T Cell Immunity against Influenza: The Long Way from Animal Models Towards a Real-Life Universal Flu Vaccine
Abstract
:1. Introduction
2. Current Influenza Vaccines
3. Heterologous Immunity by T Cells
4. Flu Immunity by Tissue-Resident Memory T Cells in Animal Models and Humans
5. Vaccine Strategies that Establish Pulmonary TRM Responses
6. Clinical Studies of T Cell-Inducing Flu Vaccines
7. Challenges in Establishing TRMs as Protective Correlate
8. Consideration of Cellular Immunity in Vaccination Practices
9. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Iuliano, A.D.; Roguski, K.M.; Chang, H.H.; Muscatello, D.J.; Palekar, R.; Tempia, S.; Cohen, C.; Gran, J.M.; Schanzer, D.; Cowling, B.J.; et al. Estimates of Global Seasonal Influenza-Associated Respiratory Mortality: A Modelling Study. Lancet 2018, 391, 1285–1300. [Google Scholar] [CrossRef]
- Reichert, T.; Chowell, G.; McCullers, J.A. The Age Distribution of Mortality Due to Influenza: Pandemic and Peri-Pandemic. BMC Med. 2012, 10, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mertz, D.; Kim, T.H.; Johnstone, J.; Lam, P.-P.; Science, M.; Kuster, S.P.; Fadel, S.A.; Tran, D.; Fernandez, E.; Bhatnagar, N.; et al. Populations at Risk for Severe or Complicated Influenza Illness: Systematic Review and Meta-Analysis. BMJ 2013, 347, f5061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, B.L.; Fadel, S.A.; Fitzpatrick, T.; Thomas, S.-M. Risk Factors for Serious Outcomes Associated with Influenza Illness in High- versus Low- and Middle-Income Countries: Systematic Literature Review and Meta-Analysis. Influenza Other Respi. Viruses 2018, 12, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, N.P.A.S.; Mueller, J. Updating the Accounts: Global Mortality of the 1918–1920 “Spanish” Influenza Pandemic. Bull. Hist. Med. 2002, 76, 105–115. [Google Scholar] [CrossRef]
- Smith, D.J.; Lapedes, A.S.; de Jong, J.C.; Bestebroer, T.M.; Rimmelzwaan, G.F.; Osterhaus, A.D.M.E.; Fouchier, R.A. Mapping the Antigenic and Genetic Evolution of Influenza Virus. Science 2004, 305, 371–376. [Google Scholar] [CrossRef] [Green Version]
- Nobusawa, E.; Sato, K. Comparison of the Mutation Rates of Human Influenza A and B Viruses. J. Virol. 2006, 80, 3675–3678. [Google Scholar] [CrossRef] [Green Version]
- Garten, R.J.; Davis, C.T.; Russell, C.A.; Shu, B.; Lindstrom, S.; Balish, A.; Sessions, W.M.; Xu, X.; Skepner, E.; Deyde, V.; et al. Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in Humans. Science 2009, 325, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Hobson, D.; Curry, R.L.; Beare, A.S.; Ward-Gardner, A. The Role of Serum Haemagglutination-Inhibiting Antibody in Protection against Challenge Infection with Influenza A2 and B Viruses. Epidemiol. Infect. 1972, 70, 767–777. [Google Scholar] [CrossRef] [Green Version]
- De Jong, J.C.; Palache, A.M.; Beyer, W.E.P.; Rimmelzwaan, G.F.; Boon, A.C.M.; Osterhaus, A.D.M.E. Haemagglutination-Inhibiting Antibody to Influenza Virus. Dev. Biol. 2003, 115, 63–73. [Google Scholar]
- Coudeville, L.; Bailleux, F.; Riche, B.; Megas, F.; Andre, P.; Ecochard, R. Relationship between Haemagglutination-Inhibiting Antibody Titres and Clinical Protection against Influenza: Development and Application of a Bayesian Random-Effects Model. BMC Med. Res. Methodol. 2010, 10, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunning, A.J.; DiazGranados, C.A.; Voloshen, T.; Hu, B.; Landolfi, V.A.; Talbot, H.K. Correlates of Protection against Influenza in the Elderly: Results from an Influenza Vaccine Efficacy Trial. Clin. Vaccine Immunol. 2016, 23, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Van Baalen, C.A.; Els, C.; Sprong, L.; van Beek, R.; van der Vries, E.; Osterhaus, A.D.M.E.; Rimmelzwaan, G.F. Detection of Nonhemagglutinating Influenza A(H3) Viruses by Enzyme-Linked Immunosorbent Assay in Quantitative Influenza Virus Culture. J. Clin. Microbiol. 2014, 52, 1672–1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, B.S.; Li, Y.; Hodinka, R.L.; Hensley, S.E. Recent H3N2 Influenza Virus Clinical Isolates Rapidly Acquire Hemagglutinin or Neuraminidase Mutations When Propagated for Antigenic Analyses. J. Virol. 2014, 88, 10986–10989. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Gu, Y.; Wharton, S.A.; Whittaker, L.; Gregory, V.; Li, X.; Metin, S.; Cattle, N.; Daniels, R.S.; Hay, A.J.; et al. Optimisation of a Micro-Neutralisation Assay and Its Application in Antigenic Characterisation of Influenza Viruses. Influenza Other Respi. Viruses 2015, 9, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Ohmit, S.E.; Petrie, J.G.; Malosh, R.E.; Cowling, B.J.; Thompson, M.G.; Shay, D.K.; Monto, A.S. Influenza Vaccine Effectiveness in the Community and the Household. Clin. Infect. Dis. 2013, 56, 1363–1369. [Google Scholar] [CrossRef] [Green Version]
- Beyer, W.E.P.; McElhaney, J.; Smith, D.J.; Monto, A.S.; Nguyen-Van-Tam, J.S.; Osterhaus, A.D.M.E. Cochrane Re-Arranged: Support for Policies to Vaccinate Elderly People against Influenza. Vaccine 2013, 31, 6030–6033. [Google Scholar] [CrossRef]
- Skowronski, D.; Chambers, C.; Sabaiduc, S.; De Serres, G.; Dickinson, J.; Winter, A.; Drews, S.; Fonseca, K.; Charest, H.; Gubbay, J.; et al. Interim Estimates of 2014/15 Vaccine Effectiveness against Influenza A(H3N2) from Canada’s Sentinel Physician Surveillance Network, January 2015. Eurosurveillance 2015, 20, 21022. [Google Scholar] [CrossRef] [Green Version]
- Francis, T.; Salk, J.E.; Pearson, H.E.; Brown, P.N. Protective Effect of Vaccination Against Induced Influenza A 1. J. Clin. Investig. 1945, 24, 536–546. [Google Scholar] [CrossRef] [Green Version]
- Domnich, A.; Arata, L.; Amicizia, D.; Puig-Barberà, J.; Gasparini, R.; Panatto, D. Effectiveness of MF59-Adjuvanted Seasonal Influenza Vaccine in the Elderly: A Systematic Review and Meta-Analysis. Vaccine 2017, 35, 513–520. [Google Scholar] [CrossRef]
- Shay, D.K.; Chillarige, Y.; Kelman, J.; Forshee, R.A.; Foppa, I.M.; Wernecke, M.; Lu, Y.; Ferdinands, J.M.; Iyengar, A.; Fry, A.M.; et al. Comparative Effectiveness of High-Dose Versus Standard-Dose Influenza Vaccines Among US Medicare Beneficiaries in Preventing Postinfluenza Deaths During 2012–2013 and 2013–2014. J. Infect. Dis. 2017, 215, 510–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, K.; Wei, Y.; Szwajcer, A.; Rabbani, R.; Zarychanski, R.; Abou-Setta, A.M.; Mahmud, S.M. Efficacy and Safety of High-Dose Influenza Vaccine in Elderly Adults: A Systematic Review and Meta-Analysis. Vaccine 2017, 35, 2775–2780. [Google Scholar] [CrossRef] [PubMed]
- Cox, M.M.J.; Izikson, R.; Post, P.; Dunkle, L. Safety, Efficacy, and Immunogenicity of Flublok in the Prevention of Seasonal Influenza in Adults. Ther. Adv. Vaccines 2015, 3, 97–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barr, I.G.; Donis, R.O.; Katz, J.M.; McCauley, J.W.; Odagiri, T.; Trusheim, H.; Tsai, T.F.; Wentworth, D.E. Cell Culture-Derived Influenza Vaccines in the Severe 2017–2018 Epidemic Season: A Step towards Improved Influenza Vaccine Effectiveness. NPJ Vaccines 2018, 3, 44. [Google Scholar] [CrossRef] [PubMed]
- Isakova-Sivak, I.; Chen, L.-M.; Matsuoka, Y.; Voeten, J.T.M.; Kiseleva, I.; Heldens, J.G.M.; van den Bosch, H.; Klimov, A.; Rudenko, L.; Cox, N.J.; et al. Genetic Bases of the Temperature-Sensitive Phenotype of a Master Donor Virus Used in Live Attenuated Influenza Vaccines: A/Leningrad/134/17/57 (H2N2). Virology 2011, 412, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Fischer, W.A.; King, L.S.; Lane, A.P.; Pekosz, A. Restricted Replication of the Live Attenuated Influenza A Virus Vaccine during Infection of Primary Differentiated Human Nasal Epithelial Cells. Vaccine 2015, 33, 4495–4504. [Google Scholar] [CrossRef] [Green Version]
- Belshe, R.B.; Gruber, W.C.; Mendelman, P.M.; Cho, I.; Reisinger, K.; Block, S.L.; Wittes, J.; Iacuzio, D.; Piedra, P.; Treanor, J.; et al. Efficacy of Vaccination with Live Attenuated, Cold-Adapted, Trivalent, Intranasal Influenza Virus Vaccine against a Variant (A/Sydney) Not Contained in the Vaccine. J. Pediatr. 2000, 136, 168–175. [Google Scholar] [CrossRef]
- Hoft, D.F.; Babusis, E.; Worku, S.; Spencer, C.T.; Lottenbach, K.; Truscott, S.M.; Abate, G.; Sakala, I.G.; Edwards, K.M.; Creech, C.B.; et al. Live and Inactivated Influenza Vaccines Induce Similar Humoral Responses, but Only Live Vaccines Induce Diverse T-Cell Responses in Young Children. J. Infect. Dis. 2011, 204, 845–853. [Google Scholar] [CrossRef]
- Gaglani, M.; Pruszynski, J.; Murthy, K.; Clipper, L.; Robertson, A.; Reis, M.; Chung, J.R.; Piedra, P.A.; Avadhanula, V.; Nowalk, M.P.; et al. Influenza Vaccine Effectiveness Against 2009 Pandemic Influenza A(H1N1) Virus Differed by Vaccine Type During 2013–2014 in the United States. J. Infect. Dis. 2016, 213, 1546–1556. [Google Scholar] [CrossRef]
- Jackson, M.L.; Chung, J.R.; Jackson, L.A.; Phillips, C.H.; Benoit, J.; Monto, A.S.; Martin, E.T.; Belongia, E.A.; McLean, H.Q.; Gaglani, M.; et al. Influenza Vaccine Effectiveness in the United States during the 2015–2016 Season. N. Engl. J. Med. 2017, 377, 534–543. [Google Scholar] [CrossRef]
- King, J.P.; McLean, H.Q.; Meece, J.K.; Levine, M.Z.; Spencer, S.M.; Flannery, B.; Belongia, E.A. Vaccine Failure and Serologic Response to Live Attenuated and Inactivated Influenza Vaccines in Children during the 2013–2014 Season. Vaccine 2018, 36, 1214–1219. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.-J.; Crank, M.C.; Shiver, J.; Graham, B.S.; Mascola, J.R.; Nabel, G.J. Next-Generation Influenza Vaccines: Opportunities and Challenges. Nat. Rev. Drug Discov. 2020, 19, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Schulman, J.L.; Kilbourne, E.D. Induction of Partial Specific Heterotypic Immunity in Mice by a Single Infection with Influenza A Virus. J. Bacteriol. 1965, 89, 170–174. [Google Scholar] [CrossRef] [Green Version]
- Yap, K.L.; Ada, G.L.; Mckenzie, I.F.C. Transfer of Specific Cytotoxic T Lymphocytes Protects Mice Inoculated with Influenza Virus. Nature 1978, 273, 238–239. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Askonas, B.A. Biological Properties of an Influenza A Virus-Specific Killer T Cell Clone. Inhibition of Virus Replication in Vivo and Induction of Delayed-Type Hypersensitivity Reactions. J. Exp. Med. 1981, 154, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Lukacher, A.E.; Braciale, V.L.; Braciale, T.J. In Vivo Effector Function of Influenza Virus-Specific Cytotoxic T Lymphocyte Clones Is Highly Specific. J. Exp. Med. 1984, 160, 814–826. [Google Scholar] [CrossRef]
- Jaffe, P.A.; Kuwano, K.; Yamada, A.; Scott, M.; Young, J.F.; Ennis, F.A. Kinetics and Specificity at the Clonal Level of the Cytotoxic T Lymphocyte Response to Influenza Pneumonia. Viral Immunol. 1987, 1, 259–266. [Google Scholar] [CrossRef]
- Liang, S.; Mozdzanowska, K.; Palladino, G.; Gerhard, W. Heterosubtypic Immunity to Influenza Type A Virus in Mice. Effector Mechanisms and Their Longevity. J. Immunol. 1994, 152, 1653–1661. [Google Scholar]
- Christensen, J.P.; Doherty, P.C.; Branum, K.C.; Riberdy, J.M. Profound Protection against Respiratory Challenge with a Lethal H7N7 Influenza A Virus by Increasing the Magnitude of CD8+ T-Cell Memory. J. Virol. 2000, 74, 11690–11696. [Google Scholar] [CrossRef] [Green Version]
- McMichael, A.J.; Gotch, F.M.; Noble, G.R.; Beare, P.A.S. Cytotoxic T-Cell Immunity to Influenza. N. Engl. J. Med. 1983, 309, 13–17. [Google Scholar] [CrossRef]
- Hayward, A.C.; Wang, L.; Goonetilleke, N.; Fragaszy, E.B.; Bermingham, A.; Copas, A.; Dukes, O.; Millett, E.R.C.; Nazareth, I.; Nguyen-Van-Tam, J.S.; et al. Natural T Cell–Mediated Protection against Seasonal and Pandemic Influenza. Results of the Flu Watch Cohort Study. Am. J. Respir. Crit. Care Med. 2015, 191, 1422–1431. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, S.; Begom, S.; Bermingham, A.; Hoschler, K.; Adamson, W.; Carman, W.; Bean, T.; Barclay, W.; Deeks, J.J.; Lalvani, A. Cellular Immune Correlates of Protection against Symptomatic Pandemic Influenza. Nat. Med. 2013, 19, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, T.M.; Li, C.K.F.; Chui, C.S.C.; Huang, A.K.Y.; Perkins, M.; Liebner, J.C.; Lambkin-Williams, R.; Gilbert, A.; Oxford, J.; Nicholas, B.; et al. Preexisting Influenza-Specific CD4+ T Cells Correlate with Disease Protection against Influenza Challenge in Humans. Nat. Med. 2012, 18, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Townsend, A. The Epitopes of Influenza Nucleoprotein Recognized by Cytotoxic T Lymphocytes Can Be Defined with Short Synthetic Peptides. Cell 1986, 44, 959–968. [Google Scholar] [CrossRef]
- Gotch, F.; McMichael, A.; Smith, G.; Moss, B. Identification of Viral Molecules Recognized by Influenza-Specific Human Cytotoxic T Lymphocytes. J. Exp. Med. 1987, 165, 408–416. [Google Scholar] [CrossRef]
- Bennink, J.R.; Yewdell, J.W.; Smith, G.L.; Moss, B. Anti-Influenza Virus Cytotoxic T Lymphocytes Recognize the Three Viral Polymerases and a Nonstructural Protein: Responsiveness to Individual Viral Antigens Is Major Histocompatibility Complex Controlled. J. Virol. 1987, 61, 1098–1102. [Google Scholar] [CrossRef] [Green Version]
- Bennink, J.R.; Yewdell, J.W. Murine Cytotoxic T Lymphocyte Recognition of Individual Influenza Virus Proteins. High Frequency of Nonresponder MHC Class I Alleles. J. Exp. Med. 1988, 168, 1935–1939. [Google Scholar] [CrossRef] [Green Version]
- Reay, P.A.; Jones, I.M.; Gotch, F.M.; Mcmichael, A.J.; Brownlee, G.G. Recognition of the PB1, Neuraminidase, and Matrix Proteins of Influenza Virus A/NT/60/68 by Cytotoxic T Lymphocytes. Virology 1989, 170, 477–485. [Google Scholar] [CrossRef]
- Belz, G.T.; Xie, W.; Altman, J.D.; Doherty, P.C. A Previously Unrecognized H-2Db-Restricted Peptide Prominent in the Primary Influenza A Virus-Specific CD8+T-Cell Response Is Much Less Apparent Following Secondary Challenge. J. Virol. 2000, 74, 3486–3493. [Google Scholar] [CrossRef] [Green Version]
- Belz, G.T.; Xie, W.; Doherty, P.C. Diversity of Epitope and Cytokine Profiles for Primary and Secondary Influenza A Virus-Specific CD8 + T Cell Responses. J. Immunol. 2001, 166, 4627–4633. [Google Scholar] [CrossRef] [Green Version]
- Crowe, S.R.; Miller, S.C.; Brown, D.M.; Adams, P.S.; Dutton, R.W.; Harmsen, A.G.; Lund, F.E.; Randall, T.D.; Swain, S.L.; Woodland, D.L. Uneven Distribution of MHC Class II Epitopes within the Influenza Virus. Vaccine 2006, 24, 457–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assarsson, E.; Bui, H.-H.; Sidney, J.; Zhang, Q.; Glenn, J.; Oseroff, C.; Mbawuike, I.N.; Alexander, J.; Newman, M.J.; Grey, H.; et al. Immunomic Analysis of the Repertoire of T-Cell Specificities for Influenza A Virus in Humans. J. Virol. 2008, 82, 12241–12251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babon, J.A.B.; Cruz, J.; Orphin, L.; Pazoles, P.; Co, M.D.T.; Ennis, F.A.; Terajima, M. Genome-Wide Screening of Human T-Cell Epitopes in Influenza A Virus Reveals a Broad Spectrum of CD4+ T-Cell Responses to Internal Proteins, Hemagglutinins, and Neuraminidases. Hum. Immunol. 2009, 70, 711–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, J.L.; Richards, K.A.; Chaves, F.A.; Sant, A.J. Analyses of the Specificity of CD4 T Cells During the Primary Immune Response to Influenza Virus Reveals Dramatic MHC-Linked Asymmetries in Reactivity to Individual Viral Proteins. Viral Immunol. 2010, 23, 169–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Zanker, D.; Xiao, K.; Wu, C.; Zou, Q.; Chen, W. Immunodominant CD4+ T-Cell Responses to Influenza A Virus in Healthy Individuals Focus on Matrix 1 and Nucleoprotein. J. Virol. 2014, 88, 11760–11773. [Google Scholar] [CrossRef] [Green Version]
- Rimmelzwaan, G.; Boon, A.C.; Voeten, J.T.; Berkhoff, E.G.; Fouchier, R.A.; Osterhaus, A.D.M. Sequence Variation in the Influenza A Virus Nucleoprotein Associated with Escape from Cytotoxic T Lymphocytes. Virus Res. 2004, 103, 97–100. [Google Scholar] [CrossRef]
- Berkhoff, E.G.M.; de Wit, E.; Geelhoed-Mieras, M.M.; Boon, A.C.M.; Symons, J.; Fouchier, R.A.M.; Osterhaus, A.D.M.E.; Rimmelzwaan, G.F. Functional Constraints of Influenza A Virus Epitopes Limit Escape from Cytotoxic T Lymphocytes. J. Virol. 2005, 79, 11239–11246. [Google Scholar] [CrossRef] [Green Version]
- Kaech, S.M.; Cui, W. Transcriptional Control of Effector and Memory CD8+ T Cell Differentiation. Nat. Rev. Immunol. 2012, 12, 749–761. [Google Scholar] [CrossRef]
- Klonowski, K.D.; Williams, K.J.; Marzo, A.L.; Blair, D.A.; Lingenheld, E.G.; Lefrançois, L. Dynamics of Blood-Borne CD8 Memory T Cell Migration In Vivo. Immunity 2004, 20, 551–562. [Google Scholar] [CrossRef] [Green Version]
- Takamura, S.; Yagi, H.; Hakata, Y.; Motozono, C.; McMaster, S.R.; Masumoto, T.; Fujisawa, M.; Chikaishi, T.; Komeda, J.; Itoh, J.; et al. Specific Niches for Lung-Resident Memory CD8 + T Cells at the Site of Tissue Regeneration Enable CD69-Independent Maintenance. J. Exp. Med. 2016, 213, 3057–3073. [Google Scholar] [CrossRef]
- Teijaro, J.R.; Turner, D.; Pham, Q.; Wherry, E.J.; Lefrancois, L.; Farber, D.L. Cutting Edge: Tissue-Retentive Lung Memory CD4 T Cells Mediate Optimal Protection to Respiratory Virus Infection. J. Immunol. 2011, 187, 5510–5514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Hu, Y.; Lee, Y.-T.; Bouchard, K.R.; Benechet, A.; Khanna, K.; Cauley, L.S. Lung-Resident Memory CD8 T Cells (TRM) Are Indispensable for Optimal Cross-Protection against Pulmonary Virus Infection. J. Leukoc. Biol. 2014, 95, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zens, K.D.; Chen, J.K.; Farber, D.L. Vaccine-Generated Lung Tissue–Resident Memory T Cells Provide Heterosubtypic Protection to Influenza Infection. JCI Insight 2016, 1. [Google Scholar] [CrossRef] [PubMed]
- Slütter, B.; Van Braeckel-Budimir, N.; Abboud, G.; Varga, S.M.; Salek-Ardakani, S.; Harty, J.T. Dynamics of Influenza-Induced Lung-Resident Memory T Cells Underlie Waning Heterosubtypic Immunity. Sci. Immunol. 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.L.; Bickham, K.L.; Thome, J.J.; Kim, C.Y.; D’Ovidio, F.; Wherry, E.J.; Farber, D.L. Lung Niches for the Generation and Maintenance of Tissue-Resident Memory T Cells. Mucosal Immunol. 2014, 7, 501–510. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.L.; Goldklang, M.; Cvetkovski, F.; Paik, D.; Trischler, J.; Barahona, J.; Cao, M.; Dave, R.; Tanna, N.; D’Armiento, J.M.; et al. Biased Generation and In Situ Activation of Lung Tissue-Resident Memory CD4 T Cells in the Pathogenesis of Allergic Asthma. J. Immunol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Yoshizawa, A.; Bi, K.; Keskin, D.B.; Zhang, G.; Reinhold, B.; Reinherz, E.L. TCR-PMHC Encounter Differentially Regulates Transcriptomes of Tissue-Resident CD8 T Cells. Eur. J. Immunol. 2018, 48, 128–150. [Google Scholar] [CrossRef] [Green Version]
- Mackay, L.K.; Braun, A.; Macleod, B.L.; Collins, N.; Tebartz, C.; Bedoui, S.; Carbone, F.R.; Gebhardt, T. Cutting Edge: CD69 Interference with Sphingosine-1-Phosphate Receptor Function Regulates Peripheral T Cell Retention. J. Immunol. 2015, 194, 2059–2063. [Google Scholar] [CrossRef] [Green Version]
- Eliasson, D.G.; Omokanye, A.; Schön, K.; Wenzel, U.A.; Bernasconi, V.; Bemark, M.; Kolpe, A.; El Bakkouri, K.; Ysenbaert, T.; Deng, L.; et al. M2e-Tetramer-Specific Memory CD4 T Cells Are Broadly Protective against Influenza Infection. Mucosal Immunol. 2017. [Google Scholar] [CrossRef]
- Ichikawa, T.; Hirahara, K.; Kokubo, K.; Kiuchi, M.; Aoki, A.; Morimoto, Y.; Kumagai, J.; Onodera, A.; Mato, N.; Tumes, D.J.; et al. CD103hi Treg Cells Constrain Lung Fibrosis Induced by CD103lo Tissue-Resident Pathogenic CD4 T Cells. Nat. Immunol. 2019, 20, 1469–1480. [Google Scholar] [CrossRef]
- Anderson, K.G.; Sung, H.; Skon, C.N.; Lefrancois, L.; Deisinger, A.; Vezys, V.; Masopust, D. Cutting Edge: Intravascular Staining Redefines Lung CD8 T Cell Responses. J. Immunol. 2012, 189, 2702–2706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinert, E.M.; Schenkel, J.M.; Fraser, K.A.; Beura, L.K.; Manlove, L.S.; Igyártó, B.Z.; Southern, P.J.; Masopust, D. Quantifying Memory CD8 T Cells Reveals Regionalization of Immunosurveillance. Cell 2015, 161, 737–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapuente, D.; Genannt Bonsmann, M.S.; Maaske, A.; Stab, V.; Heinecke, V.; Watzstedt, K.; Heß, R.; Westendorf, A.M.M.; Bayer, W.; Ehrhardt, C.; et al. IL-1β as Mucosal Vaccine Adjuvant: The Specific Induction of Tissue-Resident Memory T Cells Improves the Heterosubtypic Immunity against Influenza A Viruses. Mucosal Immunol. 2018, 11, 1265–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wein, A.N.; McMaster, S.R.; Takamura, S.; Dunbar, P.R.; Cartwright, E.K.; Hayward, S.L.; McManus, D.T.; Shimaoka, T.; Ueha, S.; Tsukui, T.; et al. CXCR6 Regulates Localization of Tissue-Resident Memory CD8 T Cells to the Airways. J. Exp. Med. 2019, 216, 2748–2762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uddbäck, I.; Cartwright, E.K.; Schøller, A.S.; Wein, A.N.; Hayward, S.L.; Lobby, J.; Takamura, S.; Thomsen, A.R.; Kohlmeier, J.E.; Christensen, J.P. Long-Term Maintenance of Lung Resident Memory T Cells Is Mediated by Persistent Antigen. Mucosal Immunol. 2020. [Google Scholar] [CrossRef]
- Wong, J.; Layton, D.; Wheatley, A.K.; Kent, S.J. Improving Immunological Insights into the Ferret Model of Human Viral Infectious Disease. Influenza Other Respi. Viruses 2019, 13, 535–546. [Google Scholar] [CrossRef]
- Wang, J.; Li, P.; Yu, Y.; Fu, Y.; Jiang, H.; Lu, M.; Sun, Z.; Jiang, S.; Lu, L.; Wu, M.X. Pulmonary Surfactant–Biomimetic Nanoparticles Potentiate Heterosubtypic Influenza Immunity. Science 2020, 367, eaau0810. [Google Scholar] [CrossRef]
- Van de Ven, K.; de Heij, F.; van Dijken, H.; Ferreira, J.A.; de Jonge, J. Systemic and Respiratory T-Cells Induced by Seasonal H1N1 Influenza Protect against Pandemic H2N2 in Ferrets. Commun. Biol. 2020, 3, 564. [Google Scholar] [CrossRef]
- Morgan, S.B.; Hemmink, J.D.; Porter, E.; Harley, R.; Shelton, H.; Aramouni, M.; Everett, H.E.; Brookes, S.M.; Bailey, M.; Townsend, A.M.; et al. Aerosol Delivery of a Candidate Universal Influenza Vaccine Reduces Viral Load in Pigs Challenged with Pandemic H1N1 Virus. J. Immunol. 2016, 196, 5014–5023. [Google Scholar] [CrossRef] [Green Version]
- Tungatt, K.; Dolton, G.; Morgan, S.B.; Attaf, M.; Fuller, A.; Whalley, T.; Hemmink, J.D.; Porter, E.; Szomolay, B.; Montoya, M.; et al. Induction of Influenza-Specific Local CD8 T-Cells in the Respiratory Tract after Aerosol Delivery of Vaccine Antigen or Virus in the Babraham Inbred Pig. PLoS Pathog. 2018, 14, e1007017. [Google Scholar] [CrossRef]
- Holzer, B.; Morgan, S.B.; Matsuoka, Y.; Edmans, M.; Salguero, F.J.; Everett, H.; Brookes, S.M.; Porter, E.; MacLoughlin, R.; Charleston, B.; et al. Comparison of Heterosubtypic Protection in Ferrets and Pigs Induced by a Single-Cycle Influenza Vaccine. J. Immunol. 2018, 200, 4068–4077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martini, V.; Hinchcliffe, M.; Blackshaw, E.; Joyce, M.; McNee, A.; Beverley, P.; Townsend, A.; MacLoughlin, R.; Tchilian, E. Distribution of Droplets and Immune Responses After Aerosol and Intra-Nasal Delivery of Influenza Virus to the Respiratory Tract of Pigs. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Pichyangkul, S.; Yongvanitchit, K.; Limsalakpetch, A.; Kum-Arb, U.; Im-Erbsin, R.; Boonnak, K.; Thitithayanont, A.; Jongkaewwattana, A.; Wiboon-ut, S.; Mongkolsirichaikul, D.; et al. Tissue Distribution of Memory T and B Cells in Rhesus Monkeys Following Influenza A Infection. J. Immunol. 2015, 195, 4378–4386. [Google Scholar] [CrossRef] [Green Version]
- Darrah, P.A.; Zeppa, J.J.; Maiello, P.; Hackney, J.A.; Wadsworth, M.H.; Hughes, T.K.; Pokkali, S.; Swanson, P.A.; Grant, N.L.; Rodgers, M.A.; et al. Prevention of Tuberculosis in Macaques after Intravenous BCG Immunization. Nature 2020, 577, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Jozwik, A.; Habibi, M.S.; Paras, A.; Zhu, J.; Guvenel, A.; Dhariwal, J.; Almond, M.; Wong, E.H.C.; Sykes, A.; Maybeno, M.; et al. RSV-Specific Airway Resident Memory CD8+ T Cells and Differential Disease Severity after Experimental Human Infection. Nat. Commun. 2015, 6, 10224. [Google Scholar] [CrossRef]
- Hombrink, P.; Helbig, C.; Backer, R.A.; Piet, B.; Oja, A.E.; Stark, R.; Brasser, G.; Jongejan, A.; Jonkers, R.E.; Nota, B.; et al. Programs for the Persistence, Vigilance and Control of Human CD8+ Lung-Resident Memory T Cells. Nat. Immunol. 2016, 17, 1467–1478. [Google Scholar] [CrossRef]
- Kumar, B.V.; Ma, W.; Miron, M.; Granot, T.; Guyer, R.S.; Carpenter, D.J.; Senda, T.; Sun, X.; Ho, S.-H.; Lerner, H.; et al. Human Tissue-Resident Memory T Cells Are Defined by Core Transcriptional and Functional Signatures in Lymphoid and Mucosal Sites. Cell Rep. 2017, 20, 2921–2934. [Google Scholar] [CrossRef] [Green Version]
- Oja, A.E.; Piet, B.; Helbig, C.; Stark, R.; van der Zwan, D.; Blaauwgeers, H.; Remmerswaal, E.B.M.; Amsen, D.; Jonkers, R.E.; Moerland, P.D.; et al. Trigger-Happy Resident Memory CD4+ T Cells Inhabit the Human Lungs. Mucosal Immunol. 2018, 11, 654–667. [Google Scholar] [CrossRef]
- Snyder, M.E.; Finlayson, M.O.; Connors, T.J.; Dogra, P.; Senda, T.; Bush, E.; Carpenter, D.; Marboe, C.; Benvenuto, L.; Shah, L.; et al. Generation and Persistence of Human Tissue-Resident Memory T Cells in Lung Transplantation. Sci. Immunol. 2019, 4, eaav5581. [Google Scholar] [CrossRef]
- Guvenel, A.; Jozwik, A.; Ascough, S.; Ung, S.K.; Paterson, S.; Kalyan, M.; Gardener, Z.; Bergstrom, E.; Kar, S.; Habibi, M.S.; et al. Epitope-Specific Airway-Resident CD4+ T Cell Dynamics during Experimental Human RSV Infection. J. Clin. Investig. 2019, 130, 523–538. [Google Scholar] [CrossRef]
- Smith, W.; Andrewes, C.H.; Laidlaw, P.P. A Virus Obtained from Influenza Patients. Lancet 1933, 222, 66–68. [Google Scholar] [CrossRef] [Green Version]
- Margine, I.; Krammer, F. Animal Models for Influenza Viruses: Implications for Universal Vaccine Development. Pathogens 2014, 3, 845–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmink, J.D.; Whittaker, C.J.; Shelton, H.A. Animal Models in Influenza Research. In Influenza Virus; Humana Press: New York, NY, USA, 2018; pp. 401–430. [Google Scholar] [CrossRef]
- Albrecht, R.A.; Liu, W.-C.; Sant, A.J.; Tompkins, S.M.; Pekosz, A.; Meliopoulos, V.; Cherry, S.; Thomas, P.G.; Schultz-Cherry, S. Moving Forward: Recent Developments for the Ferret Biomedical Research Model. MBio 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erbelding, E.J.; Post, D.J.; Stemmy, E.J.; Roberts, P.C.; Augustine, A.D.; Ferguson, S.; Paules, C.I.; Graham, B.S.; Fauci, A.S. A Universal Influenza Vaccine: The Strategic Plan for the National Institute of Allergy and Infectious Diseases. J. Infect. Dis. 2018, 218, 347–354. [Google Scholar] [CrossRef]
- Bodewes, R.; Kreijtz, J.H.C.M.; Geelhoed-Mieras, M.M.; van Amerongen, G.; Verburgh, R.J.; van Trierum, S.E.; Kuiken, T.; Fouchier, R.A.M.; Osterhaus, A.D.M.E.; Rimmelzwaan, G.F. Vaccination against Seasonal Influenza A/H3N2 Virus Reduces the Induction of Heterosubtypic Immunity against Influenza A/H5N1 Virus Infection in Ferrets. J. Virol. 2011, 85, 2695–2702. [Google Scholar] [CrossRef] [Green Version]
- Bodewes, R.; Kreijtz, J.H.C.M.; van Amerongen, G.; Hillaire, M.L.B.; Vogelzang-van Trierum, S.E.; Nieuwkoop, N.J.; van Run, P.; Kuiken, T.; Fouchier, R.A.M.; Osterhaus, A.D.M.E.; et al. Infection of the Upper Respiratory Tract with Seasonal Influenza A(H3N2) Virus Induces Protective Immunity in Ferrets against Infection with A(H1N1)Pdm09 Virus after Intranasal, but Not Intratracheal, Inoculation. J. Virol. 2013, 87, 4293–4301. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Zengel, J.R.; Suguitan, A.L.; Xu, Q.; Wang, W.; Lin, J.; Jin, H. Evaluation of the Humoral and Cellular Immune Responses Elicited by the Live Attenuated and Inactivated Influenza Vaccines and Their Roles in Heterologous Protection in Ferrets. J. Infect. Dis. 2013, 208, 594–602. [Google Scholar] [CrossRef]
- Rosendahl Huber, S.K.; Camps, M.G.M.; Jacobi, R.H.J.; Mouthaan, J.; van Dijken, H.; van Beek, J.; Ossendorp, F.; de Jonge, J. Synthetic Long Peptide Influenza Vaccine Containing Conserved T and B Cell Epitopes Reduces Viral Load in Lungs of Mice and Ferrets. PLoS ONE 2015, 10, e0127969. [Google Scholar] [CrossRef]
- Korenkov, D.A.; Laurie, K.L.; Reading, P.C.; Carolan, L.A.; Chan, K.F.; Isakova-Sivak, I.I.; Smolonogina, T.A.; Subbarao, K.; Barr, I.G.; Villanueva, J.; et al. Safety, Immunogenicity and Protection of A(H3N2) Live Attenuated Influenza Vaccines Containing Wild-Type Nucleoprotein in a Ferret Model. Infect. Genet. Evol. 2018, 64, 95–104. [Google Scholar] [CrossRef]
- Reber, A.J.; Music, N.; Kim, J.H.; Gansebom, S.; Chen, J.; York, I. Extensive T Cell Cross-Reactivity between Diverse Seasonal Influenza Strains in the Ferret Model. Sci. Rep. 2018, 8, 6112. [Google Scholar] [CrossRef] [Green Version]
- McMahon, M.; Asthagiri Arunkumar, G.; Liu, W.-C.; Stadlbauer, D.; Albrecht, R.A.; Pavot, V.; Aramouni, M.; Lambe, T.; Gilbert, S.C.; Krammer, F. Vaccination With Viral Vectors Expressing Chimeric Hemagglutinin, NP and M1 Antigens Protects Ferrets Against Influenza Virus Challenge. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Gooch, K.E.; Marriott, A.C.; Ryan, K.A.; Yeates, P.; Slack, G.S.; Brown, P.J.; Fothergill, R.; Whittaker, C.J.; Carroll, M.W. Heterosubtypic Cross-Protection Correlates with Cross-Reactive Interferon-Gamma-Secreting Lymphocytes in the Ferret Model of Influenza. Sci. Rep. 2019, 9, 2617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, S.J.; Langat, P.; Reid, S.M.; Lam, T.T.-Y.; Cotten, M.; Kelly, M.; Van Reeth, K.; Qiu, Y.; Simon, G.; Bonin, E.; et al. Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013. J. Virol. 2015, 89, 9920–9931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeller, M.A.; Anderson, T.K.; Walia, R.W.; Vincent, A.L.; Gauger, P.C. ISU FLUture: A Veterinary Diagnostic Laboratory Web-Based Platform to Monitor the Temporal Genetic Patterns of Influenza A Virus in Swine. BMC Bioinform. 2018, 19, 397. [Google Scholar] [CrossRef] [PubMed]
- Holzer, B.; Martini, V.; Edmans, M.; Tchilian, E. T and B Cell Immune Responses to Influenza Viruses in Pigs. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Nelli, R.K.; Kuchipudi, S.V.; White, G.A.; Perez, B.; Dunham, S.P.; Chang, K.-C. Comparative Distribution of Human and Avian Type Sialic Acid Influenza Receptors in the Pig. BMC Vet. Res. 2010, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, L.E.; Breum, S.Ø.; Riber, U.; Larsen, L.E.; Jungersen, G. Identification of Swine Influenza Virus Epitopes and Analysis of Multiple Specificities Expressed by Cytotoxic T Cell Subsets. Virol. J. 2014, 11, 163. [Google Scholar] [CrossRef]
- Baratelli, M.; Pedersen, L.E.; Trebbien, R.; Larsen, L.E.; Jungersen, G.; Blanco, E.; Nielsen, J.; Montoya, M. Identification of Cross-Reacting T-Cell Epitopes in Structural and Non-Structural Proteins of Swine and Pandemic H1N1 Influenza A Virus Strains in Pigs. J. Gen. Virol. 2017, 98, 895–899. [Google Scholar] [CrossRef]
- Genzow, M.; Goodell, C.; Kaiser, T.J.; Johnson, W.; Eichmeyer, M. Live Attenuated Influenza Virus Vaccine Reduces Virus Shedding of Newborn Piglets in the Presence of Maternal Antibody. Influenza Other Respi. Viruses 2018, 12, 353–359. [Google Scholar] [CrossRef]
- Loving, C.L.; Lager, K.M.; Vincent, A.L.; Brockmeier, S.L.; Gauger, P.C.; Anderson, T.K.; Kitikoon, P.; Perez, D.R.; Kehrli, M.E. Efficacy in Pigs of Inactivated and Live Attenuated Influenza Virus Vaccines against Infection and Transmission of an Emerging H3N2 Similar to the 2011-2012 H3N2v. J. Virol. 2013, 87, 9895–9903. [Google Scholar] [CrossRef] [Green Version]
- Kitikoon, P.; Gauger, P.C.; Anderson, T.K.; Culhane, M.R.; Swenson, S.; Loving, C.L.; Perez, D.R.; Vincent, A.L. Swine Influenza Virus Vaccine Serologic Cross-Reactivity to Contemporary US Swine H3N2 and Efficacy in Pigs Infected with an H3N2 Similar to 2011-2012 H3N2v. Influenza Other Respi. Viruses 2013, 7, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Abente, E.J.; Rajao, D.S.; Santos, J.; Kaplan, B.S.; Nicholson, T.L.; Brockmeier, S.L.; Gauger, P.C.; Perez, D.R.; Vincent, A.L. Comparison of Adjuvanted-Whole Inactivated Virus and Live-Attenuated Virus Vaccines against Challenge with Contemporary, Antigenically Distinct H3N2 Influenza A Viruses. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masic, A.; Lu, X.; Li, J.; Mutwiri, G.K.; Babiuk, L.A.; Brown, E.G.; Zhou, Y. Immunogenicity and Protective Efficacy of an Elastase-Dependent Live Attenuated Swine Influenza Virus Vaccine Administered Intranasally in Pigs. Vaccine 2010, 28, 7098–7108. [Google Scholar] [CrossRef]
- Kappes, M.A.; Sandbulte, M.R.; Platt, R.; Wang, C.; Lager, K.M.; Henningson, J.N.; Lorusso, A.; Vincent, A.L.; Loving, C.L.; Roth, J.A.; et al. Vaccination with NS1-Truncated H3N2 Swine Influenza Virus Primes T Cells and Confers Cross-Protection against an H1N1 Heterosubtypic Challenge in Pigs. Vaccine 2012, 30, 280–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loving, C.L.; Vincent, A.L.; Pena, L.; Perez, D.R. Heightened Adaptive Immune Responses Following Vaccination with a Temperature-Sensitive, Live-Attenuated Influenza Virus Compared to Adjuvanted, Whole-Inactivated Virus in Pigs. Vaccine 2012, 30, 5830–5838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talker, S.C.; Stadler, M.; Koinig, H.C.; Mair, K.H.; Rodríguez-Gómez, I.M.; Graage, R.; Zell, R.; Dürrwald, R.; Starick, E.; Harder, T.; et al. Influenza A Virus Infection in Pigs Attracts Multifunctional and Cross-Reactive T Cells to the Lung. J. Virol. 2016, 90, 9364–9382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitcher, C.J.; Hagen, S.I.; Walker, J.M.; Lum, R.; Mitchell, B.L.; Maino, V.C.; Axthelm, M.K.; Picker, L.J. Development and Homeostasis of T Cell Memory in Rhesus Macaque. J. Immunol. 2002, 168, 29–43. [Google Scholar] [CrossRef]
- Tanomtong, A.; Khunsook, S.; Chaveerach, A.; Kaensa, W.; Banjongrat, R. Comparative Phylogenetic Studies of Rhesus Monkey (Macaca Mulatta) and Human (Homo Sapiens) Using G-Banding Pattern. Cytologia 2006, 71, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Estes, J.D.; Wong, S.W.; Brenchley, J.M. Nonhuman Primate Models of Human Viral Infections. Nat. Rev. Immunol. 2018, 18, 390–404. [Google Scholar] [CrossRef]
- Weinfurter, J.T.; Brunner, K.; Capuano, S.V.; Li, C.; Broman, K.W.; Kawaoka, Y.; Friedrich, T.C. Cross-Reactive T Cells Are Involved in Rapid Clearance of 2009 Pandemic H1N1 Influenza Virus in Nonhuman Primates. PLoS Pathog. 2011, 7, e1002381. [Google Scholar] [CrossRef] [Green Version]
- Koday, M.T.; Leonard, J.A.; Munson, P.; Forero, A.; Koday, M.; Bratt, D.L.; Fuller, J.T.; Murnane, R.; Qin, S.; Reinhart, T.A.; et al. Multigenic DNA Vaccine Induces Protective Cross-Reactive T Cell Responses against Heterologous Influenza Virus in Nonhuman Primates. PLoS ONE 2017, 12, e0189780. [Google Scholar] [CrossRef] [PubMed]
- Snyder, A.; Makarov, V.; Merghoub, T.; Yuan, J.; Zaretsky, J.M.; Desrichard, A.; Walsh, L.A.; Postow, M.A.; Wong, P.; Ho, T.S.; et al. Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. N. Engl. J. Med. 2014, 371, 2189–2199. [Google Scholar] [CrossRef] [PubMed]
- Caminschi, I.; Lahoud, M.H.; Pizzolla, A.; Wakim, L.M. Zymosan By-Passes the Requirement for Pulmonary Antigen Encounter in Lung Tissue-Resident Memory CD8+ T Cell Development. Mucosal Immunol. 2019, 12, 403–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iborra, S.; Martínez-López, M.; Khouili, S.C.; Enamorado, M.; Cueto, F.J.; Conde-Garrosa, R.; del Fresno, C.; Sancho, D. Optimal Generation of Tissue-Resident but Not Circulating Memory T Cells during Viral Infection Requires Crosspriming by DNGR-1+ Dendritic Cells. Immunity 2016, 45, 847–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrieri-Dramard, L.; Lambrecht, B.; Ferreira, H.L.; Van den Berg, T.; Klatzmann, D.; Bellier, B. Intranasal DNA Vaccination Induces Potent Mucosal and Systemic Immune Responses and Cross-Protective Immunity against Influenza Viruses. Mol. Ther. 2011, 19, 602–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Yuen, P.-W.; Lam, J.K.-W. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives. Pharmaceutics 2014, 6, 378–415. [Google Scholar] [CrossRef] [Green Version]
- Epstein, S.L.; Kong, W.; Misplon, J.A.; Lo, C.-Y.; Tumpey, T.M.; Xu, L.; Nabel, G.J. Protection against Multiple Influenza A Subtypes by Vaccination with Highly Conserved Nucleoprotein. Vaccine 2005, 23, 5404–5410. [Google Scholar] [CrossRef]
- Price, G.E.; Soboleski, M.R.; Lo, C.-Y.; Misplon, J.A.; Quirion, M.R.; Houser, K.V.; Pearce, M.B.; Pappas, C.; Tumpey, T.M.; Epstein, S.L. Single-Dose Mucosal Immunization with a Candidate Universal Influenza Vaccine Provides Rapid Protection from Virulent H5N1, H3N2 and H1N1 Viruses. PLoS ONE 2010, 5, e13162. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Wu, T.-L.; Lasaro, M.O.; Latimer, B.P.; Parzych, E.M.; Bian, A.; Li, Y.; Li, H.; Erikson, J.; Xiang, Z.; et al. A Universal Influenza A Vaccine Based on Adenovirus Expressing Matrix-2 Ectodomain and Nucleoprotein Protects Mice From Lethal Challenge. Mol. Ther. 2010, 18, 2182–2189. [Google Scholar] [CrossRef]
- Vitelli, A.; Quirion, M.R.; Lo, C.-Y.; Misplon, J.A.; Grabowska, A.K.; Pierantoni, A.; Ammendola, V.; Price, G.E.; Soboleski, M.R.; Cortese, R.; et al. Vaccination to Conserved Influenza Antigens in Mice Using a Novel Simian Adenovirus Vector, PanAd3, Derived from the Bonobo Pan Paniscus. PLoS ONE 2013, 8, e55435. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.O.; Kafai, N.M.; Dmitriev, I.P.; Fox, J.M.; Smith, B.K.; Harvey, I.B.; Chen, R.E.; Winkler, E.S.; Wessel, A.W.; Case, J.B.; et al. A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower Respiratory Tracts against SARS-CoV-2. Cell 2020, 183, 169–184.e13. [Google Scholar] [CrossRef] [PubMed]
- Takimoto, T.; Hurwitz, J.L.; Zhan, X.; Krishnamurthy, S.; Prouser, C.; Brown, B.; Coleclough, C.; Boyd, K.; Scroggs, R.A.; Portner, A.; et al. Recombinant Sendai Virus as a Novel Vaccine Candidate for Respiratory Syncytial Virus. Viral Immunol. 2005, 18, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Le, T.L.; Mironova, E.; Garcin, D.; Compans, R.W. Induction of Influenza-Specific Mucosal Immunity by an Attenuated Recombinant Sendai Virus. PLoS ONE 2011, 6, e18780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambe, T.; Carey, J.B.; Li, Y.; Spencer, A.J.; van Laarhoven, A.; Mullarkey, C.E.; Vrdoljak, A.; Moore, A.C.; Gilbert, S.C. Immunity Against Heterosubtypic Influenza Virus Induced By Adenovirus And MVA Expressing Nucleoprotein And Matrix Protein-1. Sci. Rep. 2013, 3, 1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Oduro, J.D.; Boehme, J.D.; Borkner, L.; Ebensen, T.; Heise, U.; Gereke, M.; Pils, M.C.; Krmpotic, A.; Guzmán, C.A.; et al. Mucosal CD8+ T Cell Responses Induced by an MCMV Based Vaccine Vector Confer Protection against Influenza Challenge. PLoS Pathog. 2019, 15, e1008036. [Google Scholar] [CrossRef] [Green Version]
- Lapuente, D.; Ruzsics, Z.; Thirion, C.; Tenbusch, M. Evaluation of Adenovirus 19a as a Novel Vector for Mucosal Vaccination against Influenza A Viruses. Vaccine 2018, 36, 2712–2720. [Google Scholar] [CrossRef]
- Scheerlinck, J.Y. Genetic Adjuvants for DNA Vaccines. Vaccine 2001, 19, 2647–2656. [Google Scholar] [CrossRef]
- Sasaki, S.; Amara, R.R.; Yeow, W.-S.; Pitha, P.M.; Robinson, H.L. Regulation of DNA-Raised Immune Responses by Cotransfected Interferon Regulatory Factors. J. Virol. 2002, 76, 6652–6659. [Google Scholar] [CrossRef] [Green Version]
- Bramson, J.L.; Dayball, K.; Hall, J.R.; Millar, J.B.; Miller, M.; Wan, Y.H.; Lin, R.; Hiscott, J. Super-Activated Interferon-Regulatory Factors Can Enhance Plasmid Immunization. Vaccine 2003, 21, 1363–1370. [Google Scholar] [CrossRef]
- Applequist, S.E.; Rollman, E.; Wareing, M.D.; Lidén, M.; Rozell, B.; Hinkula, J.; Ljunggren, H.-G. Activation of Innate Immunity, Inflammation, and Potentiation of DNA Vaccination through Mammalian Expression of the TLR5 Agonist Flagellin. J. Immunol. 2005, 175, 3882–3891. [Google Scholar] [CrossRef]
- Takeshita, F.; Tanaka, T.; Matsuda, T.; Tozuka, M.; Kobiyama, K.; Saha, S.; Matsui, K.; Ishii, K.J.; Coban, C.; Akira, S.; et al. Toll-Like Receptor Adaptor Molecules Enhance DNA-Raised Adaptive Immune Responses against Influenza and Tumors through Activation of Innate Immunity. J. Virol. 2006, 80, 6218–6224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bongard, N.; Lapuente, D.; Windmann, S.; Dittmer, U.; Tenbusch, M.; Bayer, W. Interference of Retroviral Envelope with Vaccine-Induced CD8+ T Cell Responses Is Relieved by Co-Administration of Cytokine-Encoding Vectors. Retrovirology 2017, 14, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tannig, P.; Peter, A.S.; Lapuente, D.; Klessing, S.; Schmidt, A.; Damm, D.; Tenbusch, M.; Überla, K.; Temchura, V. Genetic Co-Administration of Soluble PD-1 Ectodomains Modifies Immune Responses against Influenza a Virus Induced by DNA Vaccination. Vaccines 2020, 8, 570. [Google Scholar] [CrossRef] [PubMed]
- Tannig, P.; Peter, A.S.A.S.; Lapuente, D.; Klessing, S.; Damm, D.; Tenbusch, M.; Überla, K.; Temchura, V. Modulation of Vaccine-Induced HIV-1-Specific Immune Responses by Co-Electroporation of PD-L1 Encoding DNA. Vaccines 2020, 8, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Braeckel-Budimir, N.; Varga, S.M.; Badovinac, V.P.; Harty, J.T. Repeated Antigen Exposure Extends the Durability of Influenza-Specific Lung-Resident Memory CD8+ T Cells and Heterosubtypic Immunity. Cell Rep. 2018, 24, 3374–3382.e3. [Google Scholar] [CrossRef] [PubMed]
- Uddback, I.E.M.; Pedersen, L.M.I.; Pedersen, S.R.; Steffensen, M.A.; Holst, P.J.; Thomsen, A.R.; Christensen, J.P. Combined Local and Systemic Immunization Is Essential for Durable T-Cell Mediated Heterosubtypic Immunity against Influenza A Virus. Sci. Rep. 2016, 6, 20137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakim, L.M.; Smith, J.; Caminschi, I.; Lahoud, M.H.; Villadangos, J.A. Antibody-Targeted Vaccination to Lung Dendritic Cells Generates Tissue-Resident Memory CD8 T Cells That Are Highly Protective against Influenza Virus Infection. Mucosal Immunol. 2015, 8, 1060–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corder, B.N.; Bullard, B.L.; Poland, G.A.; Weaver, E.A. A Decade in Review: A Systematic Review of Universal Influenza Vaccines in Clinical Trials during the 2010 Decade. Viruses 2020, 12, 1186. [Google Scholar] [CrossRef]
- Pleguezuelos, O.; Robinson, S.; Fernández, A.; Stoloff, G.A.; Mann, A.; Gilbert, A.; Balaratnam, G.; Wilkinson, T.; Lambkin-Williams, R.; Oxford, J.; et al. A Synthetic Influenza Virus Vaccine Induces a Cellular Immune Response That Correlates with Reduction in Symptomatology and Virus Shedding in a Randomized Phase Ib Live-Virus Challenge in Humans. Clin. Vaccine Immunol. 2015, 22, 828–835. [Google Scholar] [CrossRef] [Green Version]
- Pleguezuelos, O.; Dille, J.; de Groen, S.; Oftung, F.; Niesters, H.G.M.; Islam, M.A.; Næss, L.M.; Hungnes, O.; Aldarij, N.; Idema, D.L.; et al. Immunogenicity, Safety, and Efficacy of a Standalone Universal Influenza Vaccine, FLU-v, in Healthy Adults. Ann. Intern. Med. 2020, 172, 453. [Google Scholar] [CrossRef]
- Pleguezuelos, O.; James, E.; Fernandez, A.; Lopes, V.; Rosas, L.A.; Cervantes-Medina, A.; Cleath, J.; Edwards, K.; Neitzey, D.; Gu, W.; et al. Efficacy of FLU-v, a Broad-Spectrum Influenza Vaccine, in a Randomized Phase IIb Human Influenza Challenge Study. NPJ Vaccines 2020, 5, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atsmon, J.; Kate-Ilovitz, E.; Shaikevich, D.; Singer, Y.; Volokhov, I.; Haim, K.Y.; Ben-Yedidia, T. Safety and Immunogenicity of Multimeric-001—A Novel Universal Influenza Vaccine. J. Clin. Immunol. 2012, 32, 595–603. [Google Scholar] [CrossRef] [PubMed]
- BiondVax BiondVax Announces Topline Results from Phase 3 Clinical Trial of the M-001 Universal Influenza Vaccine Candidate. Available online: https://www.biondvax.com/2020/10/biondvax-announces-topline-results-from-phase-3-clinical-trial-of-the-m-001-universal-influenza-vaccine-candidate/ (accessed on 19 November 2020).
- Antrobus, R.D.; Lillie, P.J.; Berthoud, T.K.; Spencer, A.J.; McLaren, J.E.; Ladell, K.; Lambe, T.; Milicic, A.; Price, D.A.; Hill, A.V.S.; et al. A T Cell-Inducing Influenza Vaccine for the Elderly: Safety and Immunogenicity of MVA-NP+M1 in Adults Aged over 50 Years. PLoS ONE 2012, 7, e48322. [Google Scholar] [CrossRef] [PubMed]
- Lillie, P.J.; Berthoud, T.K.; Powell, T.J.; Lambe, T.; Mullarkey, C.; Spencer, A.J.; Hamill, M.; Peng, Y.; Blais, M.-E.; Duncan, C.J.A.; et al. Preliminary Assessment of the Efficacy of a T-Cell-Based Influenza Vaccine, MVA-NP+M1, in Humans. Clin. Infect. Dis. 2012, 55, 19–25. [Google Scholar] [CrossRef]
- Antrobus, R.D.; Coughlan, L.; Berthoud, T.K.; Dicks, M.D.; Hill, A.V.; Lambe, T.; Gilbert, S.C. Clinical Assessment of a Novel Recombinant Simian Adenovirus ChAdOx1 as a Vectored Vaccine Expressing Conserved Influenza A Antigens. Mol. Ther. 2014, 22, 668–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasker, S.; Krishnan, V.; Bart, S.; Suyundikow, A.; Booth, P.-G.; Wight O’Rourke, A.; Zhang, J.; Georges, B.; Roberts, S. 2544. Safety and Immunogenicity of NasoVAX, a Novel Intranasal Influenza Vaccine. Open Forum Infect. Dis. 2018, 5, S68. [Google Scholar] [CrossRef]
- Katz, J.M.; Brown, L.E.; Ffrench, R.A.; White, D.O. Murine Helper T Lymphocyte Response to Influenza Virus: Recognition of Haemagglutinin by Subtype-Specific and Cross-Reactive T Cell Clones. Vaccine 1985, 3, 257–262. [Google Scholar] [CrossRef]
- Babon, J.A.B.; Cruz, J.; Ennis, F.A.; Yin, L.; Terajima, M. A Human CD4+ T Cell Epitope in the Influenza Hemagglutinin Is Cross-Reactive to Influenza A Virus Subtypes and to Influenza B Virus. J. Virol. 2012, 86, 9233–9243. [Google Scholar] [CrossRef] [Green Version]
- Gurwith, M.; Lock, M.; Taylor, E.M.; Ishioka, G.; Alexander, J.; Mayall, T.; Ervin, J.E.; Greenberg, R.N.; Strout, C.; Treanor, J.J.; et al. Safety and Immunogenicity of an Oral, Replicating Adenovirus Serotype 4 Vector Vaccine for H5N1 Influenza: A Randomised, Double-Blind, Placebo-Controlled, Phase 1 Study. Lancet Infect. Dis. 2013, 13, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Peters, W.; Brandl, J.R.; Lindbloom, J.D.; Martinez, C.J.; Scallan, C.D.; Trager, G.R.; Tingley, D.W.; Kabongo, M.L.; Tucker, S.N. Oral Administration of an Adenovirus Vector Encoding Both an Avian Influenza A Hemagglutinin and a TLR3 Ligand Induces Antigen Specific Granzyme B and IFN-γ T Cell Responses in Humans. Vaccine 2013, 31, 1752–1758. [Google Scholar] [CrossRef]
- Keitel, W.A.; Atmar, R.L. Vaccines for Pandemic Influenza: Summary of Recent Clinical Trials. Curr. Top. Microbiol. Immunol. 2009, 333, 431–451. [Google Scholar] [CrossRef] [PubMed]
- Liebowitz, D.; Lindbloom, J.D.; Brandl, J.R.; Garg, S.J.; Tucker, S.N. High Titre Neutralising Antibodies to Influenza after Oral Tablet Immunisation: A Phase 1, Randomised, Placebo-Controlled Trial. Lancet Infect. Dis. 2015, 15, 1041–1048. [Google Scholar] [CrossRef]
- Liebowitz, D.; Gottlieb, K.; Kolhatkar, N.S.; Garg, S.J.; Asher, J.M.; Nazareno, J.; Kim, K.; McIlwain, D.R.; Tucker, S.N. Efficacy, Immunogenicity, and Safety of an Oral Influenza Vaccine: A Placebo-Controlled and Active-Controlled Phase 2 Human Challenge Study. Lancet Infect. Dis. 2020, 20, 435–444. [Google Scholar] [CrossRef]
- Joyce, C.; Scallan, C.D.; Mateo, R.; Belshe, R.B.; Tucker, S.N.; Moore, A.C. Orally Administered Adenoviral-Based Vaccine Induces Respiratory Mucosal Memory and Protection against RSV Infection in Cotton Rats. Vaccine 2018, 36, 4265–4277. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Mao, K.; Chen, X.; Sun, M.; Kawabe, T.; Li, W.; Usher, N.; Zhu, J.; Urban, J.F.; Paul, W.E.; et al. S1P-Dependent Interorgan Trafficking of Group 2 Innate Lymphoid Cells Supports Host Defense. Science 2018, 359, 114–119. [Google Scholar] [CrossRef] [Green Version]
- McElhaney, J.E.; Ewen, C.; Zhou, X.; Kane, K.P.; Xie, D.; Hager, W.D.; Barry, M.B.; Kleppinger, A.; Wang, Y.; Bleackley, R.C. Granzyme B: Correlates with Protection and Enhanced CTL Response to Influenza Vaccination in Older Adults. Vaccine 2009, 27, 2418–2425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizzolla, A.; Nguyen, T.H.O.; Smith, J.M.; Brooks, A.G.; Kedzieska, K.; Heath, W.R.; Reading, P.C.; Wakim, L.M. Resident Memory CD8+ T Cells in the Upper Respiratory Tract Prevent Pulmonary Influenza Virus Infection. Sci. Immunol. 2017, 2. [Google Scholar] [CrossRef]
- Lartey, S.; Zhou, F.; Brokstad, K.A.; Mohn, K.G.-I.; Slettevoll, S.A.; Pathirana, R.D.; Cox, R.J. Live-Attenuated Influenza Vaccine Induces Tonsillar Follicular T Helper Cell Responses That Correlate With Antibody Induction. J. Infect. Dis. 2020, 221, 21–32. [Google Scholar] [CrossRef]
- Mohn, K.G.-I.; Brokstad, K.A.; Islam, S.; Oftung, F.; Tøndel, C.; Aarstad, H.J.; Cox, R.J. Early Induction of Cross-Reactive CD8+ T-Cell Responses in Tonsils After Live-Attenuated Influenza Vaccination in Children. J. Infect. Dis. 2020, 221, 1528–1537. [Google Scholar] [CrossRef]
- Grunwald, T.; Tenbusch, M.; Schulte, R.; Raue, K.; Wolf, H.; Hannaman, D.; de Swart, R.L.; Uberla, K.; Stahl-Hennig, C. Novel Vaccine Regimen Elicits Strong Airway Immune Responses and Control of Respiratory Syncytial Virus in Nonhuman Primates. J. Virol. 2014, 88, 3997–4007. [Google Scholar] [CrossRef] [Green Version]
- Krammer, F.; Weir, J.P.; Engelhardt, O.; Katz, J.M.; Cox, R.J. Meeting Report and Review: Immunological Assays and Correlates of Protection for Next-generation Influenza Vaccines. Influenza Other Respi. Viruses 2020, 14, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Forrest, B.D.; Pride, M.W.; Dunning, A.J.; Capeding, M.R.Z.; Chotpitayasunondh, T.; Tam, J.S.; Rappaport, R.; Eldridge, J.H.; Gruber, W.C. Correlation of Cellular Immune Responses with Protection against Culture-Confirmed Influenza Virus in Young Children. Clin. Vaccine Immunol. 2008, 15, 1042–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodewes, R.; Kreijtz, J.H.C.M.; Rimmelzwaan, G.F. Yearly Influenza Vaccinations: A Double-Edged Sword? Lancet Infect. Dis. 2009, 9, 784–788. [Google Scholar] [CrossRef]
- Viboud, C.; Gostic, K.; Nelson, M.I.; Price, G.E.; Perofsky, A.; Sun, K.; Sequeira Trovão, N.; Cowling, B.J.; Epstein, S.L.; Spiro, D.J. Beyond Clinical Trials: Evolutionary and Epidemiological Considerations for Development of a Universal Influenza Vaccine. PLoS Pathog. 2020, 16, e1008583. [Google Scholar] [CrossRef] [PubMed]
Respiratory TRMs Reported | Methods Used to Define TRMs | Phenotype (Accessory Markers) | Induced by | Contribution to Het-I | Refs | |
---|---|---|---|---|---|---|
Mouse | Yes, CD4+ and CD8+ | Intravascular staining, parabiosis, phenotyping, transcriptomics | CD69+CD103+/− (CD11a, CD49a, PD-1, CD127, CXCR6) | Infection, vaccination | Yes, both CD4+ and CD8+ TRMs provide Het-I | [59,60,61,62,72,73,74,75] |
Ferret | Yes, CD4+ and CD8+ | Lung perfusion to exclude vascular T cells | n.d., but tools available | Infection | Correlation | [76,77,78] |
Domestic pig | Yes, CD4+ and CD8+ | Intravascular staining | (CD27–CCR7–) | Infection, vaccination | Correlation | [79,80,81,82] |
NHPs | Yes, CD4+ and CD8+ | Intravascular staining, phenotyping | CD69+CD103+/− | Infection | n.d. | [83,84] |
Human | Yes, CD4+ and CD8+ | Phenotyping, transplantation, transcriptomics | CD69+CD103+/− (CD49a, CXCR3, CCR5, CCR6, CXCR6, CD101, CD97, CTLA-4, PD-1) | Pre-existing, infection | n.d. (correlation of airway CD8+ TRMs in RSV clearance) | [74,85,86,87,88,89,90] |
Target Group | Sterilizing Immunity Desired ? | T Cell Immunity Desired ? |
---|---|---|
Young children 0–2 years | Yes, preferentially by maternal antibodies in the first months of life | Yes, but approval of genetic vaccines might be difficult in this age group |
Healthy individuals 2–65 years | No | Yes, by genetic vaccinations and natural infections |
Elderly > 65 years | Yes | Yes, by genetic vaccinations |
Adults with chronic health conditions | Yes | Yes, by genetic vaccinations |
Pregnant women | Yes, to protect during pregnancy and for the transfer of maternal antibodies | Yes, preferentially induced before conception |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, A.; Lapuente, D. T Cell Immunity against Influenza: The Long Way from Animal Models Towards a Real-Life Universal Flu Vaccine. Viruses 2021, 13, 199. https://doi.org/10.3390/v13020199
Schmidt A, Lapuente D. T Cell Immunity against Influenza: The Long Way from Animal Models Towards a Real-Life Universal Flu Vaccine. Viruses. 2021; 13(2):199. https://doi.org/10.3390/v13020199
Chicago/Turabian StyleSchmidt, Anna, and Dennis Lapuente. 2021. "T Cell Immunity against Influenza: The Long Way from Animal Models Towards a Real-Life Universal Flu Vaccine" Viruses 13, no. 2: 199. https://doi.org/10.3390/v13020199
APA StyleSchmidt, A., & Lapuente, D. (2021). T Cell Immunity against Influenza: The Long Way from Animal Models Towards a Real-Life Universal Flu Vaccine. Viruses, 13(2), 199. https://doi.org/10.3390/v13020199