.; Burgyán, J. Viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 2015, 479–480, 85–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voinnet, O.; Rivas, S.; Mestre, P.; Baulcombe, D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 2003, 33, 949–956. [Google Scholar] [CrossRef] [Green Version]
- Gronenborn, B.; Gardner, R.C.; Schaefer, S.; Shepherd, R.J. Propagation of foreign DNA in plants using cauliflower mosaic virus as vector. Nature 1981, 294, 773–776. [Google Scholar] [CrossRef]
- Gleba, Y.; Klimyuk, V.; Marillonnet, S. Viral vectors for the expression of proteins in plants. Curr. Opin. Biotechnol. 2007, 18, 134–141. [Google Scholar] [CrossRef]
- Dawson, W.O.; Lewandowski, D.J.; Hilf, M.E.; Bubrick, P.; Raffo, A.J.; Shaw, J.J.; Grantham, G.L.; Desjardins, P.R. A tobacco mosaic virus-hybrid expresses and loses an added gene. Virology 1989, 172, 285–292. [Google Scholar] [CrossRef]
- Marillonnet, S.; Thoeringer, C.; Kandzia, R.; Klimyuk, V.; Gleba, Y. Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat. Biotechnol. 2005, 23, 718–723. [Google Scholar] [CrossRef]
- Lindbo, J.A. TRBO: A high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol. 2007, 145, 1232–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giritch, A.; Marillonnet, S.; Engler, C.; van Eldik, G.; Botterman, J.; Klimyuk, V.; Gleba, Y. Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc. Natl. Acad. Sci. USA 2006, 103, 14701–14706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouton, C.; King, R.C.; Chen, H.; Azhakanandam, K.; Bieri, S.; Hammond-Kosack, K.E.; Kanyuka, K. Foxtail mosaic virus: A Viral Vector for Protein Expression in Cereals. Plant Physiol. 2018, 177, 1352–1367. [Google Scholar] [CrossRef] [Green Version]
- Lico, C.; Chen, Q.; Santi, L. Viral vectors for production of recombinant proteins in plants. J. Cell. Physiol. 2008, 216, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Yusibov, V.; Modelska, A.; Steplewski, K.; Agadjanyan, M.; Weiner, D.; Hooper, D.C.; Koprowski, H. Antigens produced in plants by infection with chimeric plant viruses immunize against rabies virus and HIV-1. Proc. Natl. Acad. Sci. USA 1997, 94, 5784–5788. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.; Odon, V.; Kormelink, R. Plant Viruses in Plant Molecular Pharming: Toward the Use of Enveloped Viruses. Front. Plant Sci. 2019, 10, 803. [Google Scholar] [CrossRef]
- Hefferon, K. Plant Virus Expression Vectors: A Powerhouse for Global Health. Biomedicines 2017, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.Y.; Lee, H.H.; Kim, K.I.; Chung, H.Y.; Hwang-Bo, J.; Park, J.H.; Sunter, G.; Kim, J.B.; Shon, D.H.; Kim, W.; et al. Expression of a recombinant chimeric protein of hepatitis A virus VP1-Fc using a replicating vector based on Beet curly top virus in tobacco leaves and its immunogenicity in mice. Plant Cell Rep. 2011, 30, 1513–1521. [Google Scholar] [CrossRef]
- Hefferon, K.L. DNA Virus Vectors for Vaccine Production in Plants: Spotlight on Geminiviruses. Vaccines 2014, 2, 642–653. [Google Scholar] [CrossRef]
- French, R.; Janda, M.; Ahlquist, P. Bacterial gene inserted in an engineered RNA virus: Efficient expression in monocotyledonous plant cells. Science 1986, 231, 1294–1297. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, C.; Liu, J.Y.; Guo, Z.H.; Zhang, Z.Y.; Han, C.G.; Wang, Y. Development of Beet necrotic yellow vein virus-based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. Plant Biotechnol. J. 2019, 17, 1302–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Bradshaw, J.D.; Whitham, S.A.; Hill, J.H. The development of an efficient multipurpose bean pod mottle virus viral vector set for foreign gene expression and RNA silencing. Plant Physiol. 2010, 153, 52–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellado-Sánchez, M.; McDiarmid, F.; Cardoso, V.; Kanyuka, K.; MacGregor, D.R. Virus-Mediated Transient Expression Techniques Enable Gene Function Studies in Black-Grass. Plant Physiol. 2020, 183, 455–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortimer, C.; Dugdale, B.; Waterhouse, P. Development of an autonomously replicating viral expression system tailored for Catharanthus roseus. Plant Biotechnol. J. 2020, 18, 1115–1117. [Google Scholar] [CrossRef] [Green Version]
- Ooi, A.; Tan, S.; Mohamed, R.; Rahman, N.A.; Othman, R.Y. The full-length clone of cucumber green mottle mosaic virus and its application as an expression system for Hepatitis B surface antigen. J. Biotechnol. 2006, 121, 471–481. [Google Scholar] [CrossRef]
- Tavares-Esashika, M.L.; Campos, R.N.S.; Blawid, R.; da Luz, L.L.; Inoue-Nagata, A.K.; Nagata, T. Characterization of an infectious clone of pepper ringspot virus and its use as a viral vector. Arch. Virol. 2020, 165, 367–375. [Google Scholar] [CrossRef]
- Nagyová, A.; Subr, Z. Infectious full-length clones of plant viruses and their use for construction of viral vectors. Acta Virol. 2007, 51, 223–237. [Google Scholar]
- Dolja, V.V.; McBride, H.J.; Carrington, J.C. Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proc. Natl. Acad. Sci. USA 1992, 89, 10208–10212. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Kearney, C.M. A tobamovirus expression vector for agroinfection of legumes and Nicotiana. J. Biotechnol. 2010, 147, 151–159. [Google Scholar] [CrossRef]
- Yang, N.; Peng, C.; Cheng, D.; Huang, Q.; Xu, G.; Gao, F.; Chen, L. The over-expression of calmodulin from Antarctic notothenioid fish increases cold tolerance in tobacco. Gene 2013, 521, 32–37. [Google Scholar] [CrossRef]
- Peyret, H.; Lomonossoff, G.P. When plant virology met Agrobacterium: The rise of the deconstructed clones. Plant Biotechnol. J. 2015, 13, 1121–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matzeit, V.; Schaefer, S.; Kammann, M.; Schalk, H.J.; Schell, J.; Gronenborn, B. Wheat dwarf virus vectors replicate and express foreign genes in cells of monocotyledonous plants. Plant Cell 1991, 3, 247–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arazi, T.; Lee Huang, P.; Huang, P.L.; Zhang, L.; Moshe Shiboleth, Y.; Gal-On, A.; Lee-Huang, S. Production of antiviral and antitumor proteins MAP30 and GAP31 in cucurbits using the plant virus vector ZYMV-AGII. Biochem. Biophys. Res. Commun. 2002, 292, 441–448. [Google Scholar] [CrossRef] [PubMed]
- WHO Ebola Response Team. After Ebola in West Africa—Unpredictable Risks, Preventable Epidemics. N. Engl. J. Med. 2016, 375, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Fineberg, H.V. Pandemic preparedness and response—Lessons from the H1N1 influenza of 2009. N. Engl. J. Med. 2014, 370, 1335–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaisdell, L.L.; Cohn, W.; Pavell, J.R.; Rubin, D.S.; Vergales, J.E. Preventing and Mitigating SARS-CoV-2 Transmission—Four Overnight Camps, Maine, June–August 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69. [Google Scholar] [CrossRef] [PubMed]
- Jernigan, D.B. Update: Public Health Response to the Coronavirus Disease 2019 Outbreak—United States. MMWR Morb. Mortal. Wkly. Rep. 2020, 69. [Google Scholar] [CrossRef]
- Choi, W.; Shim, E. Optimal strategies for vaccination and social distancing in a game-theoretic epidemiologic model. J. Theor. Biol. 2020, 505, 110422. [Google Scholar] [CrossRef]
- Ping, J.; Lopes, T.J.S.; Nidom, C.A.; Ghedin, E.; Macken, C.A.; Fitch, A.; Imai, M.; Maher, E.A.; Neumann, G.; Kawaoka, Y. Development of high-yield influenza A virus vaccine viruses. Nat. Commun. 2015, 6, 8148. [Google Scholar] [CrossRef]
- Hendrickson, J.R. The Coronavirus and Lessons for Preparedness. Spec. Ed. Policy Brief. 2020, 2020. [Google Scholar] [CrossRef]
- Minor, P.D.; Engelhardt, O.G.; Wood, J.M.; Robertson, J.S.; Blayer, S.; Colegate, T.; Fabry, L.; Heldens, J.G.M.; Kino, Y.; Kistner, O.; et al. Current challenges in implementing cell-derived influenza vaccines: Implications for production and regulation, July 2007, NIBSC, Potters Bar, UK. Vaccine 2009, 27, 2907–2913. [Google Scholar] [CrossRef] [PubMed]
- Manini, I.; Trombetta, C.M.; Lazzeri, G.; Pozzi, T.; Rossi, S.; Montomoli, E. Egg-Independent Influenza Vaccines and Vaccine Candidates. Vaccines 2017, 5, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barr, I.G.; Rynehart, C.; Whitney, P.; Druce, J. SARS-CoV-2 does not replicate in embryonated hen’s eggs or in MDCK cell lines. Eurosurveillance 2020, 25. [Google Scholar] [CrossRef] [PubMed]
- Bright, R.A.; Carter, D.M.; Daniluk, S.; Toapanta, F.R.; Ahmad, A.; Gavrilov, V.; Massare, M.; Pushko, P.; Mytle, N.; Rowe, T.; et al. Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine 2007, 25, 3871–3878. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Recombinant Influenza (Flu) Vaccine. Available online: https://www.cdc.gov/flu/prevent/qa_flublok-vaccine.htm (accessed on 4 October 2020).
- Ward, B.J.; Makarkov, A.; Séguin, A.; Pillet, S.; Trépanier, S.; Dhaliwall, J.; Libman, M.D.; Vesikari, T.; Landry, N. Efficacy, immunogenicity, and safety of a plant-derived, quadrivalent, virus-like particle influenza vaccine in adults (18–64 years) and older adults (≥65 years): Two multicentre, randomised phase 3 trials. Lancet 2020, 396, 1491–1503. [Google Scholar] [CrossRef]
- FDA. Vaccines Licensed for Use in the United States. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/vaccines-licensed-use-united-states (accessed on 4 October 2020).
- European Medicines Agency (EMA). Download Medicine Data. Available online: https://www.ema.europa.eu/en/medicines/download-medicine-data (accessed on 9 December 2020).
- Holtz, B.R.; Berquist, B.R.; Bennett, L.D.; Kommineni, V.J.M.; Munigunti, R.K.; White, E.L.; Wilkerson, D.C.; Wong, K.-Y.I.; Ly, L.H.; Marcel, S. Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals. Plant Biotechnol. J. 2015, 13, 1180–1190. [Google Scholar] [CrossRef] [Green Version]
- Greer, A.L. Early vaccine availability represents an important public health advance for the control of pandemic influenza. BMC Res. Notes 2015, 8, 191. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, D.; Jin, X.; Huang, Z. Fighting Ebola with ZMapp: Spotlight on plant-made antibody. Sci. China Life Sci. 2014, 57, 987–988. [Google Scholar] [CrossRef]
- Medicago. Medicago COVID-19 Vaccine Development Program. Available online: https://www.medicago.com/en/covid-19-programs/ (accessed on 4 October 2020).
- US Department of Defense. Coronavirus: Operation Warp Speed. Available online: https://www.defense.gov/Explore/Spotlight/Coronavirus/Operation-Warp-Speed/ (accessed on 4 October 2020).
- Nandi, S.; Kwong, A.T.; Holtz, B.R.; Erwin, R.L.; Marcel, S.; McDonald, K.A. Techno-economic analysis of a transient plant-based platform for monoclonal antibody production. MAbs 2016, 8, 1456–1466. [Google Scholar] [CrossRef]
- Tusé, D.; Nandi, S.; McDonald, K.A.; Buyel, J.F. The Emergency Response Capacity of Plant-Based Biopharmaceutical Manufacturing-What It Is and What It Could Be. Front. Plant Sci. 2020, 11. [Google Scholar] [CrossRef]
- Capell, T.; Twyman, R.M.; Armario-Najera, V.; Ma, J.K.; Schillberg, S.; Christou, P. Potential Applications of Plant Biotechnology against SARS-CoV-2. Trends Plant Sci. 2020, 25, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Mendoza, S. Will plant-made biopharmaceuticals play a role in the fight against COVID-19? Expert Opin. Biol. Ther. 2020, 20, 545–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, K.A.; Holtz, R.B. From Farm to Finger Prick—A Perspective on How Plants Can Help in the Fight Against COVID-19. Front. Bioeng. Biotechnol. 2020, 8, 782. [Google Scholar] [CrossRef] [PubMed]
Virus | Genome | Production Host | System, Comment, Reference | |
---|---|---|---|---|
Alfalfa mosaic virus (Alfamovirus) | I (+) ssRNA | N. benthamiana | VLPs/CP [37,38] | |
Bamboo mosaic virus (Potexvirus) | F (+) ssRNA | N. benthamiana, Chenopodium. quinoa | Full length viral vectors [39] | |
Beet Curly top virus (Curtovirus) | T-I (+) ssDNA | N. benthamiana | Deconstructed viral vectors [40,41,42] | |
Bean yellow dwarf virus (Mastrevirus) | T-I (+) ssDNA | N. benthamiana, Nicotiana tabacum, lettuce | Deconstructed viral vectors/VLPs [39,40,42,43] | |
Brome mosaic virus (Bromovirus) | I (+) ssRNA | Barley | 1st plant RNA virus/VLPs [39,43] | |
Beet necrotic yellow vein virus (Benyvirus) | RS (+) ssRNA | N. benthamiana, C. quinoa | Deconstructed viral vectors [44] | |
Bean pod mottle virus (Comovirus) | I (+) ssRNA | Soybean, P. sativum | Deconstructed viral vectors [45] | |
Barley stripe mosaic virus (Hordeivirus) | RS (+) ssRNA | Black-grass | Deconstructed viral vectors [46,47] | |
Cauliflower mosaic virus (Caulimovirus) | I dsDNA | Brassica rapa | 1st viral vector (Constitutive promoter)/Full length and deconstructed viral vectors [39] | |
Catharantus yellow mosaic virus (Begomovirus) | T I (+) ssDNA | Catharanthus roseus | Deconstructed viral vectors [47] | |
Cucumber green mottle mosaic virus (Tobamovirus) | RS (+) ssRNA | Muskmelon | Full length viral vectors [48] | |
Cucumber mosaic virus (Cucumovirus) | I (+) ssRNA | N. benthamiana | Deconstructed viral vectors/VLPs [37,39,49] | |
Cowpea mosaic virus (Comovirus) | I (+) ssRNA | Vigna unguiculata | 1st virus applied as an epitope presentation system/Full length and deconstructed viral vectors/ VLPs [37,50] | |
Citrus tristeza virus (Closterovirus) | F (+) ssRNA | Citrus trees | Deconstructed viral vectors [25] | |
Foxtail mosaic virus (Potexvirus) | F (+) ssRNA | Maize, wheat, black-grass | Deconstructed viral vectors [36] | |
Hibiscus chlorotic ringspot virus (Betacarmovirus) | I (+) ssRNA | Kenaf leaves | VLPs [39] | |
Odontoglossum ringspot virus (Tobamovirus) | RS (+) ssRNA | N. benthamiana | Deconstructed viral vectors (hybrid with TMV) [25,39] | |
Papaya mosaic virus (Potexvirus) | RS (+) ssRNA | E. coli | VLPs [39] | |
Pea early browning virus (Tobravirus) | RS (+) ssRNA | N. benthamiana | Deconstructed viral vectors [36] | |
Pepper ringspot virus (Tobravirus) | RS (+) ssRNA | N. benthamiana | Deconstructed viral vectors [49] | |
Plum pox potyvirus (Potyvirus) | F R-S (+) ssRNA | Nicotiana clevelandii | Full length and deconstructed viral vectors [37,40,49,51] | |
Potato virus X (Potexvirus) | F (+) ssRNA | N. benthamiana | Full length and deconstructed viral vectors/VLPs [37,50] | |
Sun hemp mosaic virus (Tobamovirus) | RS (+) ssRNA | N. benthamiana, cowpea, lentil | Deconstructed viral vectors [52] | |
Tomato bushy stunt virus (Tombusvirus) | I (+) ssRNA | N. benthamiana, Nicotiana excelsiana | Deconstructed viral vectors [37,50] | |
Tobacco etch virus (Potyvirus) | RS (+) ssRNA | Medicago trunculata | Full length viral vectors [51] | |
Tomato golden mosaic virus (Begomovirus) | T I (+) ssDNA | N. benthamiana | Deconstructed viral vectors [39] | |
Tobacco mild green mosaic virus (Tobamovirus) | RS (+) ssRNA | N. benthamiana | Deconstructed viral vectors [52] | |
Tobacco mosaic virus (Tobamovirus) | RS (+) ssRNA | N. benthamiana, N. excelsiana | Full length and deconstructed viral vectors/VLPs [37,39,49] | |
Tomato mosaic virus (Tobamovirus) | RS (+) ssRNA | N. tabacum | Deconstructed viral vectors (hybrid with TMV) [39] | |
Triticum mosaic virus (Tritimovirus) | F (+) ssRNA | Wheat, maize | Deconstructed viral vectors [53] | |
Tobacco rattle virus (Tobravirus) | RS (+) ssRNA | N. benthamiana | Deconstructed viral vectors [54] | |
Turnip vein-clearing virus (Tobamovirus) | RS (+) ssRNA | N. benthamiana | Deconstructed viral vectors (hybrid with TMV) [39] | |
Tobacco yellow dwarf virus (Mastrevirus) | T I (+) ssDNA | N. tabacum | Deconstructed viral vectors [42] | |
Wheat dwarf virus (Mastrevirus) | T I (+) ssDNA | Triticum monococcum | Deconstructed viral vectors [55] | |
Turnip yellow mosaic virus (Tymovirus) | I (+) ssRNA | Cabbage | VLps [39] | |
Wheat streak mosaic virus (Tritimovirus) | F (+) ssRNA | Wheat, maize | Deconstructed viral vectors [53] | |
Zucchini yellow mosaic virus (Potyvirus) | F R-S (+) ssRNA | Squash, melon cucumber | Deconstructed viral vectors (particle bombardment) [56] |
Vaccine Indication and Number Approved by EMA; FDA | Production System(s) Associated with Vaccine | Type of Vaccines |
---|---|---|
Adenovirus Type 4 and Type 7 Vaccine, (0;1) | WI-38 human diploid cells | Live virus |
Anthrax Vaccine (0;1) | Bacillus anthracis | Protective antigen protein from cell filtrates |
BCG Vaccine (0;2) | Mycobacterium bovis | Attenuated bacteria |
Cholera Vaccine (2;1) | Vibrio cholera | Attenuated bacteria |
Dengue Vaccine (1;1) | Vero Cells | Live virus |
Diphtheria and/or Tetanus and/or Acellular Pertussis and/or Hepatitis B and/or Polio and/or Hemophilus b and/or Vaccine (6;17) | Corynebacterium diphtheriae, Clostridium tetani, Bordetella pertussis, vero cells, Saccharomyces cerevisiae, Haemophilus influenzae type b and Neisseria meningitidis | Toxoids, antigens, inactivated virus, outer membrane protein, recombinant protein and capsular polysaccharide |
Ebola Zaire Vaccine (3;1) | Vero cells | Live recombinant viral vaccine |
Hepatitis A and/or Hepatitis B Vaccine (5;6) | MRC-5 human diploid cells, Hansenula polymorpha and S. cerevisiae | Inactivated virus, recombinant protein and VLP |
Human Papillomavirus Vaccine (3;3) | S. cerevisiae and Baculovirus in Trichoplusia ni cells | VLP |
Influenza A H1N1 Vaccine (1;7) | Embryonated chicken eggs | Inactivated virus and live virus |
Influenza A H5N1 Vaccine (6;2) | Embryonated chicken eggs and MDCK cells | Inactivated virus |
Influenza Vaccine (3;29) | Embryonated chicken eggs, MDCK cells and Sf9 cells | Inactivated virus and recombinant HA protein |
Japanese Encephalitis Virus Vaccine (1;1) | Vero cells | Inactivated virus |
Measles, Mumps, and Rubella Virus Vaccine (1;1) | Chick embryo cell culture and WI-38 human diploid cells | Attenuated and live virus vaccine |
Measles, Mumps, Rubella and Varicella Virus Vaccine (1;1) | Chick embryo cell culture, WI-38 human diploid cells and MRC-5 human diploid cells | Attenuated and live virus vaccine |
Meningococcal Vaccine (3;6) | C. diphtheriae, N. meningitidis, E. coli and C. tetani | Capsular polysaccharide, capsular polysaccharide toxoid conjugate, recombinant protein and outer membrane vesicle |
Pneumococcal Vaccine (2;2) | Streptococcus pneumoniae and C. diphtheriae | Capsular polysaccharide and capsular polysaccharide protein conjugate |
Rabies Vaccine (Human) (0;2) | MRC-5 human diploid cells and chicken fibroblasts | Inactivated virus |
Rotavirus Vaccine (2;2) | Vero cells | Live attenuated virus |
Smallpox (1;1) | Vero cells | Live virus |
Smallpox and Monkeypox Vaccine (0;1) | Chicken embryo fibroblasts | Live virus |
Typhoid Vaccine (2;1) | Salmonella typhi Ty21a | Live attenuated virus, capsular polysaccharide |
Varicella Virus Vaccine (0;1) | WI-38 human diploid cells, MRC-5 human diploid cells | Live attenuated virus |
Yellow Fever Vaccine (1;1) | Living avian leukosis virus-free chicken embryos | Attenuated virus |
Zoster Vaccine (2;2) | MRC-5 human diploid cells, CHO and Salmonella minnesota | Live attenuated virus and virus surface glycoprotein E (gE) antigen c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
LeBlanc, Z.; Waterhouse, P.; Bally, J. Plant-Based Vaccines: The Way Ahead? Viruses 2021, 13, 5. https://doi.org/10.3390/v13010005
LeBlanc Z, Waterhouse P, Bally J. Plant-Based Vaccines: The Way Ahead? Viruses. 2021; 13(1):5. https://doi.org/10.3390/v13010005
Chicago/Turabian StyleLeBlanc, Zacharie, Peter Waterhouse, and Julia Bally. 2021. "Plant-Based Vaccines: The Way Ahead?" Viruses 13, no. 1: 5. https://doi.org/10.3390/v13010005
APA StyleLeBlanc, Z., Waterhouse, P., & Bally, J. (2021). Plant-Based Vaccines: The Way Ahead? Viruses, 13(1), 5. https://doi.org/10.3390/v13010005