Association between Genetic Variants in NOS2 and TNF Genes with Congenital Zika Syndrome and Severe Microcephaly
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Issues
2.2. Sample
2.3. Genetic Analysis
2.4. Statistical Analyses
3. Results
3.1. Sociodemographic and Clinical Profile of Children Who Were In Utero Exposed to ZIKV Infection
3.2. Genetic Susceptibility to CZS and Severe Microcephaly
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Gene | Polymorphism | Commercial Assay Codes † | Allelic Frequency ‡ | Allelic Frequency § | Gene Location | Impact on the Gene or Protein |
---|---|---|---|---|---|---|
VEGFA | rs1570360 | C_1647379_10 | A = 34% | A = 24% | promoter | VEGFA gene expression |
rs2010963 | C_8311614_10 | C = 29% | C = 36% | 5′UTR | VEGFA gene expression | |
rs3025039 | C_16198794_10 | T = 15% | T = 13% | 3′UTR | VEGFA mRNA concentration | |
PTGS2 | rs689465 | C_2517146_10 | C = 12% | - | promoter | In combination with other genetic variants in haplotypes, it affects PTGS2 expression |
NOS3 | rs2070744 | C_15903863_10 | C = 37% | - | intron | NOS3 gene expression |
rs1799983 | C_3219460_20 | T = 32% | T = 29% | missense | eNOS enzyme activity | |
TNF | rs1799724 | C_11918223_10 | T = 9% | - | promoter | TNF gene expression |
rs361525 | C_2215707_10 | A = 4% | A = 5% | promoter | TNF gene expression | |
rs1799964 | C_7514871_10 | C = 20% | C = 24% | promoter | TNF gene expression | |
NOS2 | rs2779249 | C_2593689_10 | A = 29% | - | intron | iNOS protein activity |
rs2297518 | C_11889257_10 | A = 19% | A = 17% | missense | iNOS protein activity |
References
- Schuler-Faccini, L.; Sanseverino, M.T.V.; Vianna, F.S.L.; Da Silva, A.A.; Larrandaburu, M.; Marcolongo-Pereira, C.; Abeche, A.M. Zika virus: A new human teratogen? Implications for women of reproductive age. Clin. Pharmacol. Ther. 2016, 100, 28–30. [Google Scholar] [CrossRef] [PubMed]
- França, G.V.A.; Schuler-Faccini, L.; Oliveira, W.K.; Henriques, C.M.P.; Carmo, E.H.; Pedi, V.D.; Nunes, M.L.; Castro, M.C.; Serruya, S.; Silveira, M.F.; et al. Congenital Zika virus syndrome in Brazil: A case series of the first 1501 livebirths with complete investigation. Lancet 2016, 388, 891–897. [Google Scholar] [CrossRef] [Green Version]
- Jaenisch, T.; Rosenberger, K.D.; Brito, C.; Brady, O.; Brasil, P.; Marques, E.T.A. Risk of microcephaly after Zika virus infection in Brazil, 2015 to 2016. Bull. World Health Organ. 2017, 95, 191–198. [Google Scholar] [CrossRef]
- Nithiyanantham, S.F.; Badawi, A. Maternal infection with Zika virus and prevalence of congenital disorders in infants: Systematic review and meta-analysis. Can. J. Public Health 2019, 110, 638–648. [Google Scholar] [CrossRef]
- Werner, H.; Fazecas, T.; Guedes, B.; Lopes Dos Santos, J.; Daltro, P.; Tonni, G.; Campbell, S.; Araujo Júnior, E. Intrauterine Zika virus infection and microcephaly: Correlation of perinatal imaging and three-dimensional virtual physical models. Ultrasound Obstet. Gynecol. 2016, 47, 657–660. [Google Scholar] [CrossRef] [Green Version]
- Werner, H.; Sodré, D.; Hygino, C.; Guedes, B.; Fazecas, T.; Nogueira, R.; Daltro, P.; Tonni, G.; Lopes, J.; Araujo Júnior, E. First-trimester intrauterine Zika virus infection and brain pathology: Prenatal and postnatal neuroimaging findings. Prenat. Diagn. 2016, 36, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Hammack, C.; Ogden, S.C.; Cheng, Y.; Lee, E.M.; Wen, Z.; Qian, X.; Nguyen, H.N.; Li, Y.; Yao, B.; et al. Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Res. 2016, 44, 8610–8620. [Google Scholar] [CrossRef]
- Garcez, P.P.; Nascimento, J.M.; De Vasconcelos, J.M.; Madeiro Da Costa, R.; Delvecchio, R.; Trindade, P.; Loiola, E.C.; Higa, L.M.; Cassoli, J.S.; Vitória, G.; et al. Zika virus disrupts molecular fingerprinting of human neurospheres. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Caires-Júnior, L.C.; Goulart, E.; Melo, U.S.; Araujo, B.S.H.; Alvizi, L.; Soares-Schanoski, A.; De Oliveira, D.F.; Kobayashi, G.S.; Griesi-Oliveira, K.; Musso, C.M.; et al. Discordant congenital Zika syndrome twins show differential in vitro viral susceptibility of neural progenitor cells. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Lima, M.C.; de Mendonça, L.R.; Rezende, A.M.; Carrera, R.M.; Aníbal-Silva, C.E.; Demers, M.; D’Aiuto, L.; Wood, J.; Chowdari, K.V.; Griffiths, M.; et al. The transcriptional and protein profile from human infected neuroprogenitor cells is strongly correlated to zika virus microcephaly cytokines phenotype evidencing a persistent inflammation in the CNS. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Bayless, N.L.; Greenberg, R.S.; Swigut, T.; Wysocka, J.; Blish, C.A. Zika Virus Infection Induces Cranial Neural Crest Cells to Produce Cytokines at Levels Detrimental for Neurogenesis. Cell Host Microbe 2016, 20, 423–428. [Google Scholar] [CrossRef] [Green Version]
- de Sousa, J.R.; Azevedo, R. do S. da S.; Martins Filho, A.J.; de Araujo, M.T.F.; Cruz, E. do R.M.; Vasconcelos, B.C.B.; Cruz, A.C.R.; de Oliveira, C.S.; Martins, L.C.; Vasconcelos, B.H.B.; et al. In situ inflammasome activation results in severe damage to the central nervous system in fatal Zika virus microcephaly cases. Cytokine 2018, 111, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Diop, F.; Vial, T.; Ferraris, P.; Wichit, S.; Bengue, M.; Hamel, R.; Talignani, L.; Liegeois, F.; Pompon, J.; Yssel, H.; et al. Zika virus infection modulates the metabolomic profile of microglial cells. PLoS ONE 2018, 13, e0206093. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Dang, J.; Qin, Y.; Lichinchi, G.; Bansal, V.; Rana, T.M. Zika virus infection reprograms global transcription of host cells to allow sustained infection. Emerg. Microbes Infect. 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.Q.; Cai, X.H.; Xiao, D.D.; Wu, S.J.; Peng, M.M.; Lin, X.F.; Liu, W.Y.; Fan, Y.C.; Chen, Y.P.; Zheng, M.H. Tumour necrosis factor-α-857T allele reduces the risk of hepatitis B virus infection in an Asian population. J. Viral Hepat. 2012, 19. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.; Yu, M.; Li, Z. Tumor necrosis Factor-α T-857C (rs1799724) polymorphism and risk of cancers: A meta-analysis. Dis. Markers 2016, 2016, 4580323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nourian, M.; Chaleshi, V.; Pishkar, L.; Azimzadeh, P.; Baradaran Ghavami, S.; Balaii, H.; Alinaghi, S.; Shahrokh, S.; Asadzadeh Aghdaei, H.; Zali, M.R. Evaluation of tumor necrosis factor (TNF)-α mRNA expression level and the rs1799964 polymorphism of the TNF-α gene in peripheral mononuclear cells of patients with inflammatory bowel diseases. Biomed. Rep. 2017, 6, 698–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, T.; Kong, Z.; Zhao, H. Relationship between tumor necrosis factor-α rs361525 polymorphism and gastric cancer risk: A meta-analysis. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, F.H.C.; Cordeiro, K.M.; Peixoto, A.B.; Tonni, G.; Moron, A.F.; Feitosa, F.E.L.; Feitosa, H.N.; Araujo Júnior, E. Associated ultrasonographic findings in fetuses with microcephaly because of suspected Zika virus (ZIKV) infection during pregnancy. Prenat. Diagn. 2016, 36, 882–887. [Google Scholar] [CrossRef]
- Santos, C.N.O.; Ribeiro, D.R.; Cardoso Alves, J.; Cazzaniga, R.A.; Magalhães, L.S.; De Souza, M.S.F.; Fonseca, A.B.L.; Bispo, A.J.B.; Porto, R.L.S.; Dos Santos, C.A.; et al. Association between Zika Virus Microcephaly in Newborns with the rs3775291 Variant in Toll-Like Receptor 3 and rs1799964 Variant at Tumor Necrosis Factor-α Gene. J. Infect. Dis. 2019, 220, 1797–1801. [Google Scholar] [CrossRef]
- Antoniou, E.; Orovou, E.; Sarella, A.; Iliadou, M.; Rigas, N.; Palaska, E.; Iatrakis, G.; Dagla, M. Zika virus and the risk of developing microcephaly in infants: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 3806. [Google Scholar] [CrossRef]
- Barbeito-Andrés, J.; Schuler-Faccini, L.; Garcez, P.P. Why is congenital Zika syndrome asymmetrically distributed among human populations? PLoS Biol. 2018, 16. [Google Scholar] [CrossRef]
- Barbeito-Andrés, J.; Pezzuto, P.; Higa, L.M.; Dias, A.A.; Vasconcelos, J.M.; Santos, T.M.P.; Ferreira, J.C.C.G.; Ferreira, R.O.; Dutra, F.F.; Rossi, A.D.; et al. Congenital Zika syndrome is associated with maternal protein malnutrition. Sci. Adv. 2020, 6. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Carmichael, S.L.; Canfield, M.; Song, J.; Shaw, G.M. Socioeconomic status in relation to selected birth defects in a large multicentered US case-control study. Am. J. Epidemiol. 2008, 167, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, S.L.; Nelson, V.; Shaw, G.M.; Wasserman, C.R.; Croen, L.A. Socio-economic status and risk of conotruncal heart defects and orofacial clefts. Paediatr. Perinat. Epidemiol. 2003, 17, 264–271. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Mastropaolo, L.A.; Murchie, R.; Griffiths, C.; Thöni, C.; Elkadri, A.; Xu, W.; Mack, A.; Walters, T.; Guo, C.; et al. Higher activity of the inducible nitric oxide synthase contributes to very early onset inflammatory bowel disease. Clin. Transl. Gastroenterol. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Nikkari, S.T.; Määttä, K.M.; Kunnas, T.A. Functional inducible nitric oxide synthase gene variants associate with hypertension a case-control study in a finnish population-the TAMRISK study. Medicine (United States) 2015, 94, e1958. [Google Scholar] [CrossRef]
- Garry, P.S.; Ezra, M.; Rowland, M.J.; Westbrook, J.; Pattinson, K.T.S. The role of the nitric oxide pathway in brain injury and its treatment—From bench to bedside. Exp. Neurol. 2015, 263, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, M.K.; Kartawy, M.; Amal, H. The role of nitric oxide in brain disorders: Autism spectrum disorder and other psychiatric, neurological, and neurodegenerative disorders. Redox Biol. 2020, 34, 101567. [Google Scholar] [CrossRef] [PubMed]
- Silverman, E.K. Haplotype thinking in lung disease. Proc. Am. Thorac. Soc. 2007, 4, 4–8. [Google Scholar] [CrossRef]
- Raab, S.; Beck, H.; Gaumann, A.; Yüce, A.; Gerber, H.P.; Plate, K.; Hammes, H.P.; Ferrara, N.; Breier, G. Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor. Thromb. Haemost. 2004, 91, 595–605. [Google Scholar] [CrossRef]
- Rosenstein, J.M.; Krum, J.M.; Ruhrberg, C. VEGF in the nervous system. Organogenesis 2010, 6, 107–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, J.P.; Pober, J.S.; Bradley, J.R. Tumour necrosis factor in infectious disease. J. Pathol. 2013, 230, 132–147. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; Zhu, Y.; Sun, Y.; Mao, X.O.; Xie, L.; Greenberg, D.A. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2002, 99, 11946–11950. [Google Scholar] [CrossRef] [Green Version]
- Bogdan, C. Nitric oxide synthase in innate and adaptive immunity: An update. Trends Immunol. 2015, 36, 161–178. [Google Scholar] [CrossRef]
- Ricciotti, E.; Fitzgerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Chavez, G.G.; Taylor, G.; Garaliene, J.; Richardson, G.P.; Korneev, S.A. The temporal expression profile of a Nos3-related natural antisense RNA in the brain suggests a possible role in neurogenesis. Nitric Oxide Biol. Chem. 2017, 71, 27–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, M. Tumor Necrosis Factor Alpha: A Major Cytokine of Brain Neuroinflammation. In Cytokines; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Olivera, G.C.; Ren, X.; Vodnala, S.K.; Lu, J.; Coppo, L.; Leepiyasakulchai, C.; Holmgren, A.; Kristensson, K.; Rottenberg, M.E. Nitric Oxide Protects against Infection-Induced Neuroinflammation by Preserving the Stability of the Blood-Brain Barrier. PLOS Pathog. 2016, 12, e1005442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Liu, J.; Zhou, R.; Ding, X.; Zhang, Q.; Zhang, C.; Li, L. Zika virus infected primary microglia impairs NPCs proliferation and differentiation. Biochem. Biophys. Res. Commun. 2018, 497, 619–625. [Google Scholar] [CrossRef]
- Ensembl Genome Browser 102. Available online: https://www.ensembl.org/index.html (accessed on 4 February 2021).
Variables | Case † (n = 40) | Control (n = 48) | p-Value ‡ |
---|---|---|---|
Sex (n, %) | |||
Male | 23 (57%) | 26 (54%) | 0.754 |
Female | 17 (43%) | 22 (46%) | |
Ethnicity (n, %) | |||
Black | 31 (77%) | 31 (65%) | 0.242 |
White | 9 (23%) | 17 (35%) | |
Weight (kg) | 2.5 (2.2–2.9) | 3.2 (2.8–3.5) | <0.001 * |
Height (cm) | 45.0 (44.0–48.0) | 49.0 (47.0–50.0) | 0.001 * |
Cephalic perimeter (cm) | 29.0 (27.3–31.0) | 35.0 (34.0–36.0) | <0.001 * |
Gestational age at birth (weeks) | 38.0 (37.0–39.0) | 38.0 (37.0–38.7) | 0.522 |
Types of delivery (n, %) | |||
Vaginal delivery | 16/30 (53%) | 5 (10%) | <0.001 * |
Cesarean section | 14/30 (47%) | 43 (90%) | |
Mother’s age (years) | 28.0 (22.5–35.5) | 29.5 (22.0–33.0) | 0.824 |
Father’s age (years) | 28.0 (24.0–37.8) | 31.0 (26.0–35.0) | 0.693 |
Trimester of ZIKV infection (n, %) | |||
1st | 24/30 (80%) | 13 (27%) | <0.001 * |
2nd | 4/30 (13%) | 14 (29%) | |
3rd | 2/30 (7%) | 21 (44%) | |
Exposure during pregnancy (n, %) | |||
Alcohol | 3/35 (9%) | 14 (29%) | 0.028 * |
Smoke | 0/35 | 1 (2%) | 1.000 |
Drugs | 0/35 | 1 (2%) | 1.000 |
Maternal yellow fever vaccine (n, %) | 18/24 (75%) | 35 (73%) | 1.000 |
Maternal educational level (n, %) | |||
Elementary school | 13/38 (34%) | 0 | <0.001 * |
High school | 13/38 (34%) | 2 (4%) | |
Incomplete or complete higher education | 12/38 (32%) | 46 (96%) | |
Monthly family income (n, %) | |||
Less than 3 minimum wages | 23/27 (85%) | 12/25 (46%) | 0.008 * |
Between 3 and 9 minimum wages | 4/27 (15%) | 12/25 (46%) | |
More than 9 minimum wages | 0 | 2/25 (8%) |
Gene | Polymorphism | Allele/Genotype | Case (n = 40) | Control (n = 48) | p-Value † |
---|---|---|---|---|---|
VEGFA (n, %) | rs1570360 | G | 70 (87%) | 72 (75%) | 0.054 |
A | 10 (13%) | 24 (25%) | |||
GG | 30 (75%) | 28 (58%) | 0.109 | ||
GA | 10 (25%) | 16 (33%) | |||
AA | 0 | 4 (9%) | |||
rs2010963 | G | 39 (49%) | 47 (49%) | 1.000 | |
C | 41 (51%) | 49 (51%) | |||
GG | 11 (27%) | 11 (23%) | 0.821 | ||
GC | 18 (46%) | 25 (52%) | |||
CC | 11 (27%) | 12 (25%) | |||
rs3025039 | C | 61 (76%) | 84 (87%) | 0.073 | |
T | 19 (24%) | 12 (13%) | |||
CC | 25 (63%) | 36 (75%) | 0.084 | ||
CT | 11 (27%) | 12 (25%) | |||
TT | 4 (10%) | 0 | |||
PTGS2 (n, %) | rs689465 | T | 68 (85%) | 77 (80%) | 0.434 |
C | 12 (15%) | 19 (20%) | |||
TT | 29 (73%) | 30 (63%) | 0.746 | ||
TC | 10 (25%) | 17 (35%) | |||
CC | 1 (2%) | 1 (2%) | |||
NOS3 (n, %) | rs2070744 | T | 57 (71%) | 63 (66%) | 0.516 |
C | 23 (29%) | 33 (34%) | |||
TT | 20 (50%) | 21 (44%) | 0.679 | ||
TC | 17 (42%) | 21 (44%) | |||
CC | 3 (8%) | 6 (12%) | |||
rs1799983 | G | 65 (81%) | 73 (76%) | 0.464 | |
T | 15 (19%) | 23 (24%) | |||
GG | 27 (67%) | 25 (52%) | 0.045 * | ||
TG | 11 (28%) | 23 (48%) | |||
TT | 2 (5%) | 0 | |||
TNF (n, %) | rs1799724 | C | 70 (87%) | 86 (90%) | 0.812 |
T | 10 (13%) | 10 (10%) | |||
CC | 31 (78%) | 40 (83%) | 0.606 | ||
CT | 8 (20%) | 6 (13%) | |||
TT | 1 (2%) | 2 (4%) | |||
rs361525 | G | 76 (95%) | 93 (97%) | 0.703 | |
A | 4 (5%) | 3 (3%) | |||
GG | 36 (90%) | 45 (94%) | 0.694 | ||
GA | 4 (10%) | 3 (6%) | |||
rs1799964 | T | 63 (79%) | 75 (80%) | 1.000 | |
C | 17 (21%) | 19 (20%) | |||
TT | 25 (62%) | 31 (66%) | 0.939 | ||
TC | 13 (33%) | 13 (28%) | |||
CC | 2 (5%) | 3 (6%) | |||
NOS2 (n, %) | rs2779249 | C | 28 (35%) | 40 (42%) | 0.437 |
A | 52 (65%) | 56 (58%) | |||
CC | 6 (15%) | 12 (25%) | 0.521 | ||
CA | 16 (40%) | 16 (33%) | |||
AA | 18 (45%) | 20 (42%) | |||
rs2297518 | G | 50 (62%) | 76 (79%) | 0.019 * | |
A | 30 (38%) | 20 (21%) | |||
GG | 20 (50%) | 33 (69%) | 0.144 | ||
GA | 10 (25%) | 10 (21%) | |||
AA | 10 (25%) | 5 (10%) |
Gene | Haplotypes † | Cases (n = 40) | Controls (n = 48) | p-Value § |
---|---|---|---|---|
VEGFA (n, %) | GGC | 30 (38%) | 23 (24%) | 0.002 * |
GCC | 25 (31%) | 40 (42%) | ||
GCT | 14 (17%) | 9 (9%) | ||
AGC | 4 (5%) | 21 (22%) | ||
AGT | 4 (5%) | 3 (3%) | ||
ACC | 2 (3%) | 0 | ||
GGT | 1 (1%) | 0 | ||
NOS3 (n, %) | TG | 55 (69%) | 55 (57%) | 0.156 |
CT | 14 (17%) | 15 (16%) | ||
CG | 9 (11%) | 18 (19%) | ||
TT | 2 (3%) | 8 (8%) | ||
TNF (n, %) | TCG | 54 (66%) | 68 (71%) | 0.831 |
CCG | 14 (16%) | 16 (17%) | ||
TTG | 10 (13%) | 9 (9%) | ||
CCA | 4 (5%) | 3 (3%) | ||
TCG ‡ | 53 (70%) | 68 (73%) | 0.732 | |
others ‡ | 23 (30%) | 25 (27%) | ||
NOS2 (n, %) | GA | 37 (46%) | 51 (53%) | 0.054 |
AA | 15 (19%) | 7 (7%) | ||
AC | 15 (19%) | 13 (14%) | ||
GC | 13 (16%) | 25 (26%) |
Risk Variables | Odds Ratio (95% IC) | p-Value |
---|---|---|
1st trimester of ZIKV infection | 19.38 (95% IC 4.70–133.78) | <0.001 * |
NOS2 rs2297518[A] | 2.28 (95% IC 1.17–4.50) | 0.015 * |
Variables | Allele/ Genotype/ Haplotype | Severity of Microcephaly | ||
---|---|---|---|---|
Mild (n = 8) | Severe (n = 12) | p-Value | ||
Trimester of ZIKV infection † (n, %) | ||||
1st | 2 (33%) | 7 (100%) | 0.019 | |
2nd | 3 (50%) | 0 | ||
3rd | 1 (17%) | 0 | ||
TNF (n, %) | ||||
rs1799724 | T | 0 | 7 (29%) | 0.029 * |
C | 16 (100%) | 17 (71%) | ||
CC | 8 (100%) | 6 (50%) | 0.041 * | |
CT | 0 | 5 (42%) | ||
TT | 0 | 1 (8%) | ||
rs361525 | A | 1 (6%) | 0 | 0.400 |
G | 15 (94%) | 24 (100%) | ||
GG | 7 (87%) | 12 (100%) | 0.400 | |
AG | 1 (13%) | 0 | ||
rs1799964 | C | 2 (13%) | 3 (13%) | 1.000 |
T | 14 (87%) | 21 (87%) | ||
TT | 6 (75%) | 9 (75%) | 1.000 | |
CT | 2 (25%) | 3 (25%) | ||
Haplotypes ‡ | CCG | 1 (6%) | 3 (13%) | 0.030 * |
CCA | 1 (6%) | 0 | ||
TCG | 14 (88%) | 14 (58%) | ||
TTG | 0 | 7 (29%) | ||
TCG § | 14 | 14 | 0.079 | |
others § | 2 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, J.A.; Sgarioni, E.; Boquett, J.A.; Terças-Trettel, A.C.P.; da Silva, J.H.; Ribeiro, B.F.R.; Galera, M.F.; de Oliveira, T.M.; Carvalho de Andrade, M.D.F.; Carvalho, I.F.; et al. Association between Genetic Variants in NOS2 and TNF Genes with Congenital Zika Syndrome and Severe Microcephaly. Viruses 2021, 13, 325. https://doi.org/10.3390/v13020325
Gomes JA, Sgarioni E, Boquett JA, Terças-Trettel ACP, da Silva JH, Ribeiro BFR, Galera MF, de Oliveira TM, Carvalho de Andrade MDF, Carvalho IF, et al. Association between Genetic Variants in NOS2 and TNF Genes with Congenital Zika Syndrome and Severe Microcephaly. Viruses. 2021; 13(2):325. https://doi.org/10.3390/v13020325
Chicago/Turabian StyleGomes, Julia A., Eduarda Sgarioni, Juliano A. Boquett, Ana Cláudia P. Terças-Trettel, Juliana H. da Silva, Bethânia F. R. Ribeiro, Marcial F. Galera, Thalita M. de Oliveira, Maria Denise F. Carvalho de Andrade, Isabella F. Carvalho, and et al. 2021. "Association between Genetic Variants in NOS2 and TNF Genes with Congenital Zika Syndrome and Severe Microcephaly" Viruses 13, no. 2: 325. https://doi.org/10.3390/v13020325
APA StyleGomes, J. A., Sgarioni, E., Boquett, J. A., Terças-Trettel, A. C. P., da Silva, J. H., Ribeiro, B. F. R., Galera, M. F., de Oliveira, T. M., Carvalho de Andrade, M. D. F., Carvalho, I. F., Schüler-Faccini, L., & Vianna, F. S. L. (2021). Association between Genetic Variants in NOS2 and TNF Genes with Congenital Zika Syndrome and Severe Microcephaly. Viruses, 13(2), 325. https://doi.org/10.3390/v13020325