Structural Analysis and Whole Genome Mapping of a New Type of Plant Virus Subviral RNA: Umbravirus-Like Associated RNAs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Constructs Used in This Study
2.2. Inoculation of Protoplasts and RNA Extraction
2.3. Agrobacterium tumefaciens Infiltration and RNA Extraction
2.4. Northern Blots
2.5. In Vitro Translation
2.6. Preparation of RNA Template for SHAPE Probing
2.7. SHAPE RNA Structure Probing
2.8. Transient NMD Assay and RT-qPCR
3. Results and Discussion
3.1. Genome Organization of ulaRNAs
3.2. ulaRNA Replication in Single Cells
3.3. Taxonomic Relationships of ulaRNAs
3.4. Full-Length Secondary Structure of CYVaV
3.5. Domain 1: Overall Structure
3.6. Features of Domain 1: The 5′ End
3.7. Features of Domain 1: The Recoding Site
3.8. Domain 2: Overall Structure
3.9. Features of Domain 2: ORF5
3.10. Features of Domain 2: Conserved Hairpins at the End of ORF2
3.11. Features of Domain 2: Highly Conserved Structure of Unknown Function in CYVaV and OULV
3.12. Domain 3: Overall Structure
3.13. Features of Domain 3: Structure 14
3.14. Features of Domain 3: 3′ Terminal Hairpins and Pseudoknot
3.15. Evolutionary Relationships among ulaRNAs Based on Structural Domains
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Badar, U.; Venkataraman, S.; AbouHaidar, M.; Hefferon, K. Molecular interactions of plant viral satellites. Virus Genes 2021, 57, 1–22. [Google Scholar] [CrossRef]
- Gnanasekaran, P.; Chakraborty, S. Biology of viral satellites and their role in pathogenesis. Cur. Opin. Virol. 2018, 33, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.L.; Leh, V.; Lederer, C.; Maule, A.J. Turnip crinkle virus coat protein mediates suppression of RNA silencing in Nicotiana benthamiana. Virology 2003, 306, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Qu, F.; Ren, T.; Morris, T.J. The coat protein of turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step. J. Virol. 2003, 77, 511–522. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Simon, A.E. Enhanced viral pathogenesis associated with a virulent mutant virus or a virulent satellite RNA correlates with reduced virion accumulation and abundance of free coat protein. Virology 2003, 312, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Manfre, A.J.; Simon, A.E. Importance of coat protein and RNA silencing in satellite RNA/virus interactions. Virology 2008, 379, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Campbell, A.J.; Erickson, A.; Pellerin, E.; Salem, N.; Mo, X.H.; Falk, B.W.; Ferriol, I. Phylogenetic classification of a group of self-replicating RNAs that are common in co-infections with poleroviruses. Virus Res. 2020, 276, 197831. [Google Scholar] [CrossRef] [PubMed]
- Taliansky, M.E.; Robinson, D.J. Molecular biology of umbraviruses: Phantom warriors. J. Gen. Virol. 2003, 84, 1951–1960. [Google Scholar] [CrossRef]
- Gao, F.; Simon, A.E. Multiple cis-acting elements modulate programmed -1 ribosomal frameshifting in Pea enation mosaic virus. Nucleic Acids Res. 2016, 44, 878–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taliansky, M.; Roberts, I.M.; Kalinina, N.; Ryabov, E.V.; Raj, S.K.; Robinson, D.J.; Oparka, K.J. An umbraviral protein, involved in long-distance RNA movement, binds viral RNA and forms unique, protective ribonucleoprotein complexes. J. Virol. 2003, 77, 3031–3040. [Google Scholar] [CrossRef] [Green Version]
- May, J.P.; Johnson, P.Z.; Ilyas, M.; Gao, F.; Simon, A.E. The multifunctional long-distance movement protein of Pea enation mosaic virus 2 protects viral and host transcripts from nonsense-mediated decay. MBio 2020, 11, e00204–e00220. [Google Scholar] [CrossRef] [Green Version]
- Passmore, B.K.; Sanger, M.; Chin, L.S.; Falk, B.W.; Bruening, G. Beet western yellows virus-associated RNA—An independently replicating RNA that stimulates virus accumulation. Proc. Natl. Acad. Sci. USA 1993, 90, 10168–10172. [Google Scholar] [CrossRef] [Green Version]
- Falk, B.W.; Duffus, J.E. Identification of small single-stranded and double-stranded RNAs associated with severe symptoms in Beet western yellows virus-infected capsella bursa-pastoris. Phytopathology 1984, 74, 1224–1229. [Google Scholar] [CrossRef]
- Sanger, M.; Passmore, B.; Falk, B.W.; Bruening, G.; Ding, B.; Lucas, W.J. Symptom severity of Beet western yellows virus-strain ST9 is conferred by the ST9-associated RNA and is not associated with virus release from the phloem. Virology 1994, 200, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quito-Avila, D.F.; Alvarez, R.A.; Ibarra, M.A.; Martin, R.R. Detection and partial genome sequence of a new umbra-like virus of papaya discovered in Ecuador. Eur. J. Plant. Path. 2015, 143, 199–204. [Google Scholar] [CrossRef]
- Sa Antunes, T.F.; Vionette Amaral, R.J.; Ventura, J.A.; Godinho, M.T.; Amaral, J.G.; Souza, F.O.; Zerbini, P.A.; Zerbini, F.M.; Bueno Fernandes, P.M. The dsRNA virus papaya meleira virus and an ssRNA virus are associated with papaya sticky disease. PLoS ONE 2016, 11, e0155240. [Google Scholar] [CrossRef] [Green Version]
- Felker, P.; Bunch, R.; Russo, G.; Preston, K.; Tine, J.A.; Suter, B.; Mo, X.H.; Cushman, J.C.; Yim, W.C. Biology and chemistry of an Umbravirus like 2989 bp single stranded RNA as a possible causal agent for Opuntia stunting disease (engrosamiento de cladodios)—A Review. J. Prof. Assoc. Cactus Dev. 2019, 21, 1–31. [Google Scholar]
- Cornejo-Franco, J.F.; Alvarez-Quinto, R.A.; Quito-Avila, D.F. Transmission of the umbra-like Papaya virus Q in Ecuador and its association with meleira-related viruses from Brazil. Crop. Protect. 2018, 110, 99–102. [Google Scholar] [CrossRef]
- Cornejo-Franco, J.F.; Medina-Salguero, A.; Flores, F.; Chica, E.; Grinstead, S.; Mollov, D.; Quito-Avila, D.F. Exploring the virome ofVasconcellea x heilbornii:the first step towards a sustainable production program for babaco in Ecuador. Eur, J. Plant. Pathol. 2020, 157, 961–968. [Google Scholar] [CrossRef]
- Tahir, M.N.; Bolus, S.; Grinstead, S.C.; McFarlane, S.A.; Mollov, D. A new virus of the family Tombusviridae infecting sugarcane. Arch. Virol. 2021, 166, 961–965. [Google Scholar] [CrossRef]
- Kwon, S.J.; Bodaghi, S.; Dang, T.; Gadhave, K.R.; Ho, T.; Osman, F.; Al Rwahnih, M.; Tzanetakis, I.E.; Simon, A.E.; Vidalakis, G. Complete nucleotide sequence, genome organization and comparative genomic analyses of citrus yellow-vein associated virus-like RNA. Front. Microbiol. 2021. (submitted for publication). [Google Scholar]
- Jeong, J.-Y.; Yim, H.-S.; Ryu, J.-Y.; Lee, H.S.; Lee, J.-H.; Seen, D.-S.; Kang, S.G. One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl. Environ. Microbiol. 2012, 78, 5440–5443. [Google Scholar] [CrossRef] [Green Version]
- Xiang, C.B.; Han, P.; Lutziger, I.; Wang, K.; Oliver, D.J. A mini binary vector series for plant transformation. Plant. Mol. Biol. 1999, 40, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Naismith, J.H. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 2008, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Kertesz, S.; Kerenyi, Z.; Merai, Z.; Bartos, I.; Palfy, T.; Barta, E.; Silhavy, D. Both introns and long 3′ -UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants. Nucleic Acids Res. 2006, 34, 6147–6157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.; Simon, A.E. Differential use of 3′ CITEs by the subgenomic RNA of Pea enation mosaic virus 2. Virology 2017, 510, 194–204. [Google Scholar] [CrossRef]
- Merai, Z.; Kerenyi, Z.; Molnar, A.; Barta, E.; Valoczi, A.; Bisztray, G.; Havelda, Z.; Burgyan, J.; Silhavy, D. Aureusvirus P14 is an efficient RNA silencing suppressor that binds double-stranded RNAs without size specificity. J. Virol. 2005, 79, 7217–7226. [Google Scholar] [CrossRef] [Green Version]
- Karabiber, F.; McGinnis, J.L.; Favorov, O.V.; Weeks, K.M. QuShape: Rapid, accurate, and best-practices quantification of nucleic acid probing information, resolved by capillary electrophoresis. RNA 2013, 19, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.Z.; Kasprzak, W.K.; Shapiro, B.A.; Simon, A.E. RNA2Drawer: Geometrically strict drawing of nucleic acid structures with graphical structure editing and highlighting of complementary subsequences. RNA Biol. 2019, 16, 1667–1671. [Google Scholar] [CrossRef] [PubMed]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Mushegian, A.R.; Koonin, E.V. Cell-to-cell movement of plant viruses- Insights from amino acid sequence comparisons of movement proteins and from analogies with cellular transport system. Arch. Virol. 1993, 133, 239–257. [Google Scholar] [CrossRef]
- Gao, F.; Alekhina, O.M.; Vassilenko, K.S.; Simon, A.E. Unusual dicistronic expression from closely spaced initiation codons in an umbravirus subgenomic, R.N.A. Nucleic Acids Res. 2018, 46, 11726–11742. [Google Scholar] [CrossRef] [PubMed]
- Chin, L.S.; Foster, J.L.; Falk, B.W. The Beet western yellows virus ST9-associated RNA shares structural and nucleotide-sequence homology with carmo-like viruses. Virology 1993, 192, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef] [Green Version]
- Nagy, P.D.; Pogany, J.; Simon, A.E. RNA elements required for RNA recombination function as replication enhancers in vitro and in vivo in a plus-strand RNA virus. EMBO J. 1999, 18, 5653–5665. [Google Scholar] [CrossRef] [Green Version]
- Pogany, J.; Fabian, M.R.; White, K.A.; Nagy, P.D. A replication silencer element in a plus-strand RNA virus. EMBO J. 2003, 22, 5602–5611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panaviene, Z.; Panavas, T.; Nagy, P.D. Role of an internal and two 3′-terminal RNA elements in assembly of tombusvirus replicase. J. Virol. 2005, 79, 10608–10618. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.P.; Simon, A.E. A cis-replication element functions in both orientations to enhance replication of turnip crinkle virus. Virology 2006, 352, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.E.; Miller, W.A. 3′ Cap-independent translation enhancers of plant viruses. Annu. Rev. Microbiol. 2013, 67, 21–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, A.E. 3′ UTRs of carmoviruses. Virus Res. 2015, 206, 27–36. [Google Scholar] [CrossRef] [Green Version]
- May, J.; Johnson, P.; Saleem, H.; Simon, A.E. A sequence-independent, unstructured internal ribosome entry site is responsible for internal expression of the coat protein of Turnip crinkle virus. J. Virol. 2017, 91, e02421-16. [Google Scholar] [CrossRef] [Green Version]
- Le, M.T.; Kasprzak, W.K.; Kim, T.; Gao, F.; Young, M.Y.L.; Yuan, X.F.; Shapiro, B.A.; Seog, J.; Simon, A.E. Folding behavior of a T-shaped, ribosome-binding translation enhancer implicated in a wide-spread conformational switch. eLife 2017, 6, e22883. [Google Scholar] [CrossRef] [PubMed]
- Kuhlmann, M.M.; Chattopadhyay, M.; Stupina, V.A.; Gao, F.; Simon, A.E. An RNA element that facilitates programmed ribosomal readthrough in Turnip crinkle virus adopts multiple conformations. J. Virol. 2016, 90, 8575–8591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Carpenter, C.D.; Simon, A.E. Minimal sequence and structural requirements of a subgenomic RNA promoter for turnip crinkle virus. Virology 1999, 253, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Koev, G.; Miller, W.A. A positive-strand RNA virus with three very different subgenomic RNA promoters. J. Virol. 2000, 74, 5988–5996. [Google Scholar] [CrossRef] [Green Version]
- Jiwan, S.D.; White, K.A. Subgenomic mRNA transcription in Tombusviridae. RNA Biol. 2011, 8, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Dilweg, I.W.; Gultyaev, A.P.; Olsthoorn, R.C. Structural features of an Xrn1-resistant plant virus RNA. RNA Biol. 2019, 16, 838–845. [Google Scholar] [CrossRef] [Green Version]
- Gunawardene, C.D.; Newburn, L.R.; White, K.A. A 212-nt long RNA structure in the Tobacco necrosis virus-D RNA genome is resistant to Xrn degradation. Nucleic Acids Res. 2019, 47, 9329–9342. [Google Scholar] [CrossRef]
- Pogany, J.; White, K.A.; Nagy, P.D. Specific binding of tombusvirus replication protein p33 to an internal replication element in the viral RNA is essential for replication. J. Virol. 2005, 79, 4859–4869. [Google Scholar] [CrossRef] [Green Version]
- May, J.P.; Yuan, X.; Sawicki, E.; Simon, A.E. RNA virus evasion of nonsense-mediated decay. PLoS Path. 2018, 14, e1007459. [Google Scholar] [CrossRef]
- Fabian, M.R.; White, K.A. 5′-3′ RNA-RNA interaction facilitates cap- and poly(A) tail-independent translation of tomato bushy stunt virus mRNA—A potential common mechanism for Tombusviridae. J. Biol. Chem. 2004, 279, 28862–28872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.X.; White, K.A. A complex network of RNA-RNA interactions controls subgenomic mRNA transcription in a tombusvirus. EMBO J. 2004, 23, 3365–3374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, W.A.; White, K.A. Long-distance RNA-RNA interactions in plant virus gene expression and replication. Ann. Rev. Phytopath. 2006, 44, 447–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, B.; Grigull, J.; Ore, M.O.; Morin, S.; White, K.A. Global organization of a positive-strand RNA virus genome. PLoS Path. 2013, 9, e1003363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholson, B.L.; White, K.A. Functional long-range RNA-RNA interactions in positive-strand RNA viruses. Nat. Rev. Microbiol. 2014, 12, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, K.A.; Merino, E.J.; Weeks, K.M. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): Quantitative RNA structure analysis at single nucleotide resolution. Nat. Protoc. 2006, 1, 1610–1616. [Google Scholar] [CrossRef]
- Wilkinson, K.A.; Gorelick, R.J.; Vasa, S.M.; Guex, N.; Rein, A.; Mathews, D.H.; Giddings, M.C.; Weeks, K.M. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol. 2008, 6, 883–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, H.C.; Carpenter, C.D.; Simon, A.E. Analysis of cis-acting sequences involved in plus-strand synthesis of a turnip crinkle virus-associated satellite RNA identifies a new carmovirus replication element. Virology 2000, 268, 345–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimino, P.A.; Nicholson, B.L.; Wu, B.; Xu, W.; White, K.A. Multifaceted regulation of translational readthrough by RNA replication elements in a Tombusvirus. PLoS Path. 2011, 7, e1002423. [Google Scholar] [CrossRef] [Green Version]
- Newburn, L.R.; Nicholson, B.L.; Yosefi, M.; Cimino, P.A.; White, K.A. Translational readthrough in Tobacco necrosis virus-D. Virology 2014, 450, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Barry, J.K.; Miller, W.A. A-1 ribosomal frameshift element that requires base pairing across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral RNA. Proc. Natl. Acad. Sci. USA 2002, 99, 11133–11138. [Google Scholar] [CrossRef] [Green Version]
- Moomau, C.; Musalgaonkar, S.; Khan, Y.; Jones, J.; Dinman, J. Structural and functional characterization of programmed ribosomal frameshift signals in West Nile Virus strains reveals high structural plasticity among cis-acting RNA elements. J. Biol. Chem. 2016, 291, 15788–15795. [Google Scholar] [CrossRef] [Green Version]
- Halma, M.T.J.; Ritchie, D.B.; Cappellano, T.R.; Neupane, K.; Woodside, M.T. Complex dynamics under tension in a high-efficiency frameshift stimulatory structure. Proc. Natl. Acad. Sci. USA 2019, 116, 19500–19505. [Google Scholar] [CrossRef]
- Giedroc, D.P.; Cornish, P.V. Frameshifting RNA pseudoknots: Structure and mechanism. Virus Res. 2009, 139, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, D.B.; Foster, D.A.N.; Woodside, M.T. Programmed-1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. Proc. Natl. Acad. Sci. USA 2012, 109, 16167–16172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilyas, M.; Du, Z.; Simon, A. Opium poppy mosaic virus has an Xrn-resistant, translated subgenomic RNA and a BTE 3′CITE. J. Virol. 2021, 02109–02120. [Google Scholar]
- Withers, J.B.; Beemon, K.L. The structure and function of the rous sarcoma virus RNA stability element. J. Cell Biochem 2011, 112, 3085–3092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Z.; Quek, B.L.; Beemon, K.L.; Hogg, J.R. Polypyrimidine tract binding protein 1 protects mRNAs from recognition by the nonsense-mediated mRNA decay pathway. eLife 2016, 5, e11155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imamachi, N.; Salam, K.A.; Suzuki, Y.; Akimitsu, N. A GC-rich sequence feature in the 3′ UTR directs UPF1-dependent mRNA decay in mammalian cells. Genome Res. 2017, 27, 407–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truniger, V.; Miras, M.; Aranda, M.A. Structural and functional diversity of plant virus 3′-cap- independent translation enhancers (3′ -CITEs). Front. Plant. Sci 2017, 8, 2047. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Kasprzak, W.; Stupina, V.A.; Shapiro, B.A.; Simon, A.E. A ribosome-binding, 3′translational enhancer has a T-shaped structure and engages in a long-distance RNA-RNA interaction. J. Virol. 2012, 86, 9828–9842. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Gulay, S.P.; Kasprzak, W.; Dinman, J.D.; Shapiro, B.A.; Simon, A.E. The kissing-loop T-shaped structure translational enhancer of Pea enation mosaic virus can bind simultaneously to ribosomes and a 5′proximal hairpin. J. Virol. 2013, 87, 11987–12002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.; Kasprzak, W.K.; Szarko, C.; Shapiro, B.A.; Simon, A.E. The 3′untranslated region of Pea enation mosaic virus contains two T-shaped, ribosome-binding, cap-independent translation enhancers. J. Virol. 2014, 88, 11696–11712. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, G.; Guo, R.; Shapiro, B.A.; Simon, A.E. A pseudoknot in a preactive form of a viral RNA is part of a structural switch activating minus-strand synthesis. J. Virol. 2006, 80, 9181–9191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormack, J.C.; Yuan, X.; Yingling, Y.G.; Kasprzak, W.; Zamora, R.E.; Shapiro, B.A.; Simon, A.E. Structural domains within the 3′untranslated region of turnip crinkle virus. J. Virol. 2008, 82, 8706–8720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Arenal, F.; Fraile, A.; Malpica, J.M. Variability and genetic structure of plant virus populations. Ann. Rev. Phytopathol. 2001, 39, 157–186. [Google Scholar] [CrossRef]
- Parizad, S.; Dizadji, A.; Habibi, M.K.; Winter, S.; Kalantari, S.; Movi, S.; Garcia-Arenal, F.; Ayllon, M.A. Description and genetic variation of a distinct species of Potyvirus infecting saffron (Crocus sativus L.) plants in major production regions in Iran. Ann. App. Biol. 2018, 173, 233–242. [Google Scholar] [CrossRef]
- Lucas, W.J. Plant viral movement proteins: Agents for cell-to-cell trafficking of viral genomes. Virology 2006, 344, 169–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bera, S.; Fraile, A.; Garcia-Arenal, F. Analysis of fitness trade-offs in the host range expansion of an RNA virus, Tobacco mild green mosaic virus. J. Virol. 2018, e01268-18. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Carino, E.; Bera, S.; Gao, F.; May, J.P.; Simon, A.E. Structural Analysis and Whole Genome Mapping of a New Type of Plant Virus Subviral RNA: Umbravirus-Like Associated RNAs. Viruses 2021, 13, 646. https://doi.org/10.3390/v13040646
Liu J, Carino E, Bera S, Gao F, May JP, Simon AE. Structural Analysis and Whole Genome Mapping of a New Type of Plant Virus Subviral RNA: Umbravirus-Like Associated RNAs. Viruses. 2021; 13(4):646. https://doi.org/10.3390/v13040646
Chicago/Turabian StyleLiu, Jingyuan, Elizabeth Carino, Sayanta Bera, Feng Gao, Jared P. May, and Anne E. Simon. 2021. "Structural Analysis and Whole Genome Mapping of a New Type of Plant Virus Subviral RNA: Umbravirus-Like Associated RNAs" Viruses 13, no. 4: 646. https://doi.org/10.3390/v13040646
APA StyleLiu, J., Carino, E., Bera, S., Gao, F., May, J. P., & Simon, A. E. (2021). Structural Analysis and Whole Genome Mapping of a New Type of Plant Virus Subviral RNA: Umbravirus-Like Associated RNAs. Viruses, 13(4), 646. https://doi.org/10.3390/v13040646