A Perspective on Nanotechnology and COVID-19 Vaccine Research and Production in South Africa
Abstract
:1. Introduction
2. Nanotechnology and Vaccines for COVID-19
3. Potential for Local Research and Development of Nanoparticle-Based COVID-19 Vaccines
4. Bioinformatics Approaches to Optimize Research and Development
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. 2021. Available online: https://covid19.who.int/ (accessed on 13 September 2021).
- Department Health Republic of South Africa. COVID-19 Online Resource & News Portal SAcoronavirus.co.za. 2021. Available online: https://sacoronavirus.co.za/2021/09/13/update-on-covid-19-monday-13-september/ (accessed on 13 September 2021).
- Cui, J.; Li, F.; Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
- Elezkurtaj, S.; Greuel, S.; Ihlow, J.; Michaelis, E.G.; Bischoff, P.; Kunze, C.A.; Sinn, B.V.; Gerhold, M.; Hauptmann, K.; Ingold-Heppner, B.; et al. Causes of death and comorbidities in hospitalized patients with COVID-19. Sci. Rep. 2021, 11, 4263. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, M.; de Giglio, M.A.R.; Roviello, G.N. Anti-Coronavirus Vaccines: Past Investigations on SARS-CoV-1 and MERS-CoV, the Approved Vaccines from BioNTech/Pfizer, Moderna, Oxford/AstraZeneca and others under Development against SARS-CoV-2 Infection. Curr. Med. Chem. 2021, 28, 1–13. [Google Scholar] [CrossRef]
- Tregoning, J.S.; Flight, K.E.; Higham, S.L.; Wang, Z.; Pierce, B.F. Progress of the COVID-19 vaccine effort: Viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 2021, 21, 626–636. [Google Scholar] [CrossRef]
- Swingle, K.L.; Hamilton, A.G.; Mitchell, M.J. Lipid Nanoparticle-Mediated Delivery of mRNA Therapeutics and Vaccines. Trends Mol. Med. 2021, 27, 616–617. [Google Scholar] [CrossRef]
- Li, Y.; Tenchov, R.; Smoot, J.; Liu, C.; Watkins, S.; Zhou, Q. A Comprehensive Review of the Global Efforts on COVID-19 Vaccine Development. ACS Cent. Sci. 2021, 7, 512–533. [Google Scholar] [CrossRef]
- Shin, M.D.; Shukla, S.; Chung, Y.H.; Beiss, V.; Chan, S.K.; Ortega-Rivera, O.A.; Wirth, D.M.; Chen, A.; Sack, M.; Pokorski, J.K.; et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 2020, 15, 646–655. [Google Scholar] [CrossRef]
- Khurana, A.; Allawadhi, P.; Khurana, I.; Allwadhi, S.; Weiskirchen, R.; Banothu, A.K.; Chhabra, D.; Joshi, K.; Bharani, K.K. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today 2021, 38, 101142. [Google Scholar] [CrossRef]
- Buschmann, M.; Carrasco, M.; Alishetty, S.; Paige, M.; Alameh, M.; Weissman, D. Nanomaterial Delivery Systems for mRNA Vaccines. Vaccines 2021, 9, 65. [Google Scholar] [CrossRef]
- Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021, 1–22. [Google Scholar] [CrossRef]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 1–17. [Google Scholar] [CrossRef]
- Rybicki, E.; Hitzeroth, I.; Meyers, A.; Santos, M.; Wigdorovitz, A. Developing country applications of molecular farming: Case studies in South Africa and Argentina. Curr. Pharm. Des. 2013, 19, 5612–5621. [Google Scholar] [CrossRef]
- Boshra, H.; Truong, T.; Nfon, C.; Bowden, T.R.; Gerdts, V.; Tikoo, S.; Babiuk, L.A.; Kara, P.; Mather, A.; Wallace, D.B.; et al. A lumpy skin disease virus deficient of an IL-10 gene homologue provides protective immunity against virulent capripoxvirus challenge in sheep and goats. Antivir. Res. 2015, 123, 39–49. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update post COVID-19 vaccines. Bioeng. Transl. Med. 2021, 6, e10246. [Google Scholar] [CrossRef]
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res. 2016, 33, 2373–2387. [Google Scholar] [CrossRef]
- Batty, C.J.; Bachelder, E.M.; Ainslie, K.M. Historical Perspective of Clinical Nano and Microparticle Formulations for Delivery of Therapeutics. Trends Mol. Med. 2021, 27, 516–519. [Google Scholar] [CrossRef]
- Tanne, J.H. COVID-19: FDA approves Pfizer-BioNTech vaccine in record time. BMJ 2021, 374, n2096. [Google Scholar] [CrossRef]
- Dube, A.; Semete-Makokotlela, B.; Ramalapa, B.E.; Reynolds, J.; Boury, F. Nanomedicines for the Treatment of Infectious Diseases: Formulation, Delivery and Commercialization Aspects; Routledge: London, UK, 2021. [Google Scholar]
- Chang, E.H.; Harford, J.B.; Eaton, M.A.; Boisseau, P.M.; Dube, A.; Hayeshi, R.; Swai, H.; Lee, D.S. Nanomedicine: Past, present and future—A global perspective. Biochem. Biophys. Res. Commun. 2015, 468, 511–517. [Google Scholar] [CrossRef]
- Dube, A. Nanomedicines for Infectious Diseases. Pharm Res. 2019, 36, 63. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.T.; Maponga, C.C.; Madhombiro, M.; Dube, A.; Mano, R.; Nyamhunga, A.; Machingura, I.; Manasa, J.; Hakim, J.; Chirenje, Z.M.; et al. Mentored postdoctoral training in Zimbabwe: A report on a successful collaborative effort. J. Public Health Afr. 2019, 10, 1081. [Google Scholar] [CrossRef] [Green Version]
- Masara, B.; van der Poll, J.A.; Maaza, M. A nanotechnology-foresight perspective of South Africa. J. Nanopart. Res. 2021, 23, 92. [Google Scholar] [CrossRef]
- Doria-Rose, N.A.; Bhiman, J.N.; Roark, R.S.; Schramm, C.A.; Gorman, J.; Chuang, G.-Y.; Pancera, M.; Cale, E.M.; Ernandes, M.J.; Louder, M.K.; et al. New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency. J. Virol. 2015, 90, 76–91. [Google Scholar] [CrossRef] [Green Version]
- Mansoor, L.E.; Karim, Q.A.; Yende-Zuma, N.; MacQueen, K.M.; Baxter, C.; Madlala, B.T.; Grobler, A.; Karim, S.S.A. Adherence in the CAPRISA 004 tenofovir gel microbicide trial. AIDS Behav. 2014, 18, 811–819. [Google Scholar] [CrossRef] [Green Version]
- Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.; Doolabh, D.; Pillay, S.; San, E.J.; Msomi, N.; et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 2021, 592, 438–443. [Google Scholar] [CrossRef]
- Schoeman, D.; Cloete, R.; Fielding, B.C. Comparative studies of the seven human coronavirus envelope proteins using topology prediction and molecular modelling to understand their pathogenicity. bioRxiv 2021. [Google Scholar] [CrossRef]
- Tshweu, L.L.; Shemis, M.A.; Abdelghany, A.; Gouda, A.; Pilcher, L.A.; Sibuyi, N.R.S.; Meyer, M.; Dube, A.; Balogun, M.O. Synthesis, physicochemical characterization, toxicity and efficacy of a PEG conjugate and a hybrid PEG conjugate nanoparticle formulation of the antibiotic moxifloxacin. RSC Adv. 2020, 10, 19770–19780. [Google Scholar] [CrossRef]
- Melariri, P.; Kalombo, L.; Nkuna, P.; Dube, A.; Hayeshi, R.; Ogutu, B.; Gibhard, L.; Dekock, C.; Smith, P.; Wiesner, L.; et al. Oral lipid-based nanoformulation of tafenoquine enhanced bioavailability and blood stage antimalarial efficacy and led to a reduction in human red blood cell loss in mice. Int. J. Nanomed. 2015, 10, 1493–1503. [Google Scholar] [CrossRef] [Green Version]
- Tshweu, L.; Katata, L.; Kalombo, L.; Chiappetta, D.A.; Hocht, C.; Sosnik, A.; Swai, H. Enhanced oral bioavailability of the antiretroviral efavirenz encapsulated in poly (epsilon-caprolactone) nanoparticles by a spray-drying method. Nanomedicine 2014, 9, 1821–1833. [Google Scholar] [CrossRef]
- Freidus, L.G.; Kumar, P.; Marimuthu, T.; Pradeep, P.; Choonara, Y.E. Theranostic Mesoporous Silica Nanoparticles Loaded with a Curcumin-Naphthoquinone Conjugate for Potential Cancer Intervention. Front. Mol. Biosci. 2021, 8, 670792. [Google Scholar] [CrossRef]
- D’Souza, S.; Du Plessis, S.; Egieyeh, S.; Bekale, R.; Maphasa, R.; Irabin, A.; Sampson, S.; Dube, A. Physicochemical and biological evaluation of curdlan-poly(lactic-co-glycolic acid) nanoparticles as a host-directed therapy against Mycobacterium tuberculosis. J. Pharm. Sci. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Tyavambiza, C.; Elbagory, A.; Madiehe, A.; Meyer, M.; Meyer, S. The Antimicrobial and Anti-Inflammatory Effects of Silver Nanoparticles Synthesised from Cotyledon orbiculata Aqueous Extract. Nanomaterials 2021, 11, 1343. [Google Scholar] [CrossRef] [PubMed]
- Dube, P.; Meyer, S.; Madiehe, A.; Meyer, M. Antibacterial activity of biogenic silver and gold nanoparticles synthesized from Salvia africana-lutea and Sutherlandia frutescens. Nanotechnology 2020, 31, 505607. [Google Scholar] [CrossRef] [PubMed]
- Kannan, R.; Stirk, W.; Van Staden, J. Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae). S. Afr. J. Bot. 2013, 86, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Council on Foreign Relations. South Africa’s Biovac Strikes Deal to Make COVID-19 Vaccine. 2021. Available online: https://www.cfr.org/blog/south-africas-biovac-strikes-deal-make-covid-19-vaccine (accessed on 13 September 2021).
- News, A.H. Aspen Confirms Release of COVID-19 Vaccines to Johnson & Johnson for Supply to South Africa. 2021. Available online: https://www.aspenpharma.com/2021/07/26/aspen-confirms-release-of-covid-19-vaccines-to-johnson-johnson-for-supply-to-south-africa/ (accessed on 13 September 2021).
- Heunis, T.D.J.; Botes, M.; Dicks, L.M.T. Encapsulation of Lactobacillus plantarum 423 and its Bacteriocin in Nanofibers. Probiotics Antimicrob. Proteins 2010, 2, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Mulder, N.J.; Christoffels, A.; De Oliveira, T.; Gamieldien, J.; Hazelhurst, S.; Joubert, F.; Kumuthini, J.; Pillay, C.S.; Snoep, J.L.; Bishop, O.T.; et al. The Development of Computational Biology in South Africa: Successes Achieved and Lessons Learnt. PLoS Comput. Biol. 2016, 12, e1004395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allam, M.; Ismail, A.; Khumalo, Z.T.H.; Kwenda, S.; van Heusden, P.; Cloete, R.; Wibmer, C.K.; Mtshali, P.S.; Mnyameni, F.; Mohale, T.; et al. Genome Sequencing of a Severe Acute Respiratory Syndrome Coronavirus 2 Isolate Obtained from a South African Patient with Coronavirus Disease 2019. Microbiol. Resour. Announc. 2020, 9, e00572-20. [Google Scholar] [CrossRef]
- Enayatkhani, M.; Hasaniazad, M.; Faezi, S.; Gouklani, H.; Davoodian, P.; Ahmadi, N.; Einakian, M.A.; Karmostaji, A.; Ahmadi, K. Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. J. Biomol. Struct. Dyn. 2021, 39, 2857–2872. [Google Scholar] [CrossRef] [Green Version]
- Soltan, M.A.; Magdy, D.; Solyman, S.M.; Hanora, A. Design of Staphylococcus aureus New Vaccine Candidates with B and T Cell Epitope Mapping, Reverse Vaccinology, and Immunoinformatics. Omics 2020, 24, 195–204. [Google Scholar] [CrossRef]
- Oli, A.N.; Obialor, W.O.; Ifeanyichukwu, M.O.; Odimegwu, D.C.; Okoyeh, J.N.; Emechebe, G.O.; Adejumo, S.A.; Ibeanu, G.C. Immunoinformatics and Vaccine Development: An Overview. ImmunoTargets Ther. 2020, 9, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Egieyeh, S.; Egieyeh, E.; Malan, S.; Christofells, A.; Fielding, B. Computational drug repurposing strategy predicted peptide-based drugs that can potentially inhibit the interaction of SARS-CoV-2 spike protein with its target (humanACE2). PLoS ONE 2021, 16, e0245258. [Google Scholar] [CrossRef]
- Chukwudozie, O.S.; Gray, C.M.; Fagbayi, T.A.; Chukwuanukwu, R.C.; Oyebanji, V.O.; Bankole, T.T.; Adewole, R.A.; Daniel, E.M. Immuno-informatics design of a multimeric epitope peptide based vaccine targeting SARS-CoV-2 spike glycoprotein. PLoS ONE 2021, 16, e0248061. [Google Scholar] [CrossRef]
- Kim, J.H.; Hotez, P.; Batista, C.; Ergonul, O.; Figueroa, J.P.; Gilbert, S.; Gursel, M.; Hassanain, M.; Kang, G.; Lall, B.; et al. Operation Warp Speed: Implications for global vaccine security. Lancet Glob. Health 2021, 9, e1017–e1021. [Google Scholar] [CrossRef]
- Irwin, A. How COVID spurred Africa to plot a vaccines revolution. Nature 2021. online ahead of print. [Google Scholar] [CrossRef]
- Semete-Makokotlela, B.; Mahlangu, G.N.; Mukanga, D.; Darko, D.M.; Stonier, P.; Gwaza, L.; Nkambule, P.; Matsoso, P.; Lehnert, R.; Rosenkranz, B.; et al. Needs-driven talent and competency development for the next generation of regulatory scientists in Africa. Br. J. Clin. Pharmacol. 2021, 1–8. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dube, A.; Egieyeh, S.; Balogun, M. A Perspective on Nanotechnology and COVID-19 Vaccine Research and Production in South Africa. Viruses 2021, 13, 2095. https://doi.org/10.3390/v13102095
Dube A, Egieyeh S, Balogun M. A Perspective on Nanotechnology and COVID-19 Vaccine Research and Production in South Africa. Viruses. 2021; 13(10):2095. https://doi.org/10.3390/v13102095
Chicago/Turabian StyleDube, Admire, Samuel Egieyeh, and Mohammed Balogun. 2021. "A Perspective on Nanotechnology and COVID-19 Vaccine Research and Production in South Africa" Viruses 13, no. 10: 2095. https://doi.org/10.3390/v13102095
APA StyleDube, A., Egieyeh, S., & Balogun, M. (2021). A Perspective on Nanotechnology and COVID-19 Vaccine Research and Production in South Africa. Viruses, 13(10), 2095. https://doi.org/10.3390/v13102095