Drugs of Abuse and Their Impact on Viral Pathogenesis
Abstract
:1. Drug Use Morbidity and Mortality in the US
2. Drug Use and Immune Function
3. Common Viral Infections Associated with Drug Use
4. Opioids
5. Opioids and HIV
6. Opioid Receptor/Chemokine Receptor Interactions
7. Stimulants and HIV
8. Alcohol and HIV
9. Opioids and Viral Hepatitis
10. Stimulants and Viral Hepatitis
11. Alcohol and Viral Hepatitis
12. Tobacco, Cannabis, and Viral Infections
13. Drugs of Abuse and SARS-CoV-2
14. Recommendations for Additional Research
15. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Substance Abuse and Mental Health Services Administration. The National Survey on Drug Use and Health: 2019. Available online: https://www.samhsa.gov/data/sites/default/files/reports/rpt29392/Assistant-Secretary-nsduh2019_presentation/Assistant-Secretary-nsduh2019_presentation.pdf (accessed on 22 August 2021).
- Shiels, M.S.; Freedman, N.D.; Thomas, D.; Berrington de Gonzalez, A. Trends in US drug overdose deaths in non-Hispanic black, Hispanic, and non-Hispanic white persons, 2000–2015. Ann. Intern. Med. 2018, 168, 453–455. [Google Scholar] [CrossRef]
- Jalal, H.; Buchanich, J.M.; Roberts, M.S.; Balmert, L.C.; Zhang, K.; Burke, D.S. Changing dynamics of the drug overdose epidemic in the United States from 1979 through 2016. Science 2018, 361, eaau1184. [Google Scholar] [CrossRef] [Green Version]
- Houry, D.E.; Haegerich, T.M.; Vivolo-Kantor, A. Opportunities for Prevention and Intervention of Opioid Overdose in the Emergency Department. Ann. Emerg. Med. 2018, 71, 688–690. [Google Scholar] [CrossRef] [Green Version]
- Scholl, L.; Seth, P.; Kariisa, M.; Wilson, N.; Baldwin, G. Drug and Opioid-Involved Overdose Deaths—United States, 2013–2017. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1419–1427. [Google Scholar] [CrossRef]
- Mattson, C.L.; Tanz, L.J.; Quinn, K.; Kariisa, M.; Patel, P.; Davis, N.L. Trends and geographic patterns in drug and synthetic opioid overdose deaths—United States, 2013–2019. Morb. Mortal. Wkly. Rep. 2021, 70, 202. [Google Scholar] [CrossRef]
- O’Donnell, J.K.; Gladden, R.M.; Seth, P. Trends in Deaths Involving Heroin and Synthetic Opioids Excluding Methadone, and Law Enforcement Drug Product Reports, by Census Region—United States, 2006–2015. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 897–903. [Google Scholar] [CrossRef] [Green Version]
- Somerville, N.J.; O’Donnell, J.; Gladden, R.M.; Zibbell, J.E.; Green, T.C.; Younkin, M.; Ruiz, S.; Babakhanlou-Chase, H.; Chan, M.; Callis, B.P.; et al. Characteristics of fentanyl overdose—Massachusetts, 2014–2016. Morb. Mortal. Wkly. Rep. 2017, 66, 382–386. [Google Scholar] [CrossRef]
- Rudd, R.A.; Aleshire, N.; Zibbell, J.E.; Gladden, R.M. Increases in Drug and Opioid Overdose Deaths-United States, 2000–2014. Arab. Archaeol. Epigr. 2016, 64, 1378–1382. [Google Scholar] [CrossRef]
- Jones, C.M.; Logan, J.; Gladden, R.M.; Bohm, M.K. Vital signs: Demographic and substance use trends among heroin users—United States, 2002–2013. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 719. [Google Scholar]
- Springer, Y.P.; Gladden, R.M.; O’Donnell, J.; Seth, P. Notes from the Field: Fentanyl Drug Submissions—United States, 2010–2017. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 41–43. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, J.; Gladden, R.M.; Goldberger, B.A.; Mattson, C.L.; Kariisa, M. Notes from the Field: Opioid-Involved Overdose Deaths with Fentanyl or Fentanyl Analogs Detected—28 States and the District of Columbia, July 2016–December 2018. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 271–273. [Google Scholar] [CrossRef] [Green Version]
- Plein, L.M.; Rittner, H.L. Opioids and the immune system—friend or foe. Br. J. Pharmacol. 2018, 175, 2717–2725. [Google Scholar] [CrossRef]
- Roy, S.; Ninkovic, J.; Banerjee, S.; Charboneau, R.G.; Das, S.; Dutta, R.; Kirchner, V.A.; Koodie, L.; Ma, J.; Meng, J.; et al. Opioid Drug Abuse and Modulation of Immune Function: Consequences in the Susceptibility to Opportunistic Infections. J. Neuroimmune Pharmacol. 2011, 6, 442–465. [Google Scholar] [CrossRef] [Green Version]
- Scheidegger, C.; Zimmerli, W. Infectious Complications in Drug Addicts: Seven-Year Review of 269 Hospitalized Narcotics Abusers in Switzerland. Rev. Infect. Dis. 1989, 11, 486–493. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Carbonell, X.; Vilaregut, A. A 10-year follow-up study on the health status of heroin addicts based on official registers. Addiction 2001, 96, 1777–1786. [Google Scholar] [CrossRef]
- DeGruttolla, V.; Seage, G.; Mayer, K.; Horsburgh, C. Infectiousness of HIV between male homosexual partners. J. Clin. Epidemiol. 1989, 42, 849–856. [Google Scholar] [CrossRef]
- Strathdee, S.A.; Beyrer, C. Threading the Needle—How to Stop the HIV Outbreak in Rural Indiana. N. Engl. J. Med. 2015, 373, 397–399. [Google Scholar] [CrossRef] [Green Version]
- Conrad, C.; Bradley, H.M.; Broz, D.; Buddha, S.; Chapman, E.L.; Galang, R.R.; Hillman, D.; Hon, J.; Hoover, K.W.; Patel, M.R.; et al. Community outbreak of HIV infection linked to injection drug use of oxymorphone—Indiana, 2015. Morb. Mortal. Wkly. Rep. 2015, 64, 443–444. [Google Scholar]
- Ramachandran, S.; Thai, H.; Forbi, J.C.; Galang, R.R.; Dimitrova, Z.; Xia, G.-L.; Lin, Y.; Punkova, L.T.; Pontones, P.R.; Gentry, J.; et al. A large HCV transmission network enabled a fast-growing HIV outbreak in rural Indiana, 2015. EBioMedicine 2018, 37, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Zibbell, J.E.; Iqbal, K.; Patel, R.C.; Suryaprasad, A.; Sanders, K.J.; Moore-Moravian, L.; Serrecchia, J.; Blankenship, S.; Ward, J.W.; Holtzman, D.; et al. Increases in hepatitis C virus infection related to injection drug use among persons aged ≤30 years—Kentucky, Tennessee, Virginia, and West Virginia, 2006–2012. MWR Morb. Mortal. Wkly. Rep. 2015, 64, 453–458. [Google Scholar]
- Evans, M.E.; Labuda, S.M.; Hogan, V.; Agnew-Brune, C.; Armstrong, J.; Karuppiah, A.B.P.; Blankinship, D.; Buchacz, K.; Burton, K.; Cibrik, S.; et al. Notes from the Field: HIV Infection Investigation in a Rural Area—West Virginia, 2017. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 257–258. [Google Scholar] [CrossRef] [Green Version]
- Alpren, C.; Dawson, E.L.; John, B.; Cranston, K.; Panneer, N.; Fukuda, H.D.; Roosevelt, K.; Klevens, R.M.; Bryant, J.; Peters, P.J.; et al. Opioid Use Fueling HIV Transmission in an Urban Setting: An Outbreak of HIV Infection among People Who Inject Drugs—Massachusetts, 2015–2018. Am. J. Public Health 2020, 110, 37–44. [Google Scholar] [CrossRef]
- Golden, M.R.; Lechtenberg, R.; Glick, S.N.; Dombrowski, J.; Duchin, J.; Reuer, J.R.; Dhanireddy, S.; Neme, S.; Buskin, S.E. Outbreak of Human Immunodeficiency Virus Infection among Heterosexual Persons Who Are Living Homeless and Inject Drugs—Seattle, Washington, 2018. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 344–349. [Google Scholar] [CrossRef]
- Atkins, A.; McClung, R.P.; Kilkenny, M.; Bernstein, K.; Willenburg, K.; Edwards, A.; Lyss, S.; Thomasson, E.; Panneer, N.; Kirk, N.; et al. Notes from the Field: Outbreak of Human Immunodeficiency Virus Infection among Persons Who Inject Drugs—Cabell County, West Virginia, 2018–2019. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 499–500. [Google Scholar] [CrossRef] [Green Version]
- Comer, M.; Matthias, J.; Nicholson, G.; Asher, A.; Holmberg, S.; Wilson, C. Increase in acute hepatitis B infections—Pasco County, Florida, 2011–2016. Morb. Mortal. Wkly. Rep. 2018, 67, 230–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, A.M.; Iqbal, K.; Schillie, S.; Britton, J.; Kainer, M.A.; Tressler, S.; Vellozzi, C. Increases in acute hepatitis B virus infections—Kentucky, Tennessee, and West Virginia, 2006–2013. Morb. Mortal. Wkly. Rep. 2016, 65, 47–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degenhardt, L.; Peacock, A.; Colledge, S.; Leung, J.; Grebely, J.; Vickerman, P.; Stone, J.; Cunningham, E.B.; Trickey, A.; Dumchev, K.; et al. Global prevalence of injecting drug use and sociodemographic characteristics and prevalence of HIV, HBV, and HCV in people who inject drugs: A multistage systematic review. Lancet Glob. Health 2017, 5, e1192–e1207. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, M.R.; Meza-Mercado, D.; Martínez-Martínez, R.; Magis-Rodríguez, C.; Castro, A.O.; Medina-Mora, M.E. People who inject drugs (PWID) and HIV/aids cases in Mexico City: 1987–2015. Subst. Abus. Treat. Prev. Policy 2019, 14, 59. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Milloy, M.-J.; Lysyshyn, M.; DeBeck, K.; Nosova, E.; Wood, E.; Kerr, T. Substance use patterns associated with recent exposure to fentanyl among people who inject drugs in Vancouver, Canada: A cross-sectional urine toxicology screening study. Drug Alcohol Depend. 2018, 183, 1–6. [Google Scholar] [CrossRef]
- Samji, H.; Yu, A.; Wong, S.; Wilton, J.; Binka, M.; Alvarez, M.; Bartlett, S.; Pearce, M.; Adu, P.; Jeong, D.; et al. Drug-related deaths in a population-level cohort of people living with and without hepatitis C virus in British Columbia, Canada. Int. J. Drug Policy 2020, 86, 102989. [Google Scholar] [CrossRef]
- Platt, L.; Bobrova, N.; Rhodes, T.; Uusküla, A.; Parry, J.V.; Rüütel, K.; Talu, A.; Abel, K.; Rajaleid, K.; Judd, A. High HIV prevalence among injecting drug users in Estonia: Implications for understanding the risk environment. AIDS 2006, 20, 2120–2123. [Google Scholar] [CrossRef]
- Talu, A.; Rajaleid, K.; Abel-Ollo, K.; Rüütel, K.; Rahu, M.; Rhodes, T.; Platt, L.; Bobrova, N.; Uusküla, A. HIV infection and risk behaviour of primary fentanyl and amphetamine injectors in Tallinn, Estonia: Implications for intervention. Int. J. Drug Policy 2010, 21, 56–63. [Google Scholar] [CrossRef]
- Tavitian-Exley, I.; Maheu-Giroux, M.; Platt, L.; Heimer, R.; Uusküla, A.; Levina, O.; Vickerman, P.; Boily, M.-C. Differences in risk behaviours and HIV status between primary amphetamines and opioid injectors in Estonia and Russia. Int. J. Drug Policy 2018, 53, 96–105. [Google Scholar] [CrossRef]
- Stevens, C. The evolution of vertebrate opioid receptors. Front. Biosci. 2009, 14, 1247–1269. [Google Scholar] [CrossRef] [Green Version]
- Stein, C. Opioid receptors. Annu. Rev. Med. 2016, 67, 433–451. [Google Scholar] [CrossRef]
- Law, P.-Y.; Wong, Y.H.; Loh, H.H. Molecular Mechanisms and Regulation of Opioid Receptor Signaling. Annu. Rev. Pharmacol. Toxicol. 2000, 40, 389–430. [Google Scholar] [CrossRef]
- Tahamtan, A.; Tavakoli-Yaraki, M.; Mokhtari-Azad, T.; Teymoori-Rad, M.; Bont, L.; Shokri, F.; Salimi, V. Opioids and viral infections: A double-edged sword. Front. Microbiol. 2016, 7, 970. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Strazza, R.; Wigdahl, B.; Pirrone, V.; Meucci, O.; Nonnemacher, M. Role of mu-opioid receptors as cofactors in human immunodeificiency virus type 1 disease progression and neuorpathogenesis. J. Neurovirol. 2011, 17, 291–302. [Google Scholar] [CrossRef]
- Sundar, K.S.; Kamaraju, L.S.; Dingfelder, J.; McMahon, J.; Gollapudi, S.; Wilson, W.H.; Kong, L.Y.; Hong, J.S.; Weiss, J.M.; Lee, J. beta-Endorphin enhances the replication of neurotropic human immunodeficiency virus in fetal perivascular microglia. J. Neuroimmunol. 1995, 61, 97–104. [Google Scholar] [CrossRef]
- Peterson, P.K.; Gekker, G.; Hu, S.; Lokensgard, J.; Portoghese, P.S.; Chao, C. Endomorphin-1 potentiates HIV-1 expression in human brain cell cultures: Implication of an atypical mu-opioid receptor. Neuropharmacology 1999, 38, 273–278. [Google Scholar] [CrossRef]
- Chao, C.C.; Gekker, G.; Hu, S.; Sheng, W.S.; Portoghese, P.S.; Peterson, P.K. Upregulation of HIV-1 expression in cocultures of chronically infected promonocytes and human brain cells by dynorphin. Biochem. Pharmacol. 1995, 50, 715–722. [Google Scholar] [CrossRef]
- Squinto, S.P.; Mondal, D.; Block, A.L.; Prakash, O. Morphine-Induced Transactivation of HIV-1 LTR in Human Neuroblastoma Cells. AIDS Res. Hum. Retrovir. 1990, 6, 1163–1168. [Google Scholar] [CrossRef]
- Peterson, P.K.; Gekker, G.; Hu, S.; Anderson, W.; Kravitz, F.; Portoghese, P.S.; Balfour, H.H.; Chao, C.C. Morphine amplifies HIV-1 expression in chronically infected promonocytes cocultured with human brain cells. J. Neuroimmunol. 1994, 50, 167–175. [Google Scholar] [CrossRef]
- Schweitzer, C.; Keller, F.; Schmitt, M.P.; Jaeck, D.; Adloff, M.; Schmitt, C.; Royer, C.; Kirn, A.; Aubertin, A. Morphine stimulates HIV replication in primary cultures of human Kupffer cells. Res. Virol. 1991, 142, 189–195. [Google Scholar] [CrossRef]
- Prottengeier, J.; Koutsilieri, E.; Scheller, C. The effects of opioids on HIV reactivation in latently-infected T-lymphoblasts. AIDS Res. Ther. 2014, 11, 17. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Fu, J.; Jin, L.; Zhang, H.; Zhou, C.; Zou, Z.; Zhao, J.-M.; Zhang, B.; Shi, M.; Ding, X.; et al. Circulating and Liver Resident CD4+CD25+ Regulatory T Cells Actively Influence the Antiviral Immune Response and Disease Progression in Patients with Hepatitis. B. J. Immunol. 2006, 177, 739–747. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Merrill, J.D.; Mooney, K.; Song, L.; Wang, X.; Guo, C.-J.; Savani, R.C.; Metzger, D.S.; Douglas, S.D.; Ho, W.-Z. Morphine Enhances HIV Infection of Neonatal Macrophages. Pediatr. Res. 2003, 54, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, X.; Ye, L.; Li, J.; Song, L.; Fulambarkar, N.; Ho, W. Morphine Suppresses IFN Signaling Pathway and Enhances AIDS Virus Infection. PLoS ONE 2012, 7, e31167. [Google Scholar] [CrossRef]
- Guo, C.J.; Li, Y.; Tian, S.; Wang, X.; Douglas, S.D.; Ho, W. Morphine enhances HIV infection of human blood mononuclear phagocytes through modulation of beta-chemokines and CCR5 receptor. J. Investig. Med. 2002, 50, 435–442. [Google Scholar] [CrossRef]
- Tang, B.; Zhang, Y.; Liang, R.; Yuan, P.; Du, J.; Wang, H.; Wang, L. Activation of the δ-opioid receptor inhibits serum deprivation-induced apoptosis of human liver cells via the activation of PKC and the mitochondrial pathway. Int. J. Mol. Med. 2011, 28, 1077–1085. [Google Scholar]
- Wang, X.; Liu, J.; Zhou, L.; Ho, W.-Z. Morphine Withdrawal Enhances HIV Infection of Macrophages. Front. Immunol. 2019, 10, 2601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balinang, J.M.; Masvekar, R.R.; Hauser, K.F.; Knapp, P.E. Productive infection of human neural progenitor cells by R5 tropic HIV-1: Opiate co-exposure heightens infectivity and functional vulnerability. AIDS 2017, 31, 753–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turchan-Cholewo, J.; Dimayuga, F.O.; Ding, Q.; Keller, J.; Hauser, K.F.; Knapp, P.E.; Bruce-Keller, A.J. Cell-specific actions of HIV-Tat and morphine on opioid receptor expression in glia. J. Neurosci. Res. 2008, 86, 2100–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turchan-Cholewo, J.; Dimayuga, F.O.; Gupta, S.; Keller, J.N.; Knapp, P.E.; Hauser, K.F.; Bruce-Keller, A.J. Morphine and HIV-Tat increase microglial-free radical production and oxidative stress: Possible role in cytokine regulation. J. Neurochem. 2009, 108, 202–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samikkannu, T.; Ranjith, D.; Rao, K.V.; Atluri, V.S.; Pimentel, E.; El-Hage, N.; Nair, M.P. HIV-1 gp120 and morphine induced oxidative stress: Role in cell cycle regulation. Front. Microbiol. 2015, 6, 614. [Google Scholar] [CrossRef]
- Patel, S.H.; Ismaiel, O.A.; Mylott, W.R.; Yuan, M.; McClay, J.L.; Paris, J.J.; Hauser, K.F.; McRae, M. Cell-type specific differences in antiretroviral penetration and the effects of HIV-1 Tat and morphine among primary human brain endothelial cells, astrocytes, pericytes, and microglia. Neurosci. Lett. 2019, 712, 134475. [Google Scholar] [CrossRef]
- Kim, S.; Hahn, Y.K.; Podhaizer, E.M.; McLane, V.D.; Zou, S.; Hauser, K.F.; E Knapp, P. A central role for glial CCR5 in directing the neuropathological interactions of HIV-1 Tat and opiates. J. Neuroinflamm. 2018, 15, 28. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Phan, T.; Lin, A.; Sardo, L.; Mele, A.R.; Nonnemacher, M.R.; Klase, Z. Morphine exposure exacerbates HIV-1 Tat driven changes to neuroinflammatory factors in cultured astrocytes. PLoS ONE 2020, 15, e0230563. [Google Scholar] [CrossRef]
- Avdoshina, V.; Biggio, F.; Palchik, G.; Campbell, L.A.; Mocchetti, I. Morphine induces the release of CCL5 from astrocytes: Potential neuroprotective mechanism against the HIV protein gp120. Glia 2010, 58, 1630–1639. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Jiang, J.; Pan, P.; Chen, R.; Zhuang, D.; Zhao, F.; Chen, H.; Huang, J.; Su, Q.; Cao, C.; et al. Morphine Increases Lamivudine- and Nevirapine-Induced Human Immunodeficiency Virus-1 Drug-Resistant MutationsIn Vitro. Microb. Drug Resist. 2017, 23, 285–293. [Google Scholar] [CrossRef]
- Rodriguez, M.; Lapierre, J.; Ojha, C.R.; Pawitwar, S.; Karuppan, M.K.M.; Kashanchi, F.; El-Hage, N. Morphine counteracts the antiviral effect of antiretroviral drugs and causes upregulation of p62/SQSTM1 and histone-modifying enzymes in HIV-infected astrocytes. J. Neurovirol. 2019, 25, 263–274. [Google Scholar] [CrossRef]
- Sindberg, G.M.; Callen, S.E.; Banerjee, S.; Meng, J.; Hale, V.L.; Hegde, R.; Cheney, P.D.; Villinger, F.; Roy, S.; Buch, S. Morphine Potentiates Dysbiotic Microbial and Metabolic Shifts in Acute SIV Infection. J. Neuroimmune Pharmacol. 2019, 14, 200–214. [Google Scholar] [CrossRef]
- Acharya, A.; Olwenyi, O.A.; Thurman, M.; Pandey, K.; Morsey, B.M.; Lamberty, B.; Ferguson, N.; Callen, S.; Fang, Q.; Buch, S.J.; et al. Chronic morphine administration differentially modulates viral reservoirs in SIVmac251 infected rhesus macaque model. J. Virol. 2020. [Google Scholar] [CrossRef]
- Wang, X.; Ma, T.-C.; Li, J.-L.; Zhou, Y.; Geller, E.B.; Adler, M.W.; Peng, J.-S.; Zhou, W.; Zhou, D.-J.; Ho, W.-Z. Heroin inhibits HIV-restriction miRNAs and enhances HIV infection of macrophages. Front. Microbiol. 2015, 6, 1230. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, L.; Zhou, Y.; Su, Q.-J.; Li, J.-L.; Ye, L.; Liu, M.-Q.; Zhou, W.; Ho, W.-Z. Heroin Abuse and/or HIV Infection Dysregulate Plasma Exosomal miRNAs. J. Neuroimmune Pharmacol. 2020, 15, 400–408. [Google Scholar] [CrossRef]
- Zhu, J.-W.; Liu, F.-L.; Mu, D.; Deng, D.-Y.; Zheng, Y.-T. Heroin use is associated with lower levels of restriction factors and type I interferon expression and facilitates HIV-1 replication. Microbes Infect. 2017, 19, 288–294. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Tian, S.; Guo, C.J.; Douglas, S.D.; Ho, W. Methadone enhances human immunodeficiency virus infection of human immune cells. J. Infect. Dis. 2002, 185, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.-R.; Wu, D.-D.; Luo, F.; Zhong, C.-J.; Wang, X.; Zhu, N.; Wu, Y.-J.; Hu, H.-T.; Feng, Y.; Wang, X.; et al. Methadone Inhibits Viral Restriction Factors and Facilitates HIV Infection in Macrophages. Front. Immunol. 2020, 11, 1253. [Google Scholar] [CrossRef]
- Springer, S.A.; Qiu, J.; Saber-Tehrani, A.S.; Altice, F.L. Retention on Buprenorphine Is Associated with High Levels of Maximal Viral Suppression among HIV-Infected Opioid Dependent Released Prisoners. PLoS ONE 2012, 7, e38335. [Google Scholar] [CrossRef]
- Gornalusse, G.G.; Vojtech, L.N.; Levy, C.N.; Hughes, S.M.; Kim, Y.; Valdez, R.; Pandey, U.; Ochsenbauer, C.; Astronomo, R.; McElrath, J.; et al. Buprenorphine Increases HIV-1 Infection In Vitro but Does Not Reactivate HIV-1 from Latency. Viruses 2021, 13, 1472. [Google Scholar] [CrossRef]
- Jaureguiberry-Bravo, M.; Kelschenbach, J.; Murphy, A.; Carvallo, L.; Hadas, E.; Tesfa, L.; Scott, T.M.; Rivera-Mindt, M.; Cunningham, C.O.; Arnsten, J.H.; et al. Treatment with buprenorphine prior to EcoHIV infection of mice prevents the development of neurocognitive impairment. J. Leukoc. Biol. 2021, 109, 675–681. [Google Scholar] [CrossRef]
- Kong, L.; Karns, R.; Shata, M.; Brown, J.L.; Lyons, M.S.; Sherman, K.E.; Blackard, J.T. The synthetic opioid fentanyl enhances viral replication in vitro. PLoS ONE 2021, 16, e0249581. [Google Scholar] [CrossRef]
- Kong, L.; Karns, R.; Shata, M.T.M.; Brown, J.L.; Lyons, M.S.; Sherman, K.E.; Blackard, J.T. The synthetic opioid fentanyl increases HIV replication in vitro. In Proceedings of the HIV and Liver Disease, Jackson Hole, WY, USA.
- Ruff, M.R.; Wahl, S.M.; Mergenhagen, S.; Pert, C.B. Opiate receptor-mediated chemotaxis of human monocytes. Neuropeptides 1985, 5, 363–366. [Google Scholar] [CrossRef]
- Van Epps, E.D.; Saland, L. Beta-endorphin and met-enkephalin stimulate human peripheral blood mononuclear cell chemotaxis. J. Immunol. 1984, 132, 3046–3053. [Google Scholar] [PubMed]
- Grimm, M.C.; Ben-Baruch, A.; Taub, D.D.; Howard, O.M.Z.; Resau, J.H.; Wang, J.M.; Ali, H.; Richardson, R.; Snyderman, R.; Oppenheim, J.J. Opiates Transdeactivate Chemokine Receptors: δ and μ Opiate Receptor–mediated Heterologous Desensitization. J. Exp. Med. 1998, 188, 317–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, T.J.; Steele, A.D.; Howard, O.M.Z.; Oppenheim, J.J. Bidirectional Heterologous Desensitization of Opioid and Chemokine Receptors. Ann. N. Y. Acad. Sci. 2000, 917, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Steele, A.D.; Szabo, I.; Bednar, F.; Rogers, T.J. Interactions between opioid and chemokine receptors: Heterologous desensitization. Cytokine Growth Factor Rev. 2002, 13, 209–222. [Google Scholar] [CrossRef]
- Akgun, E.; Javed, M.I.; Lunzer, M.M.; Powers, M.D.; Sham, Y.Y.; Watanabe, Y.; Portoghese, P. Inhibition of inflammatory and neuropathic pain by targeting a mu opioid receptor/chemokine receptor 5 heteromer (MOR-CCR5). J. Med. Chem. 2015, 58, 8647–8657. [Google Scholar] [CrossRef] [Green Version]
- Arnatt, C.K.; Falls, B.A.; Yuan, Y.; Raborg, T.J.; Masvekar, R.R.; El-Hage, N.; Selley, D.E.; Nicola, A.V.; Knapp, P.E.; Hauser, K.F.; et al. Exploration of bivalent ligands targeting putative mu opioid receptor and chemokine receptor CCR5 dimerization. Bioorg. Med. Chem. 2016, 24, 5969–5987. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Wang, H.; Li, M.; Barreto-De-Souza, V.; Reinecke, B.A.; Gunta, R.; Zheng, Y.; Kang, G.; Nassehi, N.; Zhang, H.; et al. Bivalent Ligand Aiming Putative Mu Opioid Receptor and Chemokine Receptor CXCR4 Dimers in Opioid Enhanced HIV-1 Entry. ACS Med. Chem. Lett. 2020, 11, 2318–2324. [Google Scholar] [CrossRef]
- Huang, B.; Wang, H.; Zheng, Y.; Li, M.; Kang, G.; Barreto-De-Souza, V.; Nassehi, N.; Knapp, P.E.; Selley, D.E.; Hauser, K.F.; et al. Structure-Based Design and Development of Chemical Probes Targeting Putative MOR-CCR5 Heterodimers to Inhibit Opioid Exacerbated HIV-1 Infectivity. J. Med. Chem. 2021, 64, 7702–7723. [Google Scholar] [CrossRef]
- Buch, S.; Yao, H.; Guo, M.-L.; Mori, T.; Su, T.-P.; Wang, J. Cocaine and HIV-1 Interplay: Molecular Mechanisms of Action and Addiction. J. Neuroimmune Pharmacol. 2011, 6, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, M.; Weber, J.; Bukrinsky, M.; Simon, G.L. The effects of cocaine on HIV transcription. J. Neurovirol. 2016, 22, 261–274. [Google Scholar] [CrossRef]
- Baum, M.K.; Rafie, C.; Lai, S.; Sales, S.; Page, B.; Campa, A. Crack-Cocaine Use Accelerates HIV Disease Progression in a Cohort of HIV-Positive Drug Users. JAIDS J. Acquir. Immune Defic. Syndr. 2009, 50, 93–99. [Google Scholar] [CrossRef]
- Cook, J.A.; Burke-Miller, J.K.; Cohen, M.H.; Cook, R.L.; Vlahov, D.; Wilson, T.E.; Golub, E.T.; Schwartz, R.M.; Howard, A.A.; Ponath, C.; et al. Crack cocaine, disease progression, and mortality in a multicenter cohort of HIV-1 positive women. AIDS 2008, 22, 1355–1363. [Google Scholar] [CrossRef] [Green Version]
- Carrico, A.W.; Johnson, M.O.; Morin, S.F.; Remien, R.H.; Riley, E.D.; Hecht, F.M.; Fuchs, D. Stimulant use is associated with immune activation and depleted tryptophan among HIV-positive persons on anti-retroviral therapy. Brain Behav. Immun. 2008, 22, 1257–1262. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, N.K.; Williams, R.; Peng, F.; Tsai, Y.-J.; Dhillon, S.; Nicolay, B.; Gadgil, M.; Kumar, A.; Buch, S.J. Cocaine-mediated enhancement of virus replication in macrophages: Implications for human immunodeficiency virus–associated dementia. J. Neurovirol. 2007, 13, 483–495. [Google Scholar] [CrossRef]
- Swepson, C.; Ranjan, A.; Balasubramaniam, M.; Pandhare, J.; Dash, C. Cocaine Enhances HIV-1 Transcription in Macrophages by Inducing p38 MAPK Phosphorylation. Front. Microbiol. 2016, 7, 823. [Google Scholar] [CrossRef] [Green Version]
- Sahu, G.; Farley, K.; El-Hage, N.; Aiamkitsumrit, B.; Fassnacht, R.; Kashanchi, F.; Ochem, A.; Simon, G.L.; Karn, J.; Hauser, K.F.; et al. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR. Virology 2015, 483, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Bagasra, O.; Pomerantz, R.J. Human Immunodeficiency Virus Type 1 Replication in Peripheral Blood Mononuclear Cells in the Presence of Cocaine. J. Infect. Dis. 1993, 168, 1157–1164. [Google Scholar] [CrossRef]
- Napuri, J.; Pilakka-Kanthikeel, S.; Raymond, A.; Agudelo, M.; Yndart-Arias, A.; Saxena, S.K.; Nair, M. Cocaine Enhances HIV-1 Infectivity in Monocyte Derived Dendritic Cells by Suppressing microRNA-155. PLoS ONE 2013, 8, e83682. [Google Scholar] [CrossRef] [Green Version]
- Peterson, P.K.; Gekker, G.; Chao, C.C.; Schut, R.; Verhoef, J.; Edelman, C.K.; Erice, A.; Balfour, H.H. Cocaine amplifies HIV-1 replication in cytomegalovirus-stimulated peripheral blood mononuclear cell cocultures. J. Immunol. 1992, 149, 676–680. [Google Scholar]
- Reynolds, J.L.; Mahajan, S.D.; Bindukumar, B.; Sykes, D.; Schwartz, S.A.; Nair, M.P. Proteomic analysis of the effects of cocaine on the enhancement of HIV-1 replication in normal human astrocytes (NHA). Brain Res. 2006, 1123, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Gekker, G.; Hu, S.; Wentland, M.P.; Bidlack, J.M.; Lokensgard, J.R.; Peterson, P.K. κ-Opioid Receptor Ligands Inhibit Cocaine-Induced HIV-1 Expression in Microglial Cells. J. Pharmacol. Exp. Ther. 2004, 309, 600–606. [Google Scholar] [CrossRef]
- López, O.V.; Gorantla, S.; Segarra, A.C.; Norat, M.C.A.; Álvarez, M.; Skolasky, R.L.; Meléndez, L.M. Sigma-1 Receptor Antagonist (BD1047) Decreases Cathepsin B Secretion in HIV-Infected Macrophages Exposed to Cocaine. J. Neuroimmune Pharmacol. 2019, 14, 226–240. [Google Scholar] [CrossRef] [Green Version]
- Mantri, C.K.; Dash, J.P.; Mantri, J.V.; Dash, C. Cocaine Enhances HIV-1 Replication in CD4+ T Cells by Down-Regulating MiR-125b. PLoS ONE 2012, 7, e51387. [Google Scholar] [CrossRef]
- Mahajan, S.; Aalinkeel, R.; Reynolds, J.; Nair, B.L.; Fernandez, S.B.; Schwartz, S.F.; Nair, M.A. Morphine Exacerbates HIV-1 Viral Protein gp120 Induced Modulation of Chemokine Gene Expression in U373 Astrocytoma Cells. Curr. HIV Res. 2005, 3, 277–288. [Google Scholar] [CrossRef]
- Fiala, M.; Eshleman, A.J.; Cashman, J.; Lin, J.; Lossinsky, A.S.; Suarez, V.; Yang, W.; Zhang, J.; Popik, W.; Singer, E.; et al. Cocaine increases human immunodeficiency virus type 1 neuroinvasion through remodeling brain microvascular endothelial cells. J. Neurovirol. 2005, 11, 281–291. [Google Scholar] [CrossRef]
- Roth, M.D.; Tashkin, D.P.; Choi, R.; Jamieson, B.D.; Zack, J.A.; Baldwin, G. Cocaine Enhances Human Immunodeficiency Virus Replication in a Model of Severe Combined Immunodeficient Mice Implanted with Human Peripheral Blood Leukocytes. J. Infect. Dis. 2002, 185, 701–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, M.D.; Whittaker, K.M.; Choi, R.; Tashkin, D.P.; Baldwin, G.C. Cocaine and -1 receptors modulate HIV infection, chemokine receptors, and the HPA axis in the huPBL-SCID model. J. Leukoc. Biol. 2005, 78, 1198–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doke, M.; Jeganathan, V.; McLaughlin, J.P.; Samikkannu, T. HIV-1 Tat and cocaine impact mitochondrial epigenetics: Effects on DNA methylation. Epigenetics 2020, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.; Reynolds, A. Accessing the cure: Helping patients with hepatitis C overcome barriers to care. Am. J. Manag. Care 2016, 22, s108–s112. [Google Scholar] [PubMed]
- Samikkannu, T.; Rao, K.V.; Ding, H.; Agudelo, M.; Raymond, A.D.; Yoo, C.; Nair, M.P. Immunopathogenesis of HIV Infection in Cocaine Users: Role of Arachidonic Acid. PLoS ONE 2014, 9, e106348. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Compton, W.M.; Jones, C.M.; Einstein, E.B.; Volkow, N.D. Methamphetamine Use, Methamphetamine Use Disorder, and Associated Overdose Deaths among US Adults. JAMA Psychiatry 2021. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Raza, A.; Fraser, S.; Nurgali, K.; Apostolopoulos, V. Methamphetamine and its immune-modulating effects. Maturitas 2019, 121, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Massanella, M.; Gianella, S.; Schrier, R.; Dan, J.M.; Pérez-Santiago, J.; de Oliveira, M.F.; Richman, D.D.; Little, S.J.; Benson, C.A.; Daar, E.S.; et al. Methamphetamine Use in HIV-infected Individuals Affects T-cell Function and Viral Outcome during Suppressive Antiretroviral Therapy. Sci. Rep. 2015, 5, srep13179. [Google Scholar] [CrossRef]
- Fulcher, J.A.; Shoptaw, S.; Makgoeng, S.B.; Elliott, J.; Ibarrondo, F.J.; Ragsdale, A.; Brookmeyer, R.; Anton, P.A.; Gorbach, P.M. Brief Report: Recent Methamphetamine Use Is Associated with Increased Rectal Mucosal Inflammatory Cytokines, Regardless of HIV-1 Serostatus. JAIDS J. Acquir. Immune Defic. Syndr. 2018, 78, 119–123. [Google Scholar] [CrossRef]
- Harms, R.; Morsey, B.; Boyer, C.W.; Fox, H.S.; Sarvetnick, N. Methamphetamine Administration Targets Multiple Immune Subsets and Induces Phenotypic Alterations Suggestive of Immunosuppression. PLoS ONE 2012, 7, e49897. [Google Scholar] [CrossRef] [Green Version]
- King, W.D.; Larkins, S.; Hucks-Ortiz, C.; Wang, P.-C.; Gorbach, P.M.; Veniegas, R.; Shoptaw, S. Factors Associated with HIV Viral Load in a Respondent Driven Sample in Los Angeles. AIDS Behav. 2009, 13, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Verhalen, B.; Starrett, G.J.; Harris, R.S.; Jiang, M. Functional Upregulation of the DNA Cytosine Deaminase APOBEC3B by Polyomaviruses. J. Virol. 2016, 90, 6379–6386. [Google Scholar] [CrossRef] [Green Version]
- Ellis, R.J.; Childers, M.E.; Cherner, M.; Lazzaretto, D.; Letendre, S.; HIV Neurobehavioral Research Center Group. Increased Human Immunodeficiency Virus Loads in Active Methamphetamine Users Are Explained by Reduced Effectiveness of Antiretroviral Therapy. J. Infect. Dis. 2003, 188, 1820–1826. [Google Scholar] [CrossRef] [Green Version]
- Cai, N.S.; Cadet, J.L. The combination of methamphetamine and of the HIV protein, Tat, induces death of the human neuroblastoma cell line, SH-SY5Y. Synapse 2008, 62, 551–552. [Google Scholar] [CrossRef]
- Langford, D.; Grigorian, A.; Hurford, R.; Adame, A.; Crews, L.; Masliah, E. The role of mitochondrial alterations in the combined toxic effects of human immunodeficiency virus Tat protein and methamphetamine on calbindin positive-neurons. J. Neurovirol. 2004, 10, 327–337. [Google Scholar] [CrossRef]
- Cen, P.; Ye, L.; Su, Q.-J.; Wang, X.; Li, J.-L.; Lin, X.-Q.; Liang, H.; Ho, W. Methamphetamine Inhibits Toll-Like Receptor 9-Mediated Anti-HIV Activity in Macrophages. AIDS Res. Hum. Retrovir. 2013, 29, 1129–1137. [Google Scholar] [CrossRef] [Green Version]
- Mantri, C.K.; Mantri, J.V.; Pandhare, J.; Dash, C. Methamphetamine inhibits HIV-1 replication in CD4+ T cells by modulating anti-HIV-1 miRNA expression. Am. J. Pathol. 2014, 184, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Wang, X.; Chen, H.; Song, L.; Ye, L.; Wang, S.-H.; Wang, Y.-J.; Zhou, L.; Ho, W.-Z. Methamphetamine Enhances HIV Infection of Macrophages. Am. J. Pathol. 2008, 172, 1617–1624. [Google Scholar] [CrossRef]
- Lawson, K.S.; Prasad, A.; Groopman, J. Methamphetamine enhances HIV-1 replication in CD4+ T-cells via a novel IL-1b auto-regulatory loop. Front. Immunol. 2020, 11, 136. [Google Scholar] [CrossRef]
- Nair, M.P.; Saiyed, Z.M.; Nair, N.; Gandhi, N.H.; Rodriguez, J.W.; Boukli, N.; Provencio-Vasquez, E.; Malow, R.M.; Miguez-Burbano, M. Methamphetamine enhances HIV-1 infectivity in monocyte derived dendritic cells. J. Neuroimmune Pharmacol. 2009, 4, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Nair, M.P.; Saiyed, Z.M. Effect of methamphetamine on expression of HIV coreceptors and CC-chemokines by dendritic cells. Life Sci. 2011, 88, 987–994. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.; Kulkarni, R.; Shrivastava, A.; Jiang, S.; Lawson, K.; Groopman, J.E. Methamphetamine functions as a novel CD4+ T-cell activator via the sigma-1 receptor to enhance HIV-1 infection. Sci. Rep. 2019, 9, 958. [Google Scholar] [CrossRef]
- Skowronska, M.; McDonald, M.; Velichkovska, M.; Leda, A.R.; Park, M.; Toborek, M. Methamphetamine increases HIV infectivity in neural progenitor cells. J. Biol. Chem. 2018, 293, 296–311. [Google Scholar] [CrossRef] [Green Version]
- Toussi, S.S.; Joseph, A.; Zheng, J.H.; Dutta, M.; Santambrogio, L.; Goldstein, H. Methamphetamine Treatment Increases in Vitro and in Vivo HIV Replication. AIDS Res. Hum. Retrovir. 2009, 25, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Administration, S. Key Substance Use and Mental Health Indicators in the United States: Results from the 2019 National Survey on Drug Use and Health; HHS publication #PEP20-07-01-001; NSDUH series H-55; FRU: Rockville, MD, USA, 2020. [Google Scholar]
- Baliunas, D.; Rehm, J.; Irving, H.; Shuper, P. Alcohol consumption and risk of incident human immunodeficiency virus infection: A meta-analysis. Int. J. Public Health 2010, 55, 159–166. [Google Scholar] [CrossRef]
- Kiene, S.M.; Barta, W.D.; Tennen, H.; Armeli, S. Alcohol, Helping Young Adults to Have Unprotected Sex with Casual Partners: Findings from a Daily Diary Study of Alcohol Use and Sexual Behavior. J. Adolesc. Health 2009, 44, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Hutton, H.E.; Lesko, C.R.; Monroe, A.K.; Alvanzo, A.; McCaul, M.E.; Chander, G. Associations of Drug Use, Violence, and Depressive Symptoms with Sexual Risk Behaviors among Women with Alcohol Misuse. Women’s Health Issues 2018, 28, 367–374. [Google Scholar] [CrossRef]
- La Flair, L.N.; Bradshaw, C.P.; Storr, C.L.; Green, K.M.; Alvanzo, A.A.; Crum, R.M. Intimate Partner Violence and Patterns of Alcohol Abuse and Dependence Criteria among Women: A Latent Class Analysis. J. Stud. Alcohol Drugs 2012, 73, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Lesko, C.R.; Lau, B.; Chander, G.; Moore, R.D. Time Spent with HIV Viral Load > 1500 Copies/mL among Persons Engaged in Continuity HIV Care in an Urban Clinic in the United States, 2010–2015. AIDS Behav. 2018, 22, 3443–3450. [Google Scholar] [CrossRef]
- Williams, E.C.; Hahn, J.A.; Saitz, R.; Bryant, K.; Lira, M.C.; Samet, J.H. Alcohol Use and Human Immunodeficiency Virus (HIV) Infection: Current Knowledge, Implications, and Future Directions. Alcohol. Clin. Exp. Res. 2016, 40, 2056–2072. [Google Scholar] [CrossRef]
- Samuelson, D.R.; Siggins, R.W.; Ruan, S.; Amedee, A.M.; Sun, J.; Zhu, Q.K.; Marasco, W.A.; Taylor, C.M.; Luo, M.; Welsh, D.A.; et al. Alcohol consumption increases susceptibility to pneumococcal pneumonia in a humanized murine HIV model mediated by intestinal dysbiosis. Alcohol 2019, 80, 33–43. [Google Scholar] [CrossRef]
- Jolley, S.E.; Alkhafaf, Q.; Hough, C.; Welsh, D.A. Presence of an Alcohol Use Disorder is Associated with Greater Pneumonia Severity in Hospitalized HIV-Infected Patients. Lung 2016, 194, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Shiu, C.; Barbier, E.; Di Cello, F.; Choi, H.J.; Stins, M. HIV-1 gp120 as Well as Alcohol Affect Blood–Brain Barrier Permeability and Stress Fiber Formation: Involvement of Reactive Oxygen Species. Alcohol. Clin. Exp. Res. 2007, 31, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.-Y.; Chang, M.-H.; Ni, Y.-H.; Chen, H. Survey of hepatitis B surface variant infection in children 15 years after a nationwide vaccination programme in Taiwan. Gut 2004, 53, 1499–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Zha, J.; Nishitani, J.; Chen, H.; Zack, J.A. HIV-1 infection in peripheral blood lymphocytes (PBLs) exposed to alcohol. Virology 2003, 307, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Douglas, S.D.; Metzger, D.S.; Guo, C.; Li, Y.; O’Brien, C.P.; Song, L.; Davis-Vogal, A.; Ho, W. Alcohol potentiates HIV-1 infection of human blood mononuclear phagocytes. Alcohol. Clin. Exp. Res. 2002, 26, 1880–1886. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, O.O.; Xie, Y.; Campbell, R.; Chen, I.S.; Pang, S. Ethanol Stimulation of HIV Infection of Oral Epithelial Cells. JAIDS J. Acquir. Immune Defic. Syndr. 2004, 37, 1445–1453. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Ragupathy, V.; Hewlett, I. The impact of ethanol on increasing HIV-1 replications in U1 cells. Clin. Res. HIV/AIDS 2018, 5, 1048. [Google Scholar]
- Agudelo, M.; Figueroa, G.; Yndart, A.; Casteleiro, G.; Muñoz, K.; Samikkannu, T.; Atluri, V.; Nair, M.P. Alcohol and Cannabinoids Differentially Affect HIV Infection and Function of Human Monocyte-Derived Dendritic Cells (MDDC). Front. Microbiol. 2015, 6, 1452. [Google Scholar] [CrossRef]
- Tang, B.; Li, Y.; Yuan, S.; Tomlinson, S.; He, S. Upregulation of the δ opioid receptor in liver cancer promotes liver cancer progression both in vitro and in vivo. Int. J. Oncol. 2013, 43, 1281–1290. [Google Scholar] [CrossRef]
- Lu, J.; Liu, Z.; Zhao, L.; Tian, H.; Liu, X.; Yuan, C. In vivo and in vitro inhibition of human liver cancer progress by downregulation of the μ-opioid receptor and relevant mechanisms. Oncol. Rep. 2013, 30, 1731–1738. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Wang, L.-C.; Chen, E.-Q.; Chen, X.-B.; Chen, L.-Y.; Liu, L.; Lei, X.-Z.; Liu, C.; Tang, H. Prospective Evaluation of FibroScan for the Diagnosis of Hepatic Fibrosis Compared with Liver Biopsy/AST Platelet Ratio Index and FIB-4 in Patients with Chronic HBV Infection. Dig. Dis. Sci. 2011, 56, 2742–2749. [Google Scholar] [CrossRef]
- Jia, K.; Sun, D.; Ling, S.; Tian, Y.; Yang, X.; Sui, J.; Tang, B.; Wang, L. Activated δ-opioid receptors inhibit hydrogen peroxide-induced apoptosis in liver cancer cells through the PKC/ERK signaling pathwa. Mol. Med. Rep. 2014, 10, 839–847. [Google Scholar] [CrossRef] [Green Version]
- De Minicis, S.; Candelaresi, C.; Marzioni, M.; Saccomano, S.; Roskams, T.; Casini, A.; Risaliti, A.; Salzano, R.; Cautero, N.; di Francesco, F.; et al. Role of endogenous opioids in modulating HSC activity in vitro and liver fibrosis in vivo. Gut 2008, 57, 352–364. [Google Scholar] [CrossRef]
- Jaume, M.; Jacquet, S.; Cavaillès, P.; Macé, G.; Stephan, L.; Blanpied, C.; Demur, C.; Brousset, P.; Dietrich, G. Opioid receptor blockade reduces Fas-induced hepatitis in mice. Hepatology 2004, 40, 1136–1143. [Google Scholar] [CrossRef]
- Ebrahimkhani, M.R.; Kiani, S.; Oakley, F.; Kendall, T.; Shariftabrizi, A.; Tavangar, S.M.; Moezi, L.; Payabvash, S.; Karoon, A.; Hoseininik, H.; et al. Naltrexone, an opioid receptor antagonist, attenuates liver fibrosis in bile duct ligated rats. Gut 2006, 55, 1606–1616. [Google Scholar] [CrossRef]
- Bansal, M. Hepatic stellate cells: Fibrogenic, regenerative or both? Heterogeneity and context are key. Hepatol. Int. 2016, 10, 902–908. [Google Scholar] [CrossRef]
- Ye, L.; Peng, J.S.; Wang, X.; Wang, Y.J.; Luo, G.X.; Ho, W.Z. Methamphetamine enhances Hepatitis C virus replication in human hepatocytes. J. Viral Hepat. 2008, 15, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, T.; Douglas, S.D.; Lai, J.-P.; Xiao, W.-D.; Pleasure, D.E.; Ho, W.-Z. Morphine Enhances Hepatitis C Virus (HCV) Replicon Expression. Am. J. Pathol. 2003, 163, 1167–1175. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Sun, L.; Wang, X.; Zhou, L.; Li, J.; Liu, M.; Wang, F.; Peng, J.; Gui, X.; Zhao, H.; et al. Heroin use promotes HCV infection and dysregulates HCV-related circulating microRNAs. J. Neuroimmune Pharmacol. 2015, 10, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ye, L.; Peng, J.-S.; Wang, C.-Q.; Luo, G.-X.; Zhang, T.; Wan, Q.; Ho, W. Morphine Inhibits Intrahepatic Interferon-α Expression and Enhances Complete Hepatitis C Virus Replication. J. Infect. Dis. 2007, 196, 719–730. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-Q.; Li, Y.; Douglas, S.D.; Wang, X.; Metzger, D.S.; Zhang, T.; Ho, W.-Z. Morphine Withdrawal Enhances Hepatitis C Virus Replicon Expression. Am. J. Pathol. 2005, 167, 1333–1340. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Geng, Y.; He, Q.; Li, M. miRNAs regulate immune response and signaling during hepatitis C virus infection. Eur. J. Med. Res. 2018, 23, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Operskalski, E.A.; Mack, W.J.; Strickler, H.D.; French, A.L.; Augenbraun, M.; Tien, P.C.; Villacres, M.C.; Spencer, L.Y.; DeGiacomo, M.; Kovacs, A. Factors associated with hepatitis C viremia in a large cohort of HIV-infected and -uninfected women. J. Clin. Virol. 2008, 41, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Conry-Cantilena, C.; VanRaden, M.; Gibble, J.; Melpolder, J.; Shakil, A.O.; Viladomiu, L.; Cheung, L.; DiBisceglie, A.; Hoofnagle, J.; Shih, J.W.; et al. Routes of Infection, Viremia, and Liver Disease in Blood Donors Found to Have Hepatitis C Virus Infection. N. Engl. J. Med. 1996, 334, 1691–1696. [Google Scholar] [CrossRef]
- Winetsky, D.; Burack, D.; Antoniou, P.; Garcia, B.; Gordon, P.; Scherer, M. Psychosocial Factors and the Care Cascade for Hepatitis C Treatment Colocated at a Syringe Service Program. J. Infect. Dis. 2020, 222, S392–S400. [Google Scholar] [CrossRef]
- Zarini, G.; Martinez, S.S.; Campa, A.; Sherman, K.; Tamargo, J.; Boyer, J.H.; Teeman, C.; Johnson, A.; Degarege, A.; Greer, P.; et al. Sex Differences, Cocaine Use, and Liver Fibrosis among African Americans in the Miami Adult Studies on HIV Cohort. J. Women’s Health 2020, 29, 1176–1183. [Google Scholar] [CrossRef]
- Martel-Laferrière, V.; Nitulescu, R.; Cox, J.; Cooper, C.; Tyndall, M.; Rouleau, D.; Walmsley, S.; Wong, L.; Klein, M.B.; for the Canadian Co-infection Cohort Study Investigators. Cocaine/crack use is not associated with fibrosis progression measured by AST-to-Platelet Ratio Index in HIV-HCV co-infected patients: A cohort study. BMC Infect. Dis. 2017, 17, 80. [Google Scholar] [CrossRef] [Green Version]
- Tyson, G.L.; Kramer, J.R.; Duan, Z.; Davila, J.A.; Richardson, P.A.; El-Serag, H.B. Prevalence and predictors of hepatitis B virus coinfection in a United States cohort of hepatitis C virus-infected patients. Hepatology 2013, 58, 538–545. [Google Scholar] [CrossRef]
- Jacka, B.; Applegate, T.; Krajden, M.; Olmstead, A.; Harrigan, P.R.; Marshall, B.D.; DeBeck, K.; Milloy, M.J.; Lamoury, F.; Pybus, O.G.; et al. Phylogenetic clustering of hepatitis C virus among people who inject drugs in Vancouver, Canada. Hepatology 2014, 60, 1571–1580. [Google Scholar] [CrossRef] [Green Version]
- Hadland, S.E.; DeBeck, K.; Kerr, T.; Feng, C.; Montaner, J.S.; Wood, E. Prescription opioid injection and risk of hepatitis C in relation to traditional drugs of misuse in a prospective cohort of street youth. BMJ Open 2014, 4, e005419. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.L.; Kerr, T.; Fischer, B.; Zhang, R.; Wood, E. Methamphetamine Injection Independently Predicts Hepatitis C Infection among Street-Involved Youth in a Canadian Setting. J. Adolesc. Health 2009, 44, 302–304. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, E.B.; Jacka, B.; DeBeck, K.; Applegate, T.L.; Harrigan, P.R.; Krajden, M.; Marshall, B.D.L.; Montaner, J.; Lima, V.D.; Olmstead, A.D.; et al. Methamphetamine injecting is associated with phylogenetic clustering of hepatitis C virus infection among street-involved youth in Vancouver, Canada. Drug Alcohol Depend. 2015, 152, 272–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younossi, Z.M.; Zheng, L.; Stepanova, M.; Venkatesan, C.; Mir, H.M. Moderate, excessive or heavy alcohol consumption: Each is significantly associated with increased mortality in patients with chronic hepatitis C. Aliment. Pharmacol. Ther. 2013, 37, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.J.; Pearson, M.; Vutien, P.; Su, F.; Moon, A.M.; Berry, K.; Green, P.K.; Williams, E.C.; Ioannou, G.N. Alcohol Use and Long-Term Outcomes among, U.S. Veterans Who Received Direct-Acting Antivirals for Hepatitis C Treatment. Hepatol. Commun. 2020, 4, 314–324. [Google Scholar] [CrossRef]
- Bessesen, M.; Ives, D.; Condreay, L.; Lawrence, S.; Sherman, K. Chronic Active Hepatitis B Exacerbations in Human Immunodeficiency Virus-Infected Patients Following Development of Resistance to or Withdrawal of Lamivudine. Clin. Infect. Dis. 1999, 28, 1032–1035. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Takahashi, T.; Takahashi, S.; Watanabe, K.; Boku, S.; Matsui, S.; Arai, F.; Asakura, H. Difference in quasispecies of the hypervariable region 1 of hepatitis C virus between alcoholic and non-alcoholic patients. J. Gastroenterol. Hepatol. 2001, 16, 416–423. [Google Scholar] [CrossRef]
- McCartney, E.M.; Beard, M.R. Impact of alcohol on hepatitis C virus replication and interferon signaling. World J. Gastroenterol. 2010, 16, 1337–1343. [Google Scholar] [CrossRef]
- Hou, W.; Bukong, T.N.; Kodys, K.; Szabo, G. Alcohol Facilitates HCV RNA Replication Via Up-Regulation of miR-122 Expression and Inhibition of Cyclin G1 in Human Hepatoma Cells. Alcohol. Clin. Exp. Res. 2013, 37, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Laskus, T.; Operskalski, E.A.; Radkowski, M.; Wilkinson, J.; Mack, W.J.; Degiacomo, M.; Al-Harthi, L.; Chen, Z.; Xu, J.; Kovacs, A. Negative-Strand Hepatitis C Virus (HCV) RNA in Peripheral Blood Mononuclear Cells from Anti-HCV-Positive/HIV-Infected Women. J. Infect. Dis. 2007, 195, 124–133. [Google Scholar] [CrossRef]
- Bedogni, G.; Miglioli, L.; Masutti, F.; Ferri, S.; Castiglione, A.; Lenzi, M.; Crocè, L.S.; Granito, A.; Tiribelli, C.; Bellentani, S. Natural Course of Chronic HCV and HBV Infection and Role of Alcohol in the General Population: The Dionysos Study. Am. J. Gastroenterol. 2008, 103, 2248–2253. [Google Scholar] [CrossRef]
- Larkin, J.; Clayton, M.M.; Liu, J.; Feitelson, M. Chronic ethanol consumption stimulates hepatitis B virus gene expression and replication in transgenic mice. Hepatology 2001, 34, 792–797. [Google Scholar] [CrossRef]
- Ganne-Carrié, N.; Kremsdorf, D.; Garreau, F.; Thevenin, M.; Petit, M.-A.; Nalpas, B.; Bréchot, C. Effects of ethanol on hepatitis B virus Pre-S/S gene expression in the human hepatocellular carcinoma derived HEP G2 hepatitis B DNA positive cell line. J. Hepatol. 1995, 23, 153–159. [Google Scholar] [CrossRef]
- Pacek, L.R.; Crum, R.M. A review of the literature concerning HIV and cigarette smoking: Morbidity and mortality, associations with individual- and social-level characteristics, and smoking cessation efforts. Addict. Res. Theory 2015, 23, 10–23. [Google Scholar] [CrossRef]
- Shuter, J.; Reddy, K.P.; Hyle, E.P.; Stanton, C.A.; Rigotti, N.A. Harm reduction for smokers living with HIV. Lancet HIV 2021, 8, e652–e658. [Google Scholar] [CrossRef]
- Valiathan, R.; Miguez, M.J.; Patel, B.; Arheart, K.L.; Asthana, D. Tobacco Smoking Increases Immune Activation and Impairs T-Cell Function in HIV Infected Patients on Antiretrovirals: A Cross-Sectional Pilot Study. PLoS ONE 2014, 9, e97698. [Google Scholar] [CrossRef] [Green Version]
- Ande, A.; McArthur, C.; Ayuk, L.; Awasom, C.; Achu, P.N.; Njinda, A.; Sinha, N.; Rao, P.S.S.; Agudelo, M.; Nookala, A.R.; et al. Effect of Mild-to-Moderate Smoking on Viral Load, Cytokines, Oxidative Stress, and Cytochrome P450 Enzymes in HIV-Infected Individuals. PLoS ONE 2015, 10, e0122402. [Google Scholar] [CrossRef] [Green Version]
- Wojna, V.; Robles, L.; Skolasky, R.; Mayo, R.; Selnes, O.; De La Torre, T.; Maldonado, E.; Nath, A.; Meléndez, L.M.; Lasalde-Dominicci, J. Associations of cigarette smoking with viral immune and cognitive function in human immunodeficiency virus–seropositive women. J. Neurovirol. 2007, 13, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Abbud, R.A.; Finegan, C.K.; Guay, L.A.; Rich, E.A. Enhanced Production of Human Immunodeficiency Virus Type 1 by In Vitro-Infected Alveolar Macrophages from Otherwise Healthy Cigarette Smokers. J. Infect. Dis. 1995, 172, 859–863. [Google Scholar] [CrossRef]
- Zhao, L.; Li, F.; Zhang, Y.; Elbourkadi, N.; Wang, Z.; Yu, C.; Taylor, E.W. Mechanisms and genes involved in enhancement of HIV infectivity by tobacco smoke. Toxicology 2010, 278, 242–248. [Google Scholar] [CrossRef]
- Rock, R.B.; Gekker, G.; Aravalli, R.N.; Hu, S.; Sheng, W.S.; Peterson, P.K. Potentiation of HIV-1 expression in microglial cells by nicotine: Involvement of transforming growth factor-β1. J. Neuroimmune Pharmacol. 2008, 3, 143–149. [Google Scholar] [CrossRef]
- Haque, S.; Sinha, N.; Ranjit, S.; Midde, N.M.; Kashanchi, F.; Kumar, S. Monocyte-derived exosomes upon exposure to cigarette smoke condensate alter their characteristics and show protective effect against cytotoxicity and HIV-1 replication. Sci. Rep. 2017, 7, 16120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, P.; Ande, A.; Sinha, N.; Kumar, A.; Kumar, S. Effects of Cigarette Smoke Condensate on Oxidative Stress, Apoptotic Cell Death, and HIV Replication in Human Monocytic Cells. PLoS ONE 2016, 11, e0155791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okafor, C.N.; Zhou, Z.; Ii, L.E.B.; Kelso, N.E.; Whitehead, N.E.; Harman, J.S.; Cook, C.; Cook, R.L. Marijuana use and viral suppression in persons receiving medical care for HIV-infection. Am. J. Drug Alcohol Abus. 2017, 43, 103–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kipp, A.M.; Rebeiro, P.F.; Shepherd, B.E.; Brinkley-Rubinstein, L.; Turner, M.; Bebawy, S.; Sterling, T.R.; Hulgan, T. Daily Marijuana Use is Associated with Missed Clinic Appointments among HIV-Infected Persons Engaged in HIV Care. AIDS Behav. 2017, 21, 1996–2004. [Google Scholar] [CrossRef]
- Lake, S.; Kerr, T.; Capler, R.; Shoveller, J.; Montaner, J.; Milloy, M.-J. High-intensity cannabis use and HIV clinical outcomes among HIV-positive people who use illicit drugs in Vancouver, Canada. Int. J. Drug Policy 2017, 42, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Milloy, M.-J.; Marshall, B.; Kerr, T.; Richardson, L.; Hogg, R.; Guillemi, S.; Montaner, J.S.G.; Wood, E. High-intensity cannabis use associated with lower plasma human immunodeficiency virus-1 RNA viral load among recently infected people who use injection drugs. Drug Alcohol Rev. 2015, 34, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Chaillon, A.; Nakazawa, M.; Anderson, C.; Christensen-Quick, A.; Ellis, R.J.; Franklin, D.; Morris, S.R.; Gianella, S. Effect of Cannabis Use on Human Immunodeficiency Virus DNA during Suppressive Antiretroviral Therapy. Clin. Infect. Dis. 2020, 70, 140–143. [Google Scholar] [CrossRef]
- Hurd, Y.L.; Yoon, M.; Manini, A.F.; Hernandez, S.; Olmedo, R.; Ostman, M.; Jutras-Aswad, D. Early Phase in the Development of Cannabidiol as a Treatment for Addiction: Opioid Relapse Takes Initial Center Stage. Neurotherapeutics 2015, 12, 807–815. [Google Scholar] [CrossRef]
- Rizzo, M.D.; Henriquez, J.E.; Blevins, L.K.; Bach, A.; Crawford, R.B.; Kaminski, N.E. Targeting Cannabinoid Receptor 2 on Peripheral Leukocytes to Attenuate Inflammatory Mechanisms Implicated in HIV-Associated Neurocognitive Disorder. J. Neuroimmune Pharmacol. 2020, 15, 780–793. [Google Scholar] [CrossRef]
- Maggirwar, S.B.; Khalsa, J.H. The Link between Cannabis Use, Immune System, and Viral Infections. Viruses 2021, 13, 1099. [Google Scholar] [CrossRef]
- Nordmann, S.; Vilotitch, A.; Roux, P.; Esterle, L.; Spire, B.; Marcellin, F.; Salmon-Ceron, D.; Dabis, F.; Chas, J.; Rey, D.; et al. Daily cannabis and reduced risk of steatosis in human immunodeficiency virus and hepatitis C virus-co-infected patients (ANRS CO13-HEPAVIH). J. Viral Hepat. 2018, 25, 171–179. [Google Scholar] [CrossRef]
- Becker, W.C.; Fiellin, D.A. When Epidemics Collide: Coronavirus Disease 2019 (COVID-19) and the Opioid Crisis. Ann. Intern. Med. 2020, 173, 59–60. [Google Scholar] [CrossRef] [Green Version]
- N.V. COVID-19: Potential Implications for Individuals with Substance Use Disorders: National Institute of Drug Abuse. 2020. Available online: https://www.drugabuse.gov/about-nida/noras-blog/2020/04/covid-19-potential-implications-individuals-substance-use-disorders (accessed on 22 August 2021).
- Friedman, J.; Akre, S. COVID-19 and the Drug Overdose Crisis: Uncovering the Deadliest Months in the United States, January–July 2020. Am. J. Public Health 2021, 111, 1284–1291. [Google Scholar] [CrossRef]
- DiGennaro, C.; Garcia, G.-G.P.; Stringfellow, E.J.; Wakeman, S.; Jalali, M.S. Changes in characteristics of drug overdose death trends during the COVID-19 pandemic. Int. J. Drug Policy 2021, 98, 103392. [Google Scholar] [CrossRef]
- Macmadu, A.; Batthala, S.; Gabel, A.M.C.; Rosenberg, M.; Ganguly, R.; Yedinak, J.L.; Hallowell, B.D.; Scagos, R.P.; Samuels, E.A.; Cerdá, M.; et al. Comparison of Characteristics of Deaths from Drug Overdose before vs. during the COVID-19 Pandemic in Rhode Island. JAMA Netw. Open 2021, 4, e2125538. [Google Scholar] [CrossRef]
- Rodda, L.N.; West, K.L.; Lesaint, K.T. Opioid Overdose–Related Emergency Department Visits and Accidental Deaths during the COVID-19 Pandemic. J. Urban Health 2020, 97, 808–813. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Kaelber, D.C.; Xu, R.; Volkow, N.D. COVID-19 risk and outcomes in patients with substance use disorders: Analyses from electronic health records in the United States. Mol. Psychiatry 2021, 26, 30–39. [Google Scholar] [CrossRef]
- Morin, K.A.; Acharya, S.; Eibl, J.K.; Marsh, D.C. Evidence of increased Fentanyl use during the COVID-19 pandemic among opioid agonist treatment patients in Ontario, Canada. Int. J. Drug Policy 2021, 90, 103088. [Google Scholar] [CrossRef]
- Niles, J.K.; Gudin, J.; Radcliff, J.; Kaufman, H.W. The Opioid Epidemic within the COVID-19 Pandemic: Drug Testing in 2020. Popul. Health Manag. 2021, 24, S43–S51. [Google Scholar] [CrossRef]
- Dolati-Somarin, A.; Abd-Nikfarjam, B. The Reasons for Higher Mortality Rate in Opium Addicted Patients with COVID-19: A Narrative Review. Iran. J. Public Health 2021, 50, 470–479. [Google Scholar] [CrossRef]
- Suzuki, S.; Carlos, M.P.; Chuang, L.F.; Torres, J.V.; Doi, R.H.; Chuang, R.Y. Methadone induces CCR5 and promotes AIDS virus infection. FEBS Lett. 2002, 519, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Peterson, P.K.; Sharp, B.M.; Gekker, G.; Portoghese, P.S.; Sannerud, K.; Balfour, H.H., Jr. Morphine promotes the growth of HIV-1 in human peripheral blood mononuclear cell cocultures. AIDS 1990, 4, 869–873. [Google Scholar] [CrossRef]
- Ho, W.-Z.; Guo, C.; Yuan, C.-S.; Douglas, S.D.; Moss, J. Methylnaltrexone Antagonizes Opioid-Mediated Enhancement of HIV Infection of Human Blood Mononuclear Phagocytes. J. Pharmacol. Exp. Ther. 2003, 307, 1158–1162. [Google Scholar] [CrossRef] [Green Version]
- Homan, J.W.; Steele, A.D.; Martinand-Mari, C.; Rogers, T.J.; Henderson, E.E.; Charubala, R.; Pfleiderer, W.; Reichenbach, N.L.; Suhadolnik, R.J. Inhibition of morphine-potentiated HIV-1 replication in peripheral blood mononuclear cells with the nuclease-resistant 2-5A agonist analog, 2-5A(N6B). J. Acquir. Immune Defic. Syndr. 2002, 30, 9–20. [Google Scholar] [CrossRef]
- Wang, X.; Tan, N.; Douglas, S.D.; Zhang, T.; Wang, Y.-J.; Ho, W.-Z. Morphine inhibits CD8+ T cell-mediated, noncytolytic, anti-HIV activity in latently infected immune cells. J. Leukoc. Biol. 2005, 78, 772–776. [Google Scholar] [CrossRef] [Green Version]
- Springer, S.A.; Di Paola, A.; Azar, M.M.; Barbour, R.; Biondi, B.; Desabrais, M.; Lincoln, T.; Skiest, D.J.; Altice, F. Extended-Release Naltrexone Improves Viral Suppression among Incarcerated Persons Living with HIV with Opioid Use Disorders Transitioning to the Community: Results of a Double-Blind, Placebo-Controlled Randomized Trial. JAIDS J. Acquir. Immune Defic. Syndr. 2018, 78, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Macías, J.; Morano, L.E.; Téllez, F.; Granados, R.; Rivero-Juárez, A.; Palacios, R.; Ríos, M.; Merino, D.; Pérez-Pérez, M.; Collado, A.; et al. Response to direct-acting antiviral therapy among ongoing drug users and people receiving opioid substitution therapy. J. Hepatol. 2019, 71, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Ing Lorenzini, K.; Girardin, F. Direct-acting antiviral interactions with opioids, alcohol or illicit drugs of abuse in HCV-infected patients. Liver Int. 2020, 40, 32–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgess, S.; Partovi, N.; Yoshida, E.M.; Erb, S.R.; Azalgara, V.M.; Hussaini, T. Drug interactions with direct-acting antivirals for hepatitis C: Implications for HIV and transplant patients. Ann. Pharmacother. 2015, 49, 674–687. [Google Scholar] [CrossRef] [PubMed]
- Gruber, V.A.; McCance-Katz, E.F. Methadone, Buprenorphine, and Street Drug Interactions with Antiretroviral Medications. Curr. HIV/AIDS Rep. 2010, 7, 152–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gessain, A.; Cassar, O. Epidemiological aspects and world distribution of HTLV-1 infection. Front. Microbiol. 2012, 3, 388. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blackard, J.T.; Sherman, K.E. Drugs of Abuse and Their Impact on Viral Pathogenesis. Viruses 2021, 13, 2387. https://doi.org/10.3390/v13122387
Blackard JT, Sherman KE. Drugs of Abuse and Their Impact on Viral Pathogenesis. Viruses. 2021; 13(12):2387. https://doi.org/10.3390/v13122387
Chicago/Turabian StyleBlackard, Jason T., and Kenneth E. Sherman. 2021. "Drugs of Abuse and Their Impact on Viral Pathogenesis" Viruses 13, no. 12: 2387. https://doi.org/10.3390/v13122387
APA StyleBlackard, J. T., & Sherman, K. E. (2021). Drugs of Abuse and Their Impact on Viral Pathogenesis. Viruses, 13(12), 2387. https://doi.org/10.3390/v13122387