Is the ZIKV Congenital Syndrome and Microcephaly Due to Syndemism with Latent Virus Coinfection?
Abstract
:1. Introduction
1.1. The Emergence of Congenital ZIKV Syndrome (CZS)
1.2. Current ZIKV Pathogenesis Image: Mirror of Common Congenital Syndrome?
1.3. Coinfection Opportunities beyond Arbovirus during the Brazil Outbreak: Human Latent Virus (HLV)
2. Human Latent Virus (HLV) Selection with Common Interests in CZS
2.1. Herpesviridae: HSV-2, HHV-6, and EBV
2.1.1. Herpes Simplex Virus 2 (HSV-2): Female Genital Herpes
- Latent genome persistence of alphaherpesviruses
- Latent genome expression and maintenance
- Reactivation
- Pregnancy
- ZIKV/HSV-2 coinfections and pregnancy
- Potential ZIKV/HSV-2 coinfection prevention strategies
2.1.2. Human Herpesvirus Virus (HHV-6A/B): Immunomodulated Viruses
- An HHV-6-specific latent form: iciHHV-6
- Latent iciHHV-6 regulation
- Reactivation and related diseases
- Pregnancy
- ZIKV/HHV-6 coinfection and pregnancy
2.1.3. Epstein–Barr Virus (EBV): Lymphocryptovirus
- Latent genome forms of gammaherpesviruses
- Common viral latency maintenance strategies
- Latency and oncogenic potential
- Reactivation and coinfection
- Pregnancy
- ZIKV/EBV coinfection and pregnancy
- Potential ZIKV/EBV coinfection mechanisms
2.2. Other Latent Virus Concerns: Human Parvovirus and Human Papilloma Virus
2.2.1. Human Parvovirus B19 (B19 Virus or B19V)
- From latency to the immunogenic process
- From latency maintenance to the lytic process
- B19V particular congenital context: reactivation and/or vulnerability or hazard
- Arbovirus/B19V coinfection
- ZIKV/B19V coinfection in pregnancy
2.2.2. Human Papillomavirus (HPV): Human Cervical Cancer
- Latent forms and maintenance
- Pregnancy
- ZIKV/HPV coinfection and pregnancy
3. The Influences of ZIKV Infection on Human Latent Virus (HLV) Outcomes in the Host
3.1. ZIKV and HSV-2
3.2. ZIKV and HHV-6
3.3. ZIKV and EBV
3.4. ZIKV and B19V
3.5. ZIKV and HPV
4. Update of the ZIKV Congenital Infection Technical and Control Guidance in the HLV Coinfection Context
4.1. Perspectives for Diagnoses
4.2. Treatment and Management
4.3. Vaccine
4.4. Prevention and Primary Healthcare
4.5. Environmental Surveillance
4.6. New Experimental Study Designs for Better Understanding and Preparing for the Future
5. General Conclusions and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Definitions Section
References
- Duffy, M.R.; Chen, T.H.; Hancock, W.T.; Powers, A.M.; Kool, J.L.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; Dubray, C.; et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 2009, 360, 253–2543. [Google Scholar] [CrossRef]
- Baud, D.; Gubler, D.J.; Schaub, B.; Lanteri, M.C.; Musso, D. An update on Zika virus infection. Lancet 2017, 390, 2099–2109. [Google Scholar] [CrossRef] [Green Version]
- Gubler, D.J.; Vasilakis, N.; Musso, D. History and Emergence of Zika Virus. J. Infect. Dis. 2017, 216, S860–S867. [Google Scholar] [CrossRef] [Green Version]
- Wikan, N.; Smith, D.R. Zika virus from a Southeast Asian perspective. Asian Pac. J. Trop. Med. 2017, 10, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C. Emergence of Epidemic Zika Virus Transmission and Congenital Zika Syndrome: Are Recently Evolved Traits to Blame? mBio 2017, 8, e02063-16. [Google Scholar] [CrossRef] [Green Version]
- Aubry, M.; Teissier, A.; Huart, M.; Merceron, S.; Vanhomwegen, J.; Roche, C.; Vial, A.L.; Teururai, S.; Sicard, S.; Paulous, S.; et al. Zika Virus Seroprevalence, French Polynesia, 2014–2015. Emerg. Infect. Dis. 2017, 23, 669–672. [Google Scholar] [CrossRef] [Green Version]
- Driggers, R.W.; Ho, C.Y.; Korhonen, E.M.; Kuivanen, S.; Jaaskelainen, A.J.; Smura, T.; Rosenberg, A.; Hill, D.A.; DeBiasi, R.L.; Vezina, G.; et al. Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities. N. Engl. J. Med. 2016, 374, 2142–2151. [Google Scholar] [CrossRef]
- Martines, R.B.; Bhatnagar, J.; de Oliveira Ramos, A.M.; Davi, H.P.; Iglezias, S.D.; Kanamura, C.T.; Keating, M.K.; Hale, G.; Silva-Flannery, L.; Muehlenbachs, A.; et al. Pathology of congenital Zika syndrome in Brazil: A case series. Lancet 2016, 388, 898–904. [Google Scholar] [CrossRef] [Green Version]
- Martines, R.B.; Bhatnagar, J.; Keating, M.K.; Silva-Flannery, L.; Muehlenbachs, A.; Gary, J.; Goldsmith, C.; Hale, G.; Ritter, J.; Rollin, D.; et al. Notes from the Field: Evidence of Zika Virus Infection in Brain and Placental Tissues from Two Congenitally Infected Newborns and Two Fetal Losses—Brazil, 2015. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 159–160. [Google Scholar] [CrossRef] [Green Version]
- Schuler-Faccini, L.; Ribeiro, E.M.; Feitosa, I.M.; Horovitz, D.D.; Cavalcanti, D.P.; Pessoa, A.; Doriqui, M.J.; Neri, J.I.; Neto, J.M.; Wanderley, H.Y.; et al. Possible Association Between Zika Virus Infection and Microcephaly—Brazil, 2015. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 59–62. [Google Scholar] [CrossRef]
- De Carvalho, N.S.; De Carvalho, B.F.; Fugaca, C.A.; Doris, B.; Biscaia, E.S. Zika virus infection during pregnancy and microcephaly occurrence: A review of literature and Brazilian data. Braz. J. Infect. Dis. 2016, 20, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Z.; Guo, X.H.; Xu, D.G. Anatomical, animal, and cellular evidence for Zika-induced pathogenesis of fetal microcephaly. Brain Dev. 2017, 39, 294–297. [Google Scholar] [CrossRef]
- Britt, W.J. Adverse outcomes of pregnancy-associated Zika virus infection. Semin. Perinatol. 2018, 42, 155–167. [Google Scholar] [CrossRef]
- Krauer, F.; Riesen, M.; Reveiz, L.; Oladapo, O.T.; Martinez-Vega, R.; Porgo, T.V.; Haefliger, A.; Broutet, N.J.; Low, N.; WHO Zika Causality Working Group. Zika Virus Infection as a Cause of Congenital Brain Abnormalities and Guillain-Barre Syndrome: Systematic Review. PLoS Med. 2017, 14, e1002203. [Google Scholar] [CrossRef] [Green Version]
- De Araujo, T.V.B.; Rodrigues, L.C.; de Alencar Ximenes, R.A.; de Barros Miranda-Filho, D.; Montarroyos, U.R.; de Melo, A.P.L.; Valongueiro, S.; de Albuquerque, M.; Souza, W.V.; Braga, C.; et al. Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: Preliminary report of a case-control study. Lancet Infect. Dis. 2016, 16, 1356–1363. [Google Scholar] [CrossRef] [Green Version]
- Trigueiro, S.A.; Neves, B.F.; Aguiar, M.S.B.; Araujo, J.S.S. Correlation between cephalic circumference at birth and ocular alterations in patients with microcephaly potentially associated with Zika Virus infection. Rev. Assoc. Med. Bras. (1992) 2019, 65, 909–913. [Google Scholar] [CrossRef] [Green Version]
- Mlakar, J.; Korva, M.; Tul, N.; Popovic, M.; Poljsak-Prijatelj, M.; Mraz, J.; Kolenc, M.; Resman Rus, K.; Vesnaver Vipotnik, T.; Fabjan Vodusek, V.; et al. Zika Virus Associated with Microcephaly. N. Engl. J. Med. 2016, 374, 951–958. [Google Scholar] [CrossRef]
- Schwartz, D.A. Autopsy and Postmortem Studies Are Concordant: Pathology of Zika Virus Infection Is Neurotropic in Fetuses and Infants with Microcephaly Following Transplacental Transmission. Arch. Pathol. Lab. Med. 2017, 141, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Pool, K.L.; Adachi, K.; Karnezis, S.; Salamon, N.; Romero, T.; Nielsen-Saines, K.; Pone, S.; Boechat, M.; Aibe, M.; Gomes da Silva, T.; et al. Association Between Neonatal Neuroimaging and Clinical Outcomes in Zika-Exposed Infants from Rio de Janeiro, Brazil. JAMA Netw. Open 2019, 2, e198124. [Google Scholar] [CrossRef]
- De Souza, A.S.; de Oliveira-Szjenfeld, P.S.; de Oliveira Melo, A.S.; de Souza, L.A.M.; Batista, A.G.M.; Tovar-Moll, F. Imaging findings in congenital Zika virus infection syndrome: An update. Childs Nerv. Syst. 2018, 34, 85–93. [Google Scholar] [CrossRef]
- Moore, C.A.; Staples, J.E.; Dobyns, W.B.; Pessoa, A.; Ventura, C.V.; Fonseca, E.B.; Ribeiro, E.M.; Ventura, L.O.; Neto, N.N.; Arena, J.F.; et al. Characterizing the Pattern of Anomalies in Congenital Zika Syndrome for Pediatric Clinicians. JAMA Pediatr. 2017, 171, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, B.N.F.; Muniz, B.C.; Gasparetto, E.L.; Ventura, N.; Marchiori, E. Congenital Zika syndrome and neuroimaging findings: What do we know so far? Radiol. Bras. 2017, 50, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Niemeyer, B.; Hollanda, R.; Muniz, B.; Marchiori, E. What We Can Find Beyond the Classic Neuroimaging Findings of Congenital Zika Virus Syndrome? Eur. Neurol. 2020, 83, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Vouga, M.; Baud, D. Imaging of congenital Zika virus infection: The route to identification of prognostic factors. Prenat. Diagn. 2016, 36, 799–811. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Song, H.; Ming, G.L. How does Zika virus cause microcephaly? Genes Dev. 2017, 31, 849–861. [Google Scholar] [CrossRef] [Green Version]
- Rossi, S.L.; Ebel, G.D.; Shan, C.; Shi, P.Y.; Vasilakis, N. Did Zika Virus Mutate to Cause Severe Outbreaks? Trends Microbiol. 2018, 26, 877–885. [Google Scholar] [CrossRef]
- Wang, J.N.; Ling, F. Zika Virus Infection and Microcephaly: Evidence for a Causal Link. Int. J. Environ. Res. Public Health 2016, 13, 1031. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, M.G.; Schwartz, D.A. Zika Virus Infection in Pregnancy, Microcephaly, and Maternal and Fetal Health: What We Think, What We Know, and What We Think We Know. Arch. Pathol. Lab. Med. 2017, 141, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Ellington, S.R.; Devine, O.; Bertolli, J.; Martinez Quinones, A.; Shapiro-Mendoza, C.K.; Perez-Padilla, J.; Rivera-Garcia, B.; Simeone, R.M.; Jamieson, D.J.; Valencia-Prado, M.; et al. Estimating the Number of Pregnant Women Infected with Zika Virus and Expected Infants With Microcephaly Following the Zika Virus Outbreak in Puerto Rico, 2016. JAMA Pediatr. 2016, 170, 940–945. [Google Scholar] [CrossRef]
- Ramesh, A.; Jeffries, C.L.; Castanha, P.; Oliveira, P.A.S.; Alexander, N.; Cameron, M.; Braga, C.; Walker, T. No evidence of Zika, dengue, or chikungunya virus infection in field-caught mosquitoes from the Recife Metropolitan Region, Brazil, 2015. Wellcome Open Res. 2019, 4, 93. [Google Scholar] [CrossRef] [Green Version]
- Alvarado-Socarras, J.L.; Meneses-Silvera, K.; Zarate-Vergara, A.C.; Guerrero-Gomez, C.; Rodriguez-Morales, A.J. Not everything is Zika: Congenital toxoplasmosis, still prevalent in Colombia? Rev. Peru. Med. Exp. Salud Publica 2017, 34, 332–336. [Google Scholar] [CrossRef] [Green Version]
- Ticconi, C.; Pietropolli, A.; Rezza, G. Zika virus infection and pregnancy: What we do and do not know. Pathog. Glob. Health 2016, 110, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Garcia Serpa Osorio-de-Castro, C.; Silva Miranda, E.; Machado de Freitas, C.; Rochel de Camargo, K., Jr.; Cranmer, H.H. The Zika Virus Outbreak in Brazil: Knowledge Gaps and Challenges for Risk Reduction. Am. J. Public Health 2017, 107, 960–965. [Google Scholar] [CrossRef] [PubMed]
- Aliota, M.T.; Bassit, L.; Bradrick, S.S.; Cox, B.; Garcia-Blanco, M.A.; Gavegnano, C.; Friedrich, T.C.; Golos, T.G.; Griffin, D.E.; Haddow, A.D.; et al. Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antivir. Res. 2017, 144, 223–246. [Google Scholar] [CrossRef] [PubMed]
- Pirozzi, F.; Nelson, B.; Mirzaa, G. From microcephaly to megalencephaly: Determinants of brain size. Dialogues Clin. Neurosci. 2018, 20, 267–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leibovitz, Z.; Lerman-Sagie, T. Diagnostic approach to fetal microcephaly. Eur. J. Paediatr. Neurol. 2018, 22, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Abuelo, D. Microcephaly syndromes. Semin. Pediatr. Neurol. 2007, 14, 118–127. [Google Scholar] [CrossRef]
- Devakumar, D.; Bamford, A.; Ferreira, M.U.; Broad, J.; Rosch, R.E.; Groce, N.; Breuer, J.; Cardoso, M.A.; Copp, A.J.; Alexandre, P.; et al. Infectious causes of microcephaly: Epidemiology, pathogenesis, diagnosis, and management. Lancet Infect. Dis. 2018, 18, e1–e13. [Google Scholar] [CrossRef] [Green Version]
- Costa, B.K.D.; Sato, D.K. Viral encephalitis: A practical review on diagnostic approach and treatment. J. Pediatr. (Rio. J.) 2020, 96 (Suppl. 1), 12–19. [Google Scholar] [CrossRef]
- Levine, D.; Jani, J.C.; Castro-Aragon, I.; Cannie, M. How Does Imaging of Congenital Zika Compare with Imaging of Other TORCH Infections? Radiology 2017, 285, 744–761. [Google Scholar] [CrossRef]
- Hay, J.A.; Nouvellet, P.; Donnelly, C.A.; Riley, S. Potential inconsistencies in Zika surveillance data and our understanding of risk during pregnancy. PLoS Negl. Trop. Dis. 2018, 12, e0006991. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.L. Zika virus as a causative agent for primary microencephaly: The evidence so far. Arch. Microbiol. 2016, 198, 595–601. [Google Scholar] [CrossRef] [Green Version]
- Bautista, L.E. Maternal Zika virus infection and newborn microcephaly-an analysis of the epidemiological evidence. Ann. Epidemiol. 2018, 28, 111–118. [Google Scholar] [CrossRef]
- Brito, C.A.; Cordeiro, M.T. One year after the Zika virus outbreak in Brazil: From hypotheses to evidence. Rev. Soc. Bras. Med. Trop. 2016, 49, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Roma, J.H.F.; Alves, R.C.; Silva, V.S.D.; Ferreira, M.J.; Araujo, C.; Pavoni, J.H.C. Descriptive study of suspected congenital Zika syndrome cases during the 2015–2016 epidemic in Brazil. Rev. Soc. Bras. Med. Trop. 2019, 52, e20190105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobkowicz, L.; Ramond, A.; Sanchez Clemente, N.; Ximenes, R.A.A.; Miranda-Filho, D.B.; Montarroyos, U.R.; Martelli, C.M.T.; de Araujo, T.V.B.; Brickley, E.B. The frequency and clinical presentation of Zika virus coinfections: A systematic review. BMJ Glob. Health 2020, 5, e002350. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.F.; Rodrigues, M.S.; Skalinski, L.M.; Santos, A.E.S.; Costa, L.C.; Cardim, L.L.; Paixao, E.S.; Costa, M.; Oliveira, W.K.; Barreto, M.L.; et al. Interdependence between confirmed and discarded cases of dengue, chikungunya and Zika viruses in Brazil: A multivariate time-series analysis. PLoS ONE 2020, 15, e0228347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.M.O.; Tauro, L.B.; Kikuti, M.; Anjos, R.O.; Santos, V.C.; Goncalves, T.S.F.; Paploski, I.A.D.; Moreira, P.S.S.; Nascimento, L.C.J.; Campos, G.S.; et al. Concomitant Transmission of Dengue, Chikungunya, and Zika Viruses in Brazil: Clinical and Epidemiological Findings from Surveillance for Acute Febrile Illness. Clin. Infect. Dis. 2019, 69, 1353–1359. [Google Scholar] [CrossRef]
- Kumar, N.; Sharma, S.; Barua, S.; Tripathi, B.N.; Rouse, B.T. Virological and Immunological Outcomes of Coinfections. Clin. Microbiol. Rev. 2018, 31, e00111-17. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, M.G.; Costa Mda, C.; de Oliveira, W.K.; Nunes, M.L.; Rodrigues, L.C. The Epidemic of Zika Virus-Related Microcephaly in Brazil: Detection, Control, Etiology, and Future Scenarios. Am. J. Public Health 2016, 106, 601–605. [Google Scholar] [CrossRef]
- Netto, E.M.; Moreira-Soto, A.; Pedroso, C.; Hoser, C.; Funk, S.; Kucharski, A.J.; Rockstroh, A.; Kummerer, B.M.; Sampaio, G.S.; Luz, E.; et al. High Zika Virus Seroprevalence in Salvador, Northeastern Brazil Limits the Potential for Further Outbreaks. mBio 2017, 8, e01390-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira-Soto, A.; Cabral, R.; Pedroso, C.; Eschbach-Bludau, M.; Rockstroh, A.; Vargas, L.A.; Postigo-Hidalgo, I.; Luz, E.; Sampaio, G.S.; Drosten, C.; et al. Exhaustive TORCH Pathogen Diagnostics Corroborate Zika Virus Etiology of Congenital Malformations in Northeastern Brazil. mSphere 2018, 3, e00278-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira-Soto, A.; Sarno, M.; Pedroso, C.; Netto, E.M.; Rockstroh, A.; Luz, E.; Feldmann, M.; Fischer, C.; Bastos, F.A.; Kummerer, B.M.; et al. Evidence for Congenital Zika Virus Infection from Neutralizing Antibody Titers in Maternal Sera, Northeastern Brazil. J. Infect. Dis. 2017, 216, 1501–1504. [Google Scholar] [CrossRef]
- De Oliveira, W.K.; de Franca, G.V.A.; Carmo, E.H.; Duncan, B.B.; de Souza Kuchenbecker, R.; Schmidt, M.I. Infection-related microcephaly after the 2015 and 2016 Zika virus outbreaks in Brazil: A surveillance-based analysis. Lancet 2017, 390, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Pomar, L.; Malinger, G.; Benoist, G.; Carles, G.; Ville, Y.; Rousset, D.; Hcini, N.; Pomar, C.; Jolivet, A.; Lambert, V. Association between Zika virus and fetopathy: A prospective cohort study in French Guiana. Ultrasound Obstet. Gynecol. 2017, 49, 729–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, J.V.; Carvalho, T.C.X.; Giovanetti, M.; de Jesus, J.G.; Santos, C.S.; Pessoa, L.B.; Magalhaes Filho, C.F.Q.; Lima, J.G.S.; Carvalho, D.A.X.; Figueiredo, E.M.; et al. Neonatal surveillance for congenital Zika infection during the 2016 microcephaly outbreak in Salvador, Brazil: Zika virus detection in asymptomatic newborns. Int. J. Gynaecol. Obstet. 2020, 148 (Suppl. 2), 9–14. [Google Scholar] [CrossRef] [PubMed]
- Lebov, J.F.; Arias, J.F.; Balmaseda, A.; Britt, W.; Cordero, J.F.; Galvao, L.A.; Garces, A.L.; Hambidge, K.M.; Harris, E.; Ko, A.; et al. International prospective observational cohort study of Zika in infants and pregnancy (ZIP study): Study protocol. BMC Pregnancy Childbirth 2019, 19, 282. [Google Scholar]
- Campos, M.C.; Dombrowski, J.G.; Phelan, J.; Marinho, C.R.F.; Hibberd, M.; Clark, T.G.; Campino, S. Zika might not be acting alone: Using an ecological study approach to investigate potential co-acting risk factors for an unusual pattern of microcephaly in Brazil. PLoS ONE 2018, 13, e0201452. [Google Scholar] [CrossRef] [Green Version]
- Gregory, C.J.; Oduyebo, T.; Brault, A.C.; Brooks, J.T.; Chung, K.W.; Hills, S.; Kuehnert, M.J.; Mead, P.; Meaney-Delman, D.; Rabe, I.; et al. Modes of Transmission of Zika Virus. J. Infect. Dis. 2017, 216, S875–S883. [Google Scholar] [CrossRef] [Green Version]
- Magalhaes, T.; Foy, B.D.; Marques, E.T.A.; Ebel, G.D.; Weger-Lucarelli, J. Mosquito-borne and sexual transmission of Zika virus: Recent developments and future directions. Virus Res. 2018, 254, 1–9. [Google Scholar] [CrossRef]
- Coyne, C.B.; Lazear, H.M. Zika virus—Reigniting the TORCH. Nat. Rev. Microbiol. 2016, 14, 707–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klase, Z.A.; Khakhina, S.; Schneider Ade, B.; Callahan, M.V.; Glasspool-Malone, J.; Malone, R. Zika Fetal Neuropathogenesis: Etiology of a Viral Syndrome. PLoS Negl. Trop. Dis. 2016, 10, e0004877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahotna, A.; Brucknerova, J.; Brucknerova, I. Zika virus infection from a newborn point of view. TORCH or TORZiCH? Interdiscip. Toxicol. 2018, 11, 241–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, D.A. The Origins and Emergence of Zika Virus, the Newest TORCH Infection: What’s Old Is New Again. Arch. Pathol. Lab. Med. 2017, 141, 18–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morelli, F.; Souza, R.P.; Cruz, T.E.D.; Damke, G.; Damke, E.; Suehiro, T.T.; Silva, V.; Consolaro, M.E.L. Zika virus infection in the genital tract of non-pregnant females: A systematic review. Rev. Inst. Med. Trop. Sao Paulo 2020, 62, e16. [Google Scholar] [CrossRef]
- Da Cruz, T.E.; Souza, R.P.; Pelloso, S.M.; Morelli, F.; Suehiro, T.T.; Damke, E.; Bonfim-Mendonca, P.S.; da Silva, V.R.S.; Consolaro, M.E.L. Case Reports: Prolonged Detection of Zika Virus RNA in Vaginal and Endocervical Samples from a Brazilian Woman, 2018. Am. J. Trop. Med. Hyg. 2019, 100, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Murray, K.O.; Gorchakov, R.; Carlson, A.R.; Berry, R.; Lai, L.; Natrajan, M.; Garcia, M.N.; Correa, A.; Patel, S.M.; Aagaard, K.; et al. Prolonged Detection of Zika Virus in Vaginal Secretions and Whole Blood. Emerg. Infect. Dis. 2017, 23, 99–101. [Google Scholar] [CrossRef]
- Kalkeri, R.; Murthy, K.K. Zika virus reservoirs: Implications for transmission, future outbreaks, drug and vaccine development. F1000Research 2017, 6, 1850. [Google Scholar] [CrossRef] [Green Version]
- Baud, D.; Musso, D.; Vouga, M.; Alves, M.P.; Vulliemoz, N. Zika virus: A new threat to human reproduction. Am. J. Reprod. Immunol. 2017, 77, e12614. [Google Scholar] [CrossRef] [Green Version]
- Kuno, G.; Mackenzie, J.S.; Junglen, S.; Hubalek, Z.; Plyusnin, A.; Gubler, D.J. Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality? Viruses 2017, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- Ketkar, H.; Herman, D.; Wang, P. Genetic Determinants of the Re-Emergence of Arboviral Diseases. Viruses 2019, 11, 150. [Google Scholar] [CrossRef] [Green Version]
- Parrish, C.R.; Holmes, E.C.; Morens, D.M.; Park, E.C.; Burke, D.S.; Calisher, C.H.; Laughlin, C.A.; Saif, L.J.; Daszak, P. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 2008, 72, 457–470. [Google Scholar] [CrossRef] [Green Version]
- Pierson, T.C.; Diamond, M.S. The emergence of Zika virus and its new clinical syndromes. Nature 2018, 560, 573–581. [Google Scholar] [CrossRef]
- Woolhouse, M.E.; Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [CrossRef]
- Woolhouse, M.E.; Haydon, D.T.; Antia, R. Emerging pathogens: The epidemiology and evolution of species jumps. Trends Ecol. Evol. 2005, 20, 238–244. [Google Scholar] [CrossRef]
- Azeredo, E.L.; Dos Santos, F.B.; Barbosa, L.S.; Souza, T.M.A.; Badolato-Correa, J.; Sanchez-Arcila, J.C.; Nunes, P.C.G.; de-Oliveira-Pinto, L.M.; de Filippis, A.M.; Dal Fabbro, M.; et al. Clinical and Laboratory Profile of Zika and Dengue Infected Patients: Lessons Learned from the Co-circulation of Dengue, Zika and Chikungunya in Brazil. PLoS Curr. 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.V.; Milton, S.A.; Davis, P.J. Microbial models of mammalian metabolism: O-dealkylation of para-alkoxybiphenyls. Appl. Environ. Microbiol. 1982, 44, 149–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, C.J.; Mendenhall, E. Preparing for emerging infections means expecting new syndemics. Lancet 2019, 394, 297. [Google Scholar] [CrossRef] [Green Version]
- Tsuyuki, K.; Gipson, J.D.; Barbosa, R.M.; Urada, L.A.; Morisky, D.E. Preventing syndemic Zika virus, HIV/STIs and unintended pregnancy: Dual method use and consistent condom use among Brazilian women in marital and civil unions. Cult. Health Sex. 2018, 20, 1006–1022. [Google Scholar] [CrossRef]
- Singer, M. The spread of Zika and the potential for global arbovirus syndemics. Glob. Public Health 2017, 12, 1–18. [Google Scholar] [CrossRef]
- El-Sayed, A.; Kamel, M. Climatic changes and their role in emergence and re-emergence of diseases. Environ. Sci. Pollut. Res. Int. 2020, 27, 22336–22352. [Google Scholar] [CrossRef]
- Sims, N.; Kasprzyk-Hordern, B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ. Int. 2020, 139, 105689. [Google Scholar] [CrossRef]
- Jessel, S.; Sawyer, S.; Hernandez, D. Energy, Poverty, and Health in Climate Change: A Comprehensive Review of an Emerging Literature. Front. Public Health 2019, 7, 357. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Gugliemini, O.; Harber, S.; Harrison, A.; Houle, L.; Ivory, J.; Kersten, S.; Khan, R.; Kim, J.; LeBoa, C.; et al. Environmental and Social Change Drive the Explosive Emergence of Zika Virus in the Americas. PLoS Negl. Trop. Dis. 2017, 11, e0005135. [Google Scholar] [CrossRef]
- Bardosh, K.L. Towards a science of global health delivery: A socio-anthropological framework to improve the effectiveness of neglected tropical disease interventions. PLoS Negl. Trop. Dis. 2018, 12, e0006537. [Google Scholar] [CrossRef]
- Pinotti, F.; Ghanbarnejad, F.; Hovel, P.; Poletto, C. Interplay between competitive and cooperative interactions in a three-player pathogen system. R. Soc. Open Sci. 2020, 7, 190305. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Li, J.; Carr, M.J.; Duchene, S.; Shi, W. The Asian Lineage of Zika Virus: Transmission and Evolution in Asia and the Americas. Virol. Sin. 2019, 34, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, E.; Pettersson, J.; Higgs, S.; Charrel, R.; de Lamballerie, X. Emerging arboviruses: Why today? One Health 2017, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Y.; Shi, W.F.; Qin, C.F. The evolution of Zika virus from Asia to the Americas. Nat. Rev. Microbiol. 2019, 17, 131–139. [Google Scholar] [CrossRef]
- Walker, C.L.; Little, M.E.; Roby, J.A.; Armistead, B.; Gale, M.; Rajagopal, L., Jr.; Nelson, B.R.; Ehinger, N.; Mason, B.; Nayeri, U.; et al. Zika virus and the nonmicrocephalic fetus: Why we should still worry. Am. J. Obstet. Gynecol. 2019, 220, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Salomao, J.F.M. The congenital Zika virus infection: Still a puzzle. Childs Nerv. Syst. 2018, 34, 61–62. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Ng, L.F.P. Zika virus: From an obscurity to a priority. Microbes Infect. 2018, 20, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Depoux, A.; Philibert, A.; Rabier, S.; Philippe, H.J.; Fontanet, A.; Flahault, A. A multi-faceted pandemic: A review of the state of knowledge on the Zika virus. Public Health Rev. 2018, 39, 10. [Google Scholar] [CrossRef] [Green Version]
- Possas, C.; Brasil, P.; Marzochi, M.C.; Tanuri, A.; Martins, R.M.; Marques, E.T.; Bonaldo, M.C.; Ferreira, A.G.; Lourenco-de-Oliveira, R.; Nogueira, R.M.R.; et al. Zika puzzle in Brazil: Peculiar conditions of viral introduction and dissemination—A Review. Mem. Inst. Oswaldo Cruz 2017, 112, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Brickley, E.B.; Rodrigues, L.C. Further pieces of evidence in the Zika virus and microcephaly puzzle. Lancet Child Adolesc. Health 2018, 2, 162–164. [Google Scholar] [CrossRef] [Green Version]
- Musso, D.; de Pina, J.J.; Nhan, T.X.; Deparis, X. Uncommon presentation of Zika fever or co-infection? Lancet 2016, 387, 1812–1813. [Google Scholar] [CrossRef] [Green Version]
- Tobar, P.; Vega, M.; Ordonez, C.; Rivera, L.; Landivar, J.; Zambrano, H. Detection of Zika Virus and Human Papilloma Virus in Cervical Cytology Samples using Two Real Time PCR Based Techniques in Ecuadorian Women diagnosed with ASCUS. P. R. Health Sci. J. 2018, 37, S96–S98. [Google Scholar]
- Aldo, P.; You, Y.; Szigeti, K.; Horvath, T.L.; Lindenbach, B.; Mor, G. HSV-2 enhances ZIKV infection of the placenta and induces apoptosis in first-trimester trophoblast cells. Am. J. Reprod. Immunol. 2016, 76, 348–357. [Google Scholar] [CrossRef] [Green Version]
- Valdespino-Vazquez, M.Y.; Sevilla-Reyes, E.E.; Lira, R.; Yocupicio-Monroy, M.; Piten-Isidro, E.; Boukadida, C.; Hernandez-Pando, R.; Soriano-Jimenez, J.D.; Herrera-Salazar, A.; Figueroa-Damian, R.; et al. Congenital Zika Syndrome and Extra-Central Nervous System Detection of Zika Virus in a Pre-term Newborn in Mexico. Clin. Infect. Dis. 2019, 68, 903–912. [Google Scholar] [CrossRef]
- Rothan, H.A.; Bidokhti, M.R.M.; Byrareddy, S.N. Current concerns and perspectives on Zika virus co-infection with arboviruses and HIV. J. Autoimmun. 2018, 89, 11–20. [Google Scholar] [CrossRef]
- Vouga, M.; Baud, D.; Jolivet, E.; Najioullah, F.; Monthieux, A.; Schaub, B. Congenital Zika virus syndrome...what else? Two case reports of severe combined fetal pathologies. BMC Pregnancy Childbirth 2018, 18, 356. [Google Scholar] [CrossRef]
- Dos Santos, S.M.R.; Sanz Duro, R.L.; Santos, G.L.; Hunter, J.; da Aparecida Rodrigues Teles, M.; Brustulin, R.; de Padua Milagres, F.A.; Sabino, E.C.; Diaz, R.S.; Komninakis, S.V. Detection of coinfection with Chikungunya virus and Dengue virus serotype 2 in serum samples of patients in State of Tocantins, Brazil. J. Infect. Public Health 2020, 13, 724–729. [Google Scholar] [CrossRef]
- Rodriguez-Morales, A.J.; Villamil-Gomez, W.E.; Franco-Paredes, C. The arboviral burden of disease caused by co-circulation and co-infection of dengue, chikungunya and Zika in the Americas. Travel. Med. Infect. Dis. 2016, 14, 177–179. [Google Scholar] [CrossRef]
- Carrillo-Hernandez, M.Y.; Ruiz-Saenz, J.; Villamizar, L.J.; Gomez-Rangel, S.Y.; Martinez-Gutierrez, M. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect. Dis. 2018, 18, 61. [Google Scholar] [CrossRef]
- Asad, H.; Carpenter, D.O. Effects of climate change on the spread of zika virus: A public health threat. Rev. Environ. Health 2018, 33, 31–42. [Google Scholar] [CrossRef]
- Messina, J.P.; Kraemer, M.U.; Brady, O.J.; Pigott, D.M.; Shearer, F.M.; Weiss, D.J.; Golding, N.; Ruktanonchai, C.W.; Gething, P.W.; Cohn, E.; et al. Mapping global environmental suitability for Zika virus. eLife 2016, 5, e15272. [Google Scholar] [CrossRef]
- Gyawali, N.; Bradbury, R.S.; Taylor-Robinson, A.W. The global spread of Zika virus: Is public and media concern justified in regions currently unaffected? Infect. Dis. Poverty 2016, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Alaniz, A.J.; Bacigalupo, A.; Cattan, P.E. Spatial quantification of the world population potentially exposed to Zika virus. Int. J. Epidemiol. 2017, 46, 966–975. [Google Scholar] [CrossRef]
- Wilke, A.B.B.; Caban-Martinez, A.J.; Ajelli, M.; Vasquez, C.; Petrie, W.; Beier, J.C. Mosquito Adaptation to the Extreme Habitats of Urban Construction Sites. Trends Parasitol. 2019, 35, 607–614. [Google Scholar] [CrossRef] [Green Version]
- Wilke, A.B.B.; Chase, C.; Vasquez, C.; Carvajal, A.; Medina, J.; Petrie, W.D.; Beier, J.C. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci. Rep. 2019, 9, 15335. [Google Scholar] [CrossRef] [Green Version]
- Heinisch, M.R.S.; Diaz-Quijano, F.A.; Chiaravalloti-Neto, F.; Menezes Pancetti, F.G.; Rocha Coelho, R.; Dos Santos Andrade, P.; Urbinatti, P.R.; de Almeida, R.; Lima-Camara, T.N. Seasonal and spatial distribution of Aedes aegypti and Aedes albopictus in a municipal urban park in Sao Paulo, SP, Brazil. Acta Trop. 2019, 189, 104–113. [Google Scholar] [CrossRef]
- Imperato, P.J. The Convergence of a Virus, Mosquitoes, and Human Travel in Globalizing the Zika Epidemic. J. Community Health 2016, 41, 674–679. [Google Scholar] [CrossRef]
- Lourenco, J.; Maia de Lima, M.; Faria, N.R.; Walker, A.; Kraemer, M.U.; Villabona-Arenas, C.J.; Lambert, B.; Marques de Cerqueira, E.; Pybus, O.G.; Alcantara, L.C.; et al. Epidemiological and ecological determinants of Zika virus transmission in an urban setting. Elife 2017, 6, e29820. [Google Scholar] [CrossRef] [Green Version]
- Weidner-Glunde, M.; Kruminis-Kaszkiel, E.; Savanagouder, M. Herpesviral Latency-Common Themes. Pathogens 2020, 9, 125. [Google Scholar] [CrossRef] [Green Version]
- Bourgeois, C.; Gorwood, J.; Barrail-Tran, A.; Lagathu, C.; Capeau, J.; Desjardins, D.; Le Grand, R.; Damouche, A.; Bereziat, V.; Lambotte, O. Specific Biological Features of Adipose Tissue, and Their Impact on HIV Persistence. Front. Microbiol. 2019, 10, 2837. [Google Scholar] [CrossRef] [Green Version]
- Christensen-Quick, A.; Vanpouille, C.; Lisco, A.; Gianella, S. Cytomegalovirus and HIV Persistence: Pouring Gas on the Fire. AIDS Res. Hum. Retrovir. 2017, 33, S23–S30. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Gupta, B. Urban health: Needs urgent attention. Indian J. Public Health 2018, 62, 214–217. [Google Scholar] [CrossRef]
- Burke, A.; Moreau, C. Family Planning and Zika Virus: The Power of Prevention. Semin. Reprod. Med. 2016, 34, 305–312. [Google Scholar]
- Barbeito-Andres, J.; Pezzuto, P.; Higa, L.M.; Dias, A.A.; Vasconcelos, J.M.; Santos, T.M.P.; Ferreira, J.; Ferreira, R.O.; Dutra, F.F.; Rossi, A.D.; et al. Congenital Zika syndrome is associated with maternal protein malnutrition. Sci. Adv. 2020, 6, eaaw6284. [Google Scholar] [CrossRef] [Green Version]
- Madewell, Z.J.; Sosa, S.; Brouwer, K.C.; Juarez, J.G.; Romero, C.; Lenhart, A.; Cordon-Rosales, C. Associations between household environmental factors and immature mosquito abundance in Quetzaltenango, Guatemala. BMC Public Health 2019, 19, 1729. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, M.; Lord, A.; Sanabia, C.C.; Silverio, A.; Chuang, M.; Dolan, S.M. Understanding Zika virus as an STI: Findings from a qualitative study of pregnant women in the Bronx. Sex. Transm. Infect. 2020, 96, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Matysiak, A.; Roess, A. Interrelationship between Climatic, Ecologic, Social, and Cultural Determinants Affecting Dengue Emergence and Transmission in Puerto Rico and Their Implications for Zika Response. J. Trop. Med. 2017, 2017, 8947067. [Google Scholar] [CrossRef] [Green Version]
- Amaral, P.; Resende de Carvalho, L.; Hernandes Rocha, T.A.; da Silva, N.C.; Vissoci, J.R.N. Geospatial modeling of microcephaly and zika virus spread patterns in Brazil. PLoS ONE 2019, 14, e0222668. [Google Scholar] [CrossRef]
- Vissoci, J.R.N.; Rocha, T.A.H.; Silva, N.C.D.; de Sousa Queiroz, R.C.; Thomaz, E.; Amaral, P.V.M.; Lein, A.; Branco, M.; Aquino, J.J.; Rodrigues, Z.M.R.; et al. Zika virus infection and microcephaly: Evidence regarding geospatial associations. PLoS Negl. Trop. Dis. 2018, 12, e0006392. [Google Scholar] [CrossRef] [Green Version]
- Meneses, J.D.A.; Ishigami, A.C.; de Mello, L.M.; de Albuquerque, L.L.; de Brito, C.A.A.; Cordeiro, M.T.; Pena, L.J. Lessons Learned at the Epicenter of Brazil’s Congenital Zika Epidemic: Evidence From 87 Confirmed Cases. Clin. Infect. Dis. 2017, 64, 1302–1308. [Google Scholar] [CrossRef]
- Angueyra, C.; Abou Hatab, H.; Pathak, A. Congenital Cytomegalovirus and Zika Infections. Indian J. Pediatr. 2020, 87, 840–845. [Google Scholar] [CrossRef]
- Joao, E.C.; Gouvea, M.I.; Teixeira, M.L.; Mendes-Silva, W.; Esteves, J.S.; Santos, E.M.; Ledesma, L.A.; Gomes, A.P.; Cruz, M.L. Zika Virus Infection Associated With Congenital Birth Defects in a HIV-infected Pregnant Woman. Pediatr. Infect. Dis. J. 2017, 36, 500–501. [Google Scholar] [CrossRef]
- Pereira, L. Congenital Viral Infection: Traversing the Uterine-Placental Interface. Annu. Rev. Virol. 2018, 5, 273–299. [Google Scholar] [CrossRef] [Green Version]
- Weldon, C.T.; Riley-Powell, A.R.; Aguerre, I.M.; Celis Nacimento, R.A.; Morrison, A.C.; Oberhelman, R.A.; Paz-Soldan, V.A. “Zika is everywhere”: A qualitative exploration of knowledge, attitudes and practices towards Zika virus among women of reproductive age in Iquitos, Peru. PLoS Negl. Trop. Dis. 2018, 12, e0006708. [Google Scholar] [CrossRef] [PubMed]
- Grazel, R.; Harris-Haman, P. Zika Virus Infection: A Vector-Borne Threat to Pregnant Women and Infants. Adv. Neonatal Care 2018, 18, 350–359. [Google Scholar] [CrossRef]
- Boldogh, I.; Albrecht, T.; Porter, D.D. Persistent viral infections. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. [Google Scholar]
- Kane, M.; Golovkina, T. Common threads in persistent viral infections. J. Virol. 2010, 84, 4116–4123. [Google Scholar] [CrossRef] [Green Version]
- Mathew, J., Jr.; Sapra, A. Herpes simplex type 2. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2020. [Google Scholar]
- Looker, K.J.; Magaret, A.S.; May, M.T.; Turner, K.M.; Vickerman, P.; Gottlieb, S.L.; Newman, L.M. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012. PLoS ONE 2015, 10, e0140765. [Google Scholar] [CrossRef] [Green Version]
- Looker, K.J.; Magaret, A.S.; Turner, K.M.; Vickerman, P.; Gottlieb, S.L.; Newman, L.M. Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012. PLoS ONE 2015, 10, e114989. [Google Scholar] [CrossRef] [Green Version]
- Sacks, S.L.; Griffiths, P.D.; Corey, L.; Cohen, C.; Cunningham, A.; Dusheiko, G.M.; Self, S.; Spruance, S.; Stanberry, L.R.; Wald, A.; et al. HSV-2 transmission. Antivir. Res. 2004, 63 (Suppl. 1), S27–S35. [Google Scholar] [CrossRef]
- Sacks, S.L.; Griffiths, P.D.; Corey, L.; Cohen, C.; Cunningham, A.; Dusheiko, G.M.; Self, S.; Spruance, S.; Stanberry, L.R.; Wald, A.; et al. HSV shedding. Antivir. Res. 2004, 63 (Suppl. 1), S19–S26. [Google Scholar] [CrossRef]
- Sacks, S.L.; Griffiths, P.D.; Corey, L.; Cohen, C.; Cunningham, A.; Dusheiko, G.M.; Self, S.; Spruance, S.; Stanberry, L.R.; Wald, A.; et al. Introduction: Is viral shedding a surrogate marker for transmission of genital herpes? Antivir. Res. 2004, 63 (Suppl. 1), S3–S9. [Google Scholar] [CrossRef]
- Wald, A. Herpes simplex virus type 2 transmission: Risk factors and virus shedding. Herpes 2004, 11 (Suppl. 3), 130A–137A. [Google Scholar]
- Wald, A.; Matson, P.; Ryncarz, A.; Corey, L. Detection of herpes simplex virus DNA in semen of men with genital HSV-2 infection. Sex. Transm. Dis. 1999, 26, 1–3. [Google Scholar] [CrossRef]
- Pieknik, J.R.; Bertke, A.S.; Krause, P.R. Herpes Simplex Virus 2 in Autonomic Ganglia: Evidence for Spontaneous Reactivation. J. Virol. 2019, 93, e00227-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieberman, P.M. Chromatin regulation of virus infection. Trends Microbiol. 2006, 14, 132–140. [Google Scholar] [CrossRef]
- Lieberman, P.M. Epigenetics and Genetics of Viral Latency. Cell Host Microbe 2016, 19, 619–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wald, A.; Zeh, J.; Selke, S.; Warren, T.; Ryncarz, A.J.; Ashley, R.; Krieger, J.N.; Corey, L. Reactivation of genital herpes simplex virus type 2 infection in asymptomatic seropositive persons. N. Engl. J. Med. 2000, 342, 844–850. [Google Scholar] [CrossRef]
- Anzivino, E.; Fioriti, D.; Mischitelli, M.; Bellizzi, A.; Barucca, V.; Chiarini, F.; Pietropaolo, V. Herpes simplex virus infection in pregnancy and in neonate: Status of art of epidemiology, diagnosis, therapy and prevention. Virol. J. 2009, 6, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groves, M.J. Genital Herpes: A Review. Am. Fam. Physician. 2016, 93, 928–934. [Google Scholar]
- Cross, S.N.; Potter, J.A.; Aldo, P.; Kwon, J.Y.; Pitruzzello, M.; Tong, M.; Guller, S.; Rothlin, C.V.; Mor, G.; Abrahams, V.M. Viral Infection Sensitizes Human Fetal Membranes to Bacterial Lipopolysaccharide by MERTK Inhibition and Inflammasome Activation. J. Immunol. 2017, 199, 2885–2895. [Google Scholar] [CrossRef] [Green Version]
- Guidry, J.T.; Scott, R.S. The interaction between human papillomavirus and other viruses. Virus Res. 2017, 231, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Lima, L.R.P.; Fernandes, L.; Villela, D.A.M.; Morgado, M.G.; Pilotto, J.H.; de Paula, V.S. Co-infection of human herpesvirus type 2 (HHV-2) and human immunodeficiency virus (HIV) among pregnant women in Rio de Janeiro, Brazil. AIDS Care 2018, 30, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Wald, A.; Schacker, T.; Corey, L. HSV-2 and HIV: Consequences of an endemic opportunistic infection. Step Perspect. 1997, 9, 2–4. [Google Scholar] [PubMed]
- Lima, L.R.P.; Araujo, N.A.; Guterres, A.; Pilotto, J.H.; Niel, C.; Paula, V.S. Novel variants of human herpesvirus 2 from Brazilian HIV-1 coinfected subjects. Mem. Inst. Oswaldo Cruz 2018, 113, e180328. [Google Scholar] [CrossRef]
- Amerson-Brown, M.H.; Miller, A.L.; Maxwell, C.A.; White, M.M.; Vincent, K.L.; Bourne, N.; Pyles, R.B. Cultivated Human Vaginal Microbiome Communities Impact Zika and Herpes Simplex Virus Replication in ex vivo Vaginal Mucosal Cultures. Front. Microbiol. 2018, 9, 3340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, C.A.; Lima, E.G.; de Lima, D.B.; Cobucci, R.N.; Cornetta Mda, C.; Fernandes, T.A.; de Azevedo, P.R.; de Azevedo, J.C.; de Araujo, J.M.; Fernandes, J.V. Genital infection with herpes simplex virus types 1 and 2 in women from natal, Brazil. ISRN Obstet. Gynecol. 2014, 2014, 323657. [Google Scholar] [CrossRef]
- Araujo, L.M.; Ferreira, M.L.; Nascimento, O.J. Guillain-Barre syndrome associated with the Zika virus outbreak in Brazil. Arq. Neuropsiquiatr. 2016, 74, 253–255. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.L.; Gardella, C.; Malm, G.; Prober, C.G.; Forsgren, M.; Krantz, E.M.; Arvin, A.M.; Yasukawa, L.L.; Mohan, K.; Brown, Z.; et al. Effect of maternal herpes simplex virus (HSV) serostatus and HSV type on risk of neonatal herpes. Acta Obstet. Gynecol. Scand. 2007, 86, 523–529. [Google Scholar] [CrossRef]
- Johnston, C.; Koelle, D.M.; Wald, A. HSV-2: In pursuit of a vaccine. J. Clin. Investig. 2011, 121, 4600–4609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ades, A.E.; Thorne, C.; Soriano-Arandes, A.; Peckham, C.S.; Brown, D.W.; Lang, D.; Morris, J.G.; Christie, C.D.C.; Giaquinto, C. Researching Zika in pregnancy: Lessons for global preparedness. Lancet Infect. Dis. 2020, 20, e61–e68. [Google Scholar] [CrossRef]
- Cairns, T.M.; Ditto, N.T.; Lou, H.; Brooks, B.D.; Atanasiu, D.; Eisenberg, R.J.; Cohen, G.H. Global sensing of the antigenic structure of herpes simplex virus gD using high-throughput array-based SPR imaging. PLoS Pathog. 2017, 13, e1006430. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.T.; Cagno, V.; Janecek, M.; Ortiz, D.; Gasilova, N.; Piret, J.; Gasbarri, M.; Constant, D.A.; Han, Y.; Vukovic, L.; et al. Modified cyclodextrins as broad-spectrum antivirals. Sci. Adv. 2020, 6, eaax9318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flamand, L.; Komaroff, A.L.; Arbuckle, J.H.; Medveczky, P.G.; Ablashi, D.V. Review, part 1: Human herpesvirus-6-basic biology, diagnostic testing, and antiviral efficacy. J. Med. Virol. 2010, 82, 1560–1568. [Google Scholar] [CrossRef]
- Revest, M.; Minjolle, S.; Veyer, D.; Lagathu, G.; Michelet, C.; Colimon, R. Detection of HHV-6 in over a thousand samples: New types of infection revealed by an analysis of positive results. J. Clin. Virol. 2011, 51, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Ablashi, D.; Agut, H.; Alvarez-Lafuente, R.; Clark, D.A.; Dewhurst, S.; DiLuca, D.; Flamand, L.; Frenkel, N.; Gallo, R.; Gompels, U.A.; et al. Classification of HHV-6A and HHV-6B as distinct viruses. Arch. Virol. 2014, 159, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, Y.; Sugata, K.; Ihira, M.; Mihara, T.; Mutoh, T.; Asano, Y.; Yoshikawa, T. Different characteristics of human herpesvirus 6 encephalitis between primary infection and viral reactivation. J. Clin. Virol. 2011, 51, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Bortolotti, D.; Gentili, V.; Rotola, A.; Cultrera, R.; Marci, R.; Di Luca, D.; Rizzo, R. HHV-6A infection of endometrial epithelial cells affects immune profile and trophoblast invasion. Am. J. Reprod. Immunol. 2019, 82, e13174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortolotti, D.; Soffritti, I.; D’Accolti, M.; Gentili, V.; Di Luca, D.; Rizzo, R.; Caselli, E. HHV-6A Infection of Endometrial Epithelial Cells Affects miRNA Expression and Trophoblast Cell Attachment. Reprod. Sci. 2020, 27, 779–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilmaz, M.; Yasar, C.; Aydin, S.; Derin, O.; Polat, B.; Ertan, G.; Ceylan, B.; Mert, A. Human Herpesvirus 6 encephalitis in an immunocompetent pregnant patient and review of the literature. Clin. Neurol. Neurosurg. 2018, 171, 106–108. [Google Scholar] [CrossRef] [PubMed]
- Pantry, S.N.; Medveczky, P.G. Latency, Integration, and Reactivation of Human Herpesvirus-6. Viruses 2017, 9, 194. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Munoz, M.E.; Fuentes-Panana, E.M. Beta and Gamma Human Herpesviruses: Agonistic and Antagonistic Interactions with the Host Immune System. Front. Microbiol. 2017, 8, 2521. [Google Scholar] [CrossRef] [PubMed]
- Collin, V.; Flamand, L. HHV-6A/B Integration and the Pathogenesis Associated with the Reactivation of Chromosomally Integrated HHV-6A/B. Viruses 2017, 9, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osterrieder, N.; Wallaschek, N.; Kaufer, B.B. Herpesvirus Genome Integration into Telomeric Repeats of Host Cell Chromosomes. Annu. Rev. Virol. 2014, 1, 215–235. [Google Scholar] [CrossRef]
- Arbuckle, J.H.; Medveczky, M.M.; Luka, J.; Hadley, S.H.; Luegmayr, A.; Ablashi, D.; Lund, T.C.; Tolar, J.; De Meirleir, K.; Montoya, J.G.; et al. The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc. Natl. Acad. Sci. USA 2010, 107, 5563–5568. [Google Scholar] [CrossRef] [Green Version]
- Tanaka-Taya, K.; Sashihara, J.; Kurahashi, H.; Amo, K.; Miyagawa, H.; Kondo, K.; Okada, S.; Yamanishi, K. Human herpesvirus 6 (HHV-6) is transmitted from parent to child in an integrated form and characterization of cases with chromosomally integrated HHV-6 DNA. J. Med. Virol 2004, 73, 465–473. [Google Scholar] [CrossRef]
- Flamand, L. Chromosomal Integration by Human Herpesviruses 6A and 6B. Adv. Exp. Med. Biol. 2018, 1045, 209–226. [Google Scholar]
- Peddu, V.; Dubuc, I.; Gravel, A.; Xie, H.; Huang, M.L.; Tenenbaum, D.; Jerome, K.R.; Tardif, J.C.; Dube, M.P.; Flamand, L.; et al. Inherited Chromosomally Integrated Human Herpesvirus 6 Demonstrates Tissue-Specific RNA Expression In Vivo That Correlates with an Increased Antibody Immune Response. J. Virol. 2019, 94, e01418-19. [Google Scholar] [CrossRef] [Green Version]
- Handous, I.; Achour, B.; Marzouk, M.; Rouis, S.; Hazgui, O.; Brini, I.; Khelif, A.; Hannachi, N.; Boukadida, J. Co-infections of human herpesviruses (CMV, HHV-6, HHV-7 and EBV) in non-transplant acute leukemia patients undergoing chemotherapy. Virol. J. 2020, 17, 37. [Google Scholar] [CrossRef]
- Kumata, R.; Ito, J.; Sato, K. Inherited chromosomally integrated HHV-6 possibly modulates human gene expression. Virus Genes 2020, 56, 386–389. [Google Scholar] [CrossRef]
- Gravel, A.; Dubuc, I.; Morissette, G.; Sedlak, R.H.; Jerome, K.R.; Flamand, L. Inherited chromosomally integrated human herpesvirus 6 as a predisposing risk factor for the development of angina pectoris. Proc. Natl. Acad. Sci. USA 2015, 112, 8058–8063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellett, P.E.; Ablashi, D.V.; Ambros, P.F.; Agut, H.; Caserta, M.T.; Descamps, V.; Flamand, L.; Gautheret-Dejean, A.; Hall, C.B.; Kamble, R.T.; et al. Chromosomally integrated human herpesvirus 6: Questions and answers. Rev. Med. Virol. 2012, 22, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Drago, F.; Broccolo, F.; Javor, S.; Drago, F.; Rebora, A.; Parodi, A. Evidence of human herpesvirus-6 and -7 reactivation in miscarrying women with pityriasis rosea. J. Am. Acad. Dermatol. 2014, 71, 198–199. [Google Scholar] [CrossRef] [PubMed]
- Drago, F.; Ciccarese, G.; Herzum, A.; Rebora, A.; Parodi, A. Pityriasis Rosea during Pregnancy: Major and Minor Alarming Signs. Dermatology 2018, 234, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, M.; Yoshikawa, T.; Ihira, M.; Suzuki, K.; Suga, S.; Tada, S.; Udagawa, Y.; Sakui, H.; Iida, K.; Saito, Y.; et al. Reactivation of human herpesvirus 6 and 7 in pregnant women. J. Med. Virol. 2002, 67, 354–358. [Google Scholar] [CrossRef]
- Dahl, H.; Fjaertoft, G.; Norsted, T.; Wang, F.Z.; Mousavi-Jazi, M.; Linde, A. Reactivation of human herpesvirus 6 during pregnancy. J. Infect. Dis. 1999, 180, 2035–2038. [Google Scholar] [CrossRef] [Green Version]
- Caserta, M.T.; Hall, C.B.; Schnabel, K.; Lofthus, G.; McDermott, M.P. Human herpesvirus (HHV)-6 and HHV-7 infections in pregnant women. J. Infect. Dis. 2007, 196, 1296–1303. [Google Scholar]
- Marci, R.; Gentili, V.; Bortolotti, D.; Lo Monte, G.; Caselli, E.; Bolzani, S.; Rotola, A.; Di Luca, D.; Rizzo, R. Presence of HHV-6A in Endometrial Epithelial Cells from Women with Primary Unexplained Infertility. PLoS ONE 2016, 11, e0158304. [Google Scholar] [CrossRef] [PubMed]
- Coulam, C.B.; Bilal, M.; Salazar Garcia, M.D.; Katukurundage, D.; Elazzamy, H.; Fernandez, E.F.; Kwak-Kim, J.; Beaman, K.; Dambaeva, S.V. Prevalence of HHV-6 in endometrium from women with recurrent implantation failure. Am. J. Reprod. Immunol. 2018, 80, e12862. [Google Scholar] [CrossRef] [PubMed]
- Caselli, E.; Bortolotti, D.; Marci, R.; Rotola, A.; Gentili, V.; Soffritti, I.; D’Accolti, M.; Lo Monte, G.; Sicolo, M.; Barao, I.; et al. HHV-6A Infection of Endometrial Epithelial Cells Induces Increased Endometrial NK Cell-Mediated Cytotoxicity. Front. Microbiol. 2017, 8, 2525. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.B.; Long, C.E.; Schnabel, K.C.; Caserta, M.T.; McIntyre, K.M.; Costanzo, M.A.; Knott, A.; Dewhurst, S.; Insel, R.A.; Epstein, L.G. Human herpesvirus-6 infection in children. A prospective study of complications and reactivation. N. Engl. J. Med. 1994, 331, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.B.; Caserta, M.T.; Schnabel, K.C.; Shelley, L.M.; Carnahan, J.A.; Marino, A.S.; Yoo, C.; Lofthus, G.K. Transplacental congenital human herpesvirus 6 infection caused by maternal chromosomally integrated virus. J. Infect. Dis. 2010, 201, 505–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, O.; Krempe, C.; Kogler, G.; Wernet, P.; Scheid, A. Congenital infections with human herpesvirus 6. J. Infect. Dis. 1998, 178, 544–546. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, S.H.; Albright, A.V.; Lisak, R.P.; Gonzalez-Scarano, F. Polymerase chain reaction analysis of human herpesvirus-6 sequences in the sera and cerebrospinal fluid of patients with multiple sclerosis. J. Neurovirol. 1999, 5, 134–139. [Google Scholar] [CrossRef]
- Dowd, K.A.; Ko, S.Y.; Morabito, K.M.; Yang, E.S.; Pelc, R.S.; DeMaso, C.R.; Castilho, L.R.; Abbink, P.; Boyd, M.; Nityanandam, R.; et al. Rapid development of a DNA vaccine for Zika virus. Science 2016, 354, 237–240. [Google Scholar] [CrossRef] [Green Version]
- De Los Angeles Ribas, M.; Tejero, Y.; Cordero, Y.; Perez, D.; Sausy, A.; Muller, C.P.; Hubschen, J.M. Identification of human parvovirus B19 among measles and rubella suspected patients from Cuba. J. Med. Virol. 2019, 91, 1351–1354. [Google Scholar] [CrossRef]
- Cohen, J.I. Epstein-Barr virus infection. N. Engl. J. Med. 2000, 343, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Hudnall, S.D. Anatomical mapping of human herpesvirus reservoirs of infection. Mod. Pathol. 2006, 19, 726–737. [Google Scholar] [CrossRef] [PubMed]
- De Paoli, P.; Carbone, A. Microenvironmental abnormalities induced by viral cooperation: Impact on lymphomagenesis. Semin. Cancer Biol. 2015, 34, 70–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulley, M.L. Molecular diagnosis of Epstein-Barr virus-related diseases. J. Mol. Diagn. 2001, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kenney, S.C.; Mertz, J.E. Regulation of the latent-lytic switch in Epstein-Barr virus. Semin. Cancer Biol. 2014, 26, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Purtilo, D.T.; Sakamoto, K. Reactivation of Epstein-Barr virus in pregnant women: Social factors, and immune competence as determinants of lymphoproliferative diseases-a hypothesis. Med. Hypotheses 1982, 8, 401–408. [Google Scholar] [CrossRef]
- Haeri, S.; Baker, A.M.; Boggess, K.A. Prevalence of Epstein-Barr virus reactivation in pregnancy. Am. J. Perinatol. 2010, 27, 715–719. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.S.; Park, J.S.; Kim, C.J.; Kim, W.H. Identification of Epstein-Barr Virus in the Human Placenta and Its Pathologic Characteristics. J. Korean Med. Sci. 2017, 32, 1959–1966. [Google Scholar] [CrossRef] [Green Version]
- Avgil, M.; Diav-Citrin, O.; Shechtman, S.; Arnon, J.; Wajnberg, R.; Ornoy, A. Epstein-Barr virus infection in pregnancy—A prospective controlled study. Reprod. Toxicol. 2008, 25, 468–471. [Google Scholar] [CrossRef]
- Avgil, M.; Ornoy, A. Herpes simplex virus and Epstein-Barr virus infections in pregnancy: Consequences of neonatal or intrauterine infection. Reprod. Toxicol. 2006, 21, 436–445. [Google Scholar] [CrossRef]
- Toth, F.D.; Aboagye-Mathiesen, G.; Nemes, J.; Liu, X.; Andirko, I.; Hager, H.; Zdravkovic, M.; Szabo, J.; Kiss, J.; Aranyosi, J.; et al. Epstein-Barr virus permissively infects human syncytiotrophoblasts in vitro and induces replication of human T cell leukemia-lymphoma virus type I in dually infected cells. Virology 1997, 229, 400–414. [Google Scholar] [CrossRef] [Green Version]
- Ouedraogo, A.R.; Kabre, M.; Bisseye, C.; Zohoncon, T.M.; Asshi, M.; Soubeiga, S.T.; Diarra, B.; Traore, L.; Djigma, F.W.; Ouermi, D.; et al. Molecular tests in diagnosis of Cytomegalovirus (CMV), human herpesvirus 6 (HHV-6) and Epstein-Barr virus (EBV) using real-time PCR in HIV positive and HIV-negative pregnant women in Ouagadougou, Burkina Faso. Pan Afr. Med. J. 2016, 24, 223. [Google Scholar]
- Van der Beken, Y.; De Geyter, D.; Van Esbroeck, M. Performance evaluation of the Diasorin LIAISON(R) XL Zika capture IgM CLIA test. Diagn. Microbiol. Infect. Dis. 2019, 95, 144–148. [Google Scholar] [CrossRef]
- Tiwari, V.; Bergman, M.J. Viral Arthritis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Knopfel, N.; Noguera-Morel, L.; Latour, I.; Torrelo, A. Viral exanthems in children: A great imitator. Clin. Dermatol. 2019, 37, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Avanzi, S.; Leoni, V.; Rotola, A.; Alviano, F.; Solimando, L.; Lanzoni, G.; Bonsi, L.; Di Luca, D.; Marchionni, C.; Alvisi, G.; et al. Susceptibility of human placenta derived mesenchymal stromal/stem cells to human herpesviruses infection. PLoS ONE 2013, 8, e71412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritsch, M.; Jaffe, E.S.; Griffin, C.; Camacho, J.; Raffeld, M.; Kingma, D.W. Lymphoproliferative disorder of fetal origin presenting as oligohydramnios. Am. J. Surg. Pathol. 1999, 23, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Gomes, H.; Huyett, P.; Laver, N.; Wein, R.O. A unique presentation of Epstein-Barr virus-associated Castleman’s disease. Am. J. Otolaryngol. 2013, 34, 262–264. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, J.L.; Gomez-Roman, J.; Ramos-Estebanez, C.; Nan, D.; Martin-Oviedo, J.; Riancho, J.A.; Gonzalez-Macias, J. Human herpesvirus 8 and Epstein-Barr virus coinfection in localized Castleman disease during pregnancy. Haematologica 2005, 90, ECR35. [Google Scholar] [PubMed]
- Devergne, O.; Birkenbach, M.; Kieff, E. Epstein-Barr virus-induced gene 3 and the p35 subunit of interleukin 12 form a novel heterodimeric hematopoietin. Proc. Natl. Acad. Sci. USA 1997, 94, 12041–12046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devergne, O.; Cahir McFarland, E.D.; Mosialos, G.; Izumi, K.M.; Ware, C.F.; Kieff, E. Role of the TRAF binding site and NF-kappaB activation in Epstein-Barr virus latent membrane protein 1-induced cell gene expression. J. Virol. 1998, 72, 7900–7908. [Google Scholar] [CrossRef] [Green Version]
- Devergne, O.; Hummel, M.; Koeppen, H.; Le Beau, M.M.; Nathanson, E.C.; Kieff, E.; Birkenbach, M. A novel interleukin-12 p40-related protein induced by latent Epstein-Barr virus infection in B lymphocytes. J. Virol. 1996, 70, 1143–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devergne, O.; Peuchmaur, M.; Humbert, M.; Navratil, E.; Leger-Ravet, M.B.; Crevon, M.C.; Petit, M.A.; Galanaud, P.; Emilie, D. In vivo expression of IL-1 beta and IL-6 genes during viral infections in human. Eur. Cytokine Netw. 1991, 2, 183–194. [Google Scholar] [PubMed]
- Rosenberg, A.Z.; Yu, W.; Hill, D.A.; Reyes, C.A.; Schwartz, D.A. Placental Pathology of Zika Virus: Viral Infection of the Placenta Induces Villous Stromal Macrophage (Hofbauer Cell) Proliferation and Hyperplasia. Arch. Pathol. Lab. Med. 2017, 141, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, D.A. Viral infection, proliferation, and hyperplasia of Hofbauer cells and absence of inflammation characterize the placental pathology of fetuses with congenital Zika virus infection. Arch. Gynecol. Obstet. 2017, 295, 1361–1368. [Google Scholar] [CrossRef]
- Ganaie, S.S.; Qiu, J. Recent Advances in Replication and Infection of Human Parvovirus B19. Front. Cell Infect. Microbiol. 2018, 8, 166. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Söderlund-Venermo, M.; Young, N.S. Human Parvoviruses. Clin. Microbiol. Rev. 2017, 30, 43–113. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Chatterjee, K.; Chattopadhyay, N.R.; Choudhuri, T. Evolutionary aspects of Parvovirus B-19V associated diseases and their pathogenesis patterns with an emphasis on vaccine development. Virusdisease 2019, 30, 32–42. [Google Scholar] [CrossRef]
- Rogo, L.D.; Mokhtari-Azad, T.; Kabir, M.H.; Rezaei, F. Human parvovirus B19: A review. Acta Virol. 2014, 58, 199–213. [Google Scholar] [CrossRef]
- Skuja, S.; Vilmane, A.; Svirskis, S.; Groma, V.; Murovska, M. Evidence of Human Parvovirus B19 Infection in the Post-Mortem Brain Tissue of the Elderly. Viruses 2018, 10, 582. [Google Scholar] [CrossRef] [Green Version]
- Janovitz, T.; Wong, S.; Young, N.S.; Oliveira, T.; Falck-Pedersen, E. Parvovirus B19 integration into human CD36+ erythroid progenitor cells. Virology 2017, 511, 40–48. [Google Scholar] [CrossRef]
- Zou, W.; Wang, Z.; Xiong, M.; Chen, A.Y.; Xu, P.; Ganaie, S.S.; Badawi, Y.; Kleiboeker, S.; Nishimune, H.; Ye, S.Q.; et al. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication. J. Virol. 2018, 92, e01881-17. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.Y.; Kleiboeker, S.; Qiu, J. Productive parvovirus B19 infection of primary human erythroid progenitor cells at hypoxia is regulated by STAT5A and MEK signaling but not HIFalpha. PLoS Pathog. 2011, 7, e1002088. [Google Scholar] [CrossRef] [Green Version]
- Devhare, P.; Meyer, K.; Steele, R.; Ray, R.B.; Ray, R. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells. Cell Death Dis. 2017, 8, e3106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamont, R.F.; Sobel, J.D.; Vaisbuch, E.; Kusanovic, J.P.; Mazaki-Tovi, S.; Kim, S.K.; Uldbjerg, N.; Romero, R. Parvovirus B19 infection in human pregnancy. BJOG Int. J. Obstet. Gynaecol. 2011, 118, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Jordan, J.A.; Huff, D.; DeLoia, J.A. Placental cellular immune response in women infected with human parvovirus B19 during pregnancy. Clin. Diagn. Lab. Immunol. 2001, 8, 288–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegner, C.C.; Jordan, J.A. Human parvovirus B19 VP2 empty capsids bind to human villous trophoblast cells in vitro via the globoside receptor. Infect. Dis. Obstet. Gynecol. 2004, 12, 69–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, J.A. Diagnosing human parvovirus B19 infection: Guidelines for test selection. Mol. Diagn. 2001, 6, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Jordan, J.A.; Butchko, A.R. Apoptotic activity in villous trophoblast cells during B19 infection correlates with clinical outcome: Assessment by the caspase-related M30 Cytodeath antibody. Placenta 2002, 23, 547–553. [Google Scholar] [CrossRef]
- Bonvicini, F.; Bua, G.; Gallinella, G. Parvovirus B19 infection in pregnancy-awareness and opportunities. Curr. Opin. Virol. 2017, 27, 8–14. [Google Scholar] [CrossRef]
- Weigel-Kelley, K.A.; Yoder, M.C.; Chen, L.; Srivastava, A. Role of integrin cross-regulation in parvovirus B19 targeting. Hum. Gene Ther. 2006, 17, 909–920. [Google Scholar] [CrossRef]
- Weigel-Kelley, K.A.; Yoder, M.C.; Srivastava, A. Alpha5beta1 integrin as a cellular coreceptor for human parvovirus B19: Requirement of functional activation of beta1 integrin for viral entry. Blood 2003, 102, 3927–3933. [Google Scholar] [CrossRef]
- Jordan, J.A.; DeLoia, J.A. Globoside expression within the human placenta. Placenta 1999, 20, 103–108. [Google Scholar] [CrossRef]
- Tzang, B.S.; Chiang, S.Y.; Chan, H.C.; Liu, C.H.; Hsu, T.C. Human parvovirus B19 antibodies induce altered membrane protein expression and apoptosis of BeWo trophoblasts. Mol. Med. Rep. 2016, 14, 4399–4406. [Google Scholar] [CrossRef] [Green Version]
- Weigel-Kelley, K.A.; Yoder, M.C.; Srivastava, A. Recombinant human parvovirus B19 vectors: Erythrocyte P antigen is necessary but not sufficient for successful transduction of human hematopoietic cells. J. Virol. 2001, 75, 4110–4116. [Google Scholar] [CrossRef] [Green Version]
- Bieri, J.; Ros, C. Globoside Is Dispensable for Parvovirus B19 Entry but Essential at a Postentry Step for Productive Infection. J. Virol. 2019, 93, e0972-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlinn, R.; Trogstad, L.; Rollag, H.; Froen, F.; Magnus, P.; Dudman, S.G. Parvovirus B19 DNAemia in pregnant women in relation to perinatal death: A nested case-control study within a large population-based pregnancy cohort. Acta Obstet. Gynecol. Scand. 2020, 99, 856–864. [Google Scholar] [CrossRef]
- Morelli, P.; Bestetti, G.; Longhi, E.; Parravicini, C.; Corbellino, M.; Meroni, L. Persistent parvovirus B19-induced anemia in an HIV-infected patient under HAART. Case report and review of literature. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 833–837. [Google Scholar] [CrossRef]
- Tavil, B.; Sanal, O.; Turul, T.; Yel, L.; Gurgey, A.; Gumruk, F. Parvovirus B19-induced persistent pure red cell aplasia in a child with T-cell immunodeficiency. Pediatr. Hematol. Oncol. 2009, 26, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Sterpu, R.; Ichou, H.; Mahe, I.; Mortier, E. Reactivation of parvovirus B19 infection in an HIV-infected woman. Rev. Med. Interne 2014, 35, 396–398. [Google Scholar] [CrossRef] [PubMed]
- De Moraes, J.C.; Toscano, C.M.; de Barros, E.N.; Kemp, B.; Lievano, F.; Jacobson, S.; Afonso, A.M.; Strebel, P.M.; Cairns, K.L.; VigiFex, G. Etiologies of rash and fever illnesses in Campinas, Brazil. J. Infect. Dis. 2011, 204 (Suppl. 2), S627–S636. [Google Scholar] [CrossRef] [Green Version]
- Ciccone, F.H.; Carvalhanas, T.R.; Afonso, A.M.; Flannery, B.; Waldman, E.A. Investigation of measles IgM-seropositive cases of febrile rash illnesses in the absence of documented measles virus transmission, State of Sao Paulo, Brazil, 2000–2004. Rev. Soc. Bras. Med. Trop. 2010, 43, 234–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahsbender, E.; Charlys da-Costa, A.; Elise Gill, D.; Augusto de Padua Milagres, F.; Brustulin, R.; Julio Costa Monteiro, F.; Octavio da Silva Rego, M.; Soares D’Athaide Ribeiro, E.; Cerdeira Sabino, E.; Delwart, E. Plasma virome of 781 Brazilians with unexplained symptoms of arbovirus infection include a novel parvovirus and densovirus. PLoS ONE 2020, 15, e0229993. [Google Scholar] [CrossRef] [Green Version]
- Izumida, T.; Sakata, H.; Nakamura, M.; Hayashibara, Y.; Inasaki, N.; Inahata, R.; Hasegawa, S.; Takizawa, T.; Kaya, H. A False Positive Dengue Fever Rapid Diagnostic Test Result in a Case of Acute Parvovirus B19 Infection. Intern. Med. 2016, 55, 1379–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Paola, N.; Mesquita, F.S.; Oliveira, D.B.L.; Villabona-Arenas, C.J.; Zaki Pour, S.; de Sousa-Capra, C.; Lopes, G.P.; Santana, R.A.F.; Pinho, J.R.R.; Balarini, K.; et al. An Outbreak of Human Parvovirus B19 Hidden by Dengue Fever. Clin. Infect. Dis. 2019, 68, 810–817. [Google Scholar] [CrossRef]
- Oliveira, M.J.; Cordeiro, M.T.; Costa, F.M.; Murakami, G.; Silva, A.M.; Travassos, R.C.; Magalhaes, V. Frequency of measles, rubella, dengue and erythema infectiosum among suspected cases of measles and rubella in the State of Pernambuco between 2001 and 2004. Rev. Soc. Bras. Med. Trop. 2008, 41, 338–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, R.B.; Melo, F.L.; Oliveira, D.S.; Romano, C.M.; Freitas, M.R.; Macedo, O.; Linhares, A.C.; Paolo, M.D.A.; Durigon, E.L. Molecular characterization of human erythrovirus B19 strains obtained from patients with several clinical presentations in the Amazon region of Brazil. J. Clin. Virol. 2008, 43, 60–65. [Google Scholar] [CrossRef]
- Voordouw, B.; Rockx, B.; Jaenisch, T.; Fraaij, P.; Mayaud, P.; Vossen, A.; Koopmans, M. Performance of Zika Assays in the Context of Toxoplasma gondii, Parvovirus B19, Rubella Virus, and Cytomegalovirus (TORCH) Diagnostic Assays. Clin. Microbiol. Rev. 2019, 33, e00130-18. [Google Scholar] [CrossRef]
- Leung, K.K.Y.; Hon, K.L.; Yeung, A.; Leung, A.K.C.; Man, E. Congenital infections in Hong Kong: An overview of TORCH. Hong Kong Med. J. 2020, 26, 127–138. [Google Scholar]
- Calabrese, L.H.; Naides, S.J. Viral arthritis. Infect. Dis. Clin. N. Am. 2005, 19, 963–980. [Google Scholar] [CrossRef]
- Muzumdar, S.; Rothe, M.J.; Grant-Kels, J.M. The rash with maculopapules and fever in children. Clin. Dermatol. 2019, 37, 119–128. [Google Scholar] [CrossRef]
- Muzumdar, S.; Rothe, M.J.; Grant-Kels, J.M. The rash with maculopapules and fever in adults. Clin. Dermatol. 2019, 37, 109–118. [Google Scholar] [CrossRef]
- Khrustalev, V.V.; Ermalovich, M.A.; Hubschen, J.M.; Khrustaleva, T.A. Transcription-associated mutational pressure in the Parvovirus B19 genome: Reactivated genomes contribute to the variability of viral populations. J. Theor. Biol. 2017, 435, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Muhlemann, B.; Margaryan, A.; Damgaard, P.B.; Allentoft, M.E.; Vinner, L.; Hansen, A.J.; Weber, A.; Bazaliiskii, V.I.; Molak, M.; Arneborg, J.; et al. Ancient human parvovirus B19 in Eurasia reveals its long-term association with humans. Proc. Natl. Acad. Sci. USA 2018, 115, 7557–7562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, M.I.; Namiyama, G.M.; Cabral, G.B.; Ferreira, J.L.; Taniwaki, N.; Afonso, A.M.S.; Lima, I.R.; Brigido, L.F.M. Isolation of infectious Zika virus from a urine sample cultured in SIRC cells from a patient suspected of having rubella virus. Rev. Inst. Med. Trop. Sao Paulo 2018, 60, e15. [Google Scholar] [CrossRef] [PubMed]
- Fantinato, F.F.; Araujo, E.L.; Ribeiro, I.G.; Andrade, M.R.; Dantas, A.L.; Rios, J.M.; Silva, O.M.; Silva, M.D.; Nobrega, R.V.; Batista, D.A.; et al. Description of the first cases of Zika virus fever investigated in municipalities of the Brazilian Northeastern Region, 2015. Epidemiol. Serv. Saude 2016, 25, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Rosenstierne, M.W.; Schaltz-Buchholzer, F.; Bruzadelli, F.; Co, A.; Cardoso, P.; Jorgensen, C.S.; Michiels, J.; Heyndrickx, L.; Arien, K.K.; Fischer, T.K.; et al. Zika Virus IgG in Infants with Microcephaly, Guinea-Bissau, 2016. Emerg. Infect. Dis. 2018, 24, 948–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebora, A.; Ciccarese, G.; Herzum, A.; Parodi, A.; Drago, F. Pityriasis rosea and other infectious eruptions during pregnancy: Possible life-threatening health conditions for the fetus. Clin. Dermatol. 2020, 38, 105–112. [Google Scholar] [CrossRef] [PubMed]
- De Vries, L.S. Viral Infections and the Neonatal Brain. Semin. Pediatr. Neurol. 2019, 32, 100769. [Google Scholar] [CrossRef] [PubMed]
- Luria, L.; Cardoza-Favarato, G. Human papillomavirus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Leslie, S.W.; Sajjad, H.; Kumar, S. Genital warts. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Freitas, A.C.; Mariz, F.C.; Silva, M.A.; Jesus, A.L. Human papillomavirus vertical transmission: Review of current data. Clin. Infect. Dis. 2013, 56, 1451–1456. [Google Scholar] [CrossRef] [Green Version]
- Giuliano, A.R.; Nyitray, A.G.; Kreimer, A.R.; Pierce Campbell, C.M.; Goodman, M.T.; Sudenga, S.L.; Monsonego, J.; Franceschi, S. EUROGIN 2014 roadmap: Differences in human papillomavirus infection natural history, transmission and human papillomavirus-related cancer incidence by gender and anatomic site of infection. Int. J. Cancer 2015, 136, 2752–2760. [Google Scholar] [CrossRef] [Green Version]
- De Villiers, E.M.; Fauquet, C.; Broker, T.R.; Bernard, H.U.; zur Hausen, H. Classification of papillomaviruses. Virology 2004, 324, 17–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krump, N.A.; Liu, W.; You, J. Mechanisms of persistence by small DNA tumor viruses. Curr. Opin. Virol. 2018, 32, 71–79. [Google Scholar] [CrossRef]
- Kalantari, M.; Villa, L.L.; Calleja-Macias, I.E.; Bernard, H.U. Human papillomavirus-16 and -18 in penile carcinomas: DNA methylation, chromosomal recombination and genomic variation. Int. J. Cancer 2008, 123, 1832–1840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pett, M.; Coleman, N. Integration of high-risk human papillomavirus: A key event in cervical carcinogenesis? J. Pathol. 2007, 212, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Dillner, J.; Lenner, P.; Lehtinen, M.; Eklund, C.; Heino, P.; Wiklund, F.; Hallmans, G.; Stendahl, U. A population-based seroepidemiological study of cervical cancer. Cancer Res. 1994, 54, 134–141. [Google Scholar]
- Koskimaa, H.M.; Paaso, A.; Welters, M.J.P.; Grenman, S.; Syrjanen, K.; van der Burg, S.H.; Syrjanen, S. The presence of human papillomavirus (HPV) in placenta and/or cord blood might result in Th2 polarization. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1491–1503. [Google Scholar] [CrossRef] [Green Version]
- Koskimaa, H.M.; Paaso, A.E.; Welters, M.J.; Grenman, S.E.; Syrjanen, K.J.; van der Burg, S.H.; Syrjanen, S.M. Human papillomavirus 16 E2-, E6- and E7-specific T-cell responses in children and their mothers who developed incident cervical intraepithelial neoplasia during a 14-year follow-up of the Finnish Family HPV cohort. J. Transl. Med. 2014, 12, 44. [Google Scholar] [CrossRef] [Green Version]
- Armbruster-Moraes, E.; Ioshimoto, L.M.; Leao, E.; Zugaib, M. Prevalence of ‘high risk’ human papillomavirus in the lower genital tract of Brazilian gravidas. Int. J. Gynaecol. Obstet. 2000, 69, 223–227. [Google Scholar] [CrossRef]
- Armbruster-Moraes, E.; Ioshimoto, L.M.; Leao, E.; Zugaib, M. Presence of human papillomavirus DNA in amniotic fluids of pregnant women with cervical lesions. Gynecol. Oncol. 1994, 54, 152–158. [Google Scholar] [CrossRef]
- Armbruster-Moraes, E.; Ioshimoto, L.M.; Leao, E.; Zugaib, M. Possible prodromes of human papillomavirus uterine cervix infection. Int. J. Gynaecol. Obstet. 1993, 42, 269–271. [Google Scholar] [CrossRef]
- Dealtry, G.B.; O’Farrell, M.K.; Fernandez, N. The Th2 cytokine environment of the placenta. Int. Arch. Allergy Immunol. 2000, 123, 107–119. [Google Scholar] [CrossRef]
- Koskimaa, H.M.; Paaso, A.; Welters, M.J.; Grenman, S.; Syrjanen, K.; van der Burg, S.H.; Syrjanen, S. Human papillomavirus 16-specific cell-mediated immunity in children born to mothers with incident cervical intraepithelial neoplasia (CIN) and to those constantly HPV negative. J. Transl. Med. 2015, 13, 370. [Google Scholar] [CrossRef] [Green Version]
- Amirian, E.S.; Adler-Storthz, K.; Scheurer, M.E. Associations between human herpesvirus-6, human papillomavirus and cervical cancer. Cancer Lett. 2013, 336, 18–23. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, X.; Tang, J.; Zhou, L.; Gao, Y.; Wang, J.; Zheng, Y.; Yin, S.; Wang, Y. A novel multiplex real-time PCR assay for the detection and quantification of HPV16/18 and HSV1/2 in cervical cancer screening. Mol. Cell. Probes 2012, 26, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Cao, X.; Zheng, Y.; Tang, J.; Cai, W.; Wang, H.; Gao, Y.; Wang, Y. Relationship between cervical disease and infection with human papillomavirus types 16 and 18, and herpes simplex virus 1 and 2. J. Med. Virol. 2012, 84, 1920–1927. [Google Scholar] [CrossRef]
- Meyrelles, A.R.I.; Siqueira, J.D.; Hofer, C.B.; Costa, T.P.; Azevedo, A.P.; Guimaraes, B.V.; Seuanez, H.N.; Soares, M.A.; Almeida, G.; Soares, E.A.; et al. HIV/HPV co-infection during pregnancy in southeastern Brazil: Prevalence, HPV types, cytological abnormalities and risk factors. Gynecol. Oncol. 2013, 128, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.E.; Silveira, M.F.; Travassos, A.G.; Tenorio, T.; Val, I.C.C.; Lannoy, L.; Mattos Junior, H.S.; Carvalho, N.S. High-risk papillomavirus infection among women living with human Immunodeficiency virus: Brazilian multicentric study. J. Med. Virol. 2017, 89, 2217–2223. [Google Scholar] [CrossRef] [PubMed]
- Tornatore, M.; Goncalves, C.V.; Bianchi, M.S.; Germano, F.N.; Garces, A.X.; Soares, M.A.; Machado, E.S.; de Martinez, A.M. Co-infections associated with human immunodeficiency virus type 1 in pregnant women from southern Brazil: High rate of intraepithelial cervical lesions. Mem. Inst. Oswaldo Cruz 2012, 107, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Ambuhl, L.M.M.; Leonhard, A.K.; Widen Zakhary, C.; Jorgensen, A.; Blaakaer, J.; Dybkaer, K.; Baandrup, U.; Uldbjerg, N.; Sorensen, S. Human papillomavirus infects placental trophoblast and Hofbauer cells, but appears not to play a causal role in miscarriage and preterm labor. Acta Obstet. Gynecol. Scand. 2017, 96, 1188–1196. [Google Scholar] [CrossRef] [Green Version]
- Ambuhl, L.M.M.; Villadsen, A.B.; Baandrup, U.; Dybkaer, K.; Sorensen, S. HPV16 E6 and E7 Upregulate Interferon-Induced Antiviral Response Genes ISG15 and IFIT1 in Human Trophoblast Cells. Pathogens 2017, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- Lebov, J.F.; Arias, J.F.; Balmaseda, A.; Britt, W.; Cordero, J.F.; Galvao, L.A.; Garces, A.L.; Hambidge, K.M.; Harris, E.; Ko, A.; et al. Correction to: International prospective observational cohort study of Zika in infants and pregnancy (ZIP study): Study protocol. BMC Pregnancy Childbirth 2019, 19, 423. [Google Scholar] [CrossRef]
- Correa, C.M.; Teixeira, N.C.; Araujo, A.C.; Carvalho Nde, O.; Castillo, D.M.; Campos, R.R.; Oliveira, I.V.; Alves, A.R.; Franca, A.F.; Melo, V.H. Prevalence and multiplicity of HPV in HIV women in Minas Gerais, Brazil. Rev. Assoc. Med. Bras. (1992) 2011, 57, 425–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cambou, M.C.; Luz, P.M.; Lake, J.E.; Levi, J.E.; Coutinho, J.R.; de Andrade, A.; Heinke, T.; Derrico, M.; Veloso, V.G.; Friedman, R.K.; et al. Anal human papillomavirus (HPV) prevalences and factors associated with abnormal anal cytology in HIV-infected women in an urban cohort from Rio de Janeiro, Brazil. AIDS Patient Care STDS 2015, 29, 4–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cambou, M.C.; Levi, J.E.; Lake, J.E.; de Andrade, A.; Jalil, E.M.; Russomano, F.; Derrico, M.; Veloso, V.G.; Friedman, R.K.; Luz, P.M.; et al. Time trend analysis of cervical high-risk human papillomavirus (HPV) in HIV-infected women in an urban cohort from Rio de Janeiro, Brazil: The rise of non-16/18 HPV. Int. J. Infect. Dis. 2015, 41, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Freitas, T.P.; Carmo, B.B.; Paula, F.D.; Rodrigues, L.F.; Fernandes, A.P.; Fernandes, P.A. Molecular detection of HPV 16 and 18 in cervical samples of patients from Belo Horizonte, Minas Gerais, Brazil. Rev. Inst. Med. Trop. Sao Paulo 2007, 49, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Vieira, M.; Castro, A.A.S.; Henriques, D.F.; Silva, E.; Tavares, F.N.; Martins, L.C.; Guimaraes, L.M.; Monteiro, T.A.F.; Azevedo, R.; Cruz, A.C.R.; et al. Encephalitis associated with Zika virus infection and reactivation of the varicella-zoster virus in a Brazilian child. Rev. Soc. Bras. Med. Trop. 2018, 51, 390–392. [Google Scholar] [CrossRef] [Green Version]
- Joob, B.; Wiwanitkit, V. Zika virus, HSV-2 and placenta. Am. J. Reprod. Immunol. 2017, 77, e12603. [Google Scholar] [CrossRef] [Green Version]
- Moreira-Soto, A.; Carneiro, I.O.; Fischer, C.; Feldmann, M.; Kummerer, B.M.; Silva, N.S.; Santos, U.G.; Souza, B.; Liborio, F.A.; Valenca-Montenegro, M.M.; et al. Limited Evidence for Infection of Urban and Peri-urban Nonhuman Primates with Zika and Chikungunya Viruses in Brazil. mSphere 2018, 3, e00523-17. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Morales, A.J. Zika and microcephaly in Latin America: An emerging threat for pregnant travelers? Travel. Med. Infect. Dis. 2016, 14, 5–6. [Google Scholar] [CrossRef]
- Grobusch, M.P.; Karimi, O.; Schinkel, J.; Codrington, J.; Vreden, S.G.; Vermaat, J.S.; Stijnis, C.; Goorhuis, A. Uncommon presentation of Zika fever or co-infection?—Authors’ reply. Lancet 2016, 387, 1813–1814. [Google Scholar] [CrossRef] [Green Version]
- Alvarado-Socarras, J.L.; Rodriguez-Morales, A.J. Etiological agents of microcephaly: Implications for diagnosis during the current Zika virus epidemic. Ultrasound Obstet. Gynecol. 2016, 47, 525–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Buhtori, M.; Moore, L.; Benbow, E.W.; Cooper, R.J. Viral detection in hydrops fetalis, spontaneous abortion, and unexplained fetal death in utero. J. Med. Virol. 2011, 83, 679–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, M.K.; Khalili, K. CRISPR/Cas9 and cancer targets: Future possibilities and present challenges. Oncotarget 2016, 7, 12305–12317. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.M.; Quenelle, D.C.; Cardin, R.D.; Vogel, J.L.; Clement, C.; Bravo, F.J.; Foster, T.P.; Bosch-Marce, M.; Raja, P.; Lee, J.S.; et al. Inhibition of LSD1 reduces herpesvirus infection, shedding, and recurrence by promoting epigenetic suppression of viral genomes. Sci. Transl. Med. 2014, 6, 265ra169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Vogel, J.L.; Narayanan, A.; Peng, H.; Kristie, T.M. Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency. Nat. Med. 2009, 15, 1312–1317. [Google Scholar] [CrossRef] [PubMed]
- Shirakawa, T.; Yaman-Deveci, R.; Tomizawa, S.; Kamizato, Y.; Nakajima, K.; Sone, H.; Sato, Y.; Sharif, J.; Yamashita, A.; Takada-Horisawa, Y.; et al. An epigenetic switch is crucial for spermatogonia to exit the undifferentiated state toward a Kit-positive identity. Development 2013, 140, 3565–3576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Aiuto, L.; Williamson, K.; Dimitrion, P.; McNulty, J.; Brown, C.E.; Dokuburra, C.B.; Nielsen, A.J.; Lin, W.J.; Piazza, P.; Schurdak, M.E.; et al. Comparison of three cell-based drug screening platforms for HSV-1 infection. Antivir. Res. 2017, 142, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, G.S.; Hamer, G.L.; Diallo, M.; Kitron, U.; Ko, A.I.; Weaver, S.C. Influence of herd immunity in the cyclical nature of arboviruses. Curr. Opin. Virol. 2020, 40, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pedroso, C.; Fischer, C.; Feldmann, M.; Sarno, M.; Luz, E.; Moreira-Soto, A.; Cabral, R.; Netto, E.M.; Brites, C.; Kummerer, B.M.; et al. Cross-Protection of Dengue Virus Infection against Congenital Zika Syndrome, Northeastern Brazil. Emerg. Infect. Dis. 2019, 25, 1485–1493. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, F.R.; Medeiros, T.; Vianna, R.A.O.; Douglass-Jaimes, G.; Nunes, P.C.G.; Quintans, M.D.S.; Souza, C.F.; Cavalcanti, S.M.B.; Dos Santos, F.B.; Oliveira, S.A.; et al. Simultaneous circulation of arboviruses and other congenital infections in pregnant women in Rio de Janeiro, Brazil. Acta Trop. 2019, 192, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Miller, K.; Gomez Ponce de Leon, R.F. Family planning and Zika virus: Need for renewed and cohesive efforts to ensure availability of intrauterine contraception in Latin America and the Caribbean. Eur. J. Contracept. Reprod. Health Care 2017, 22, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Poole, E.; Huang, C.J.Z.; Forbester, J.; Shnayder, M.; Nachshon, A.; Kweider, B.; Basaj, A.; Smith, D.; Jackson, S.E.; Liu, B.; et al. An iPSC-Derived Myeloid Lineage Model of Herpes Virus Latency and Reactivation. Front. Microbiol. 2019, 10, 2233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilcox, C.L.; Smith, R.L. HSV Latency In Vitro: In Situ Hybridization Methods. Methods Mol. Med. 1998, 10, 317–326. [Google Scholar] [PubMed]
- Sobhani, N.C.; Avvad-Portari, E.; Nascimento, A.C.M.; Machado, H.N.; Lobato, D.S.S.; Pereira, J.P.; Esquivel, M.S.; Vasconcelos, Z.C.; Zin, A.A.; Tsui, I.; et al. Discordant Zika Virus Findings in Twin Pregnancies Complicated by Antenatal Zika Virus Exposure: A Prospective Cohort. J. Infect. Dis. 2020, 221, 1838–1845. [Google Scholar] [CrossRef] [PubMed]
- Byers, N.M.; Fleshman, A.C.; Perera, R.; Molins, C.R. Metabolomic Insights into Human Arboviral Infections: Dengue, Chikungunya, and Zika Viruses. Viruses 2019, 11, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Items | Species | HSV-2 | HHV-6 | EBV | PB19 | HPV |
---|---|---|---|---|---|---|
Name | Family | Herpesviridae | Parvoviridae | Papillomaviridae | ||
Subfamily | Alphaherpesvirinae | Betaherpesvirinae | Gammaherpesvirinae | Parvovirinae | - | |
Genre | Simplex virus | Simplex virus | Lymphocryptovirus | Erythroparvovirus | Alphapapillomavirus | |
Genome | Nature | dsDNA | dsDNA | dsDNA | ssDNA | dsDNA |
Form | Linear | Linear | Linear | Circular | Circular | |
Size | 120-180 kb | 140-240kb | 180 kb | 4-6 kb | 8 kb | |
Viral cycle | Cell types | Epithelial | TCD4 cell | Memory B cell | Erythroid precursor | Mucosa epithelium |
Transcription | Nucleus | Nucleus | Nucleus | Nucleus | Nucleus | |
Replication kinetic | Short (hours) | Long (days) | Latency dominance | Short (hours) | Short (hours) | |
Pathogenicity | Tissue tropism | Genital tract (GT) | Ubiquitous | Ubiquitous | Bone marrow, fetal liver | Mouth, thorax, GT |
Receptor | TAM family | CD46? | PDL-1/PD-1 | Globoside, α5β1 integrin | α6β4 integrin | |
Cell effects | Pro-inflammation, apoptosis | Immunomodulation, apoptosis | Tumorgenesis (B-cell immortalization) | Erythropoiesis blockage (red blood cell precursors death) | Malignancy (abnormal cell growth and differentiation) | |
Host response | Immune response | Inflammation (IL-1b, IL-8), inflammasome activation (NLRP3) | Cell specificity immunomodulation | Anti-apoptosis, antiviral immune control, genome instability | Inflammation (IL-2, IL-6,) and anti-apoptosis (NF-κB) | Th2 dominance and prolonged response (IL-5, IL-10, IL-17A) |
Transmission | Mode | IC, VT, perinatal | AT, saliva, VT | AT, saliva | AT, saliva | IC |
Host behavior risk | Risky sexual behaviors | Close human contact | Close human contact | Hematological, immunological state | Risky sexual behaviors | |
Pathogenesis | Primo-infection | Genital lesions (warts), 24% symptomatic | HHV-6B: Roseola infantum or 6th disease | Mononucleosis-like syndrome | Slapped cheek syndrome or 5th disease | Genital warts resolving within 2 years |
Progression | Latency (20%–50%) | Latency (70%-100%) | Nasopharyngeal carci- noma, lymphoma, | Cardio-, hepato-, neuro-pathies | Cervical cancer 70%: HPV16/18 subtypes | |
Vulnerable person | Reproductive life woman | Toddlers (2–3 years of age) | Immuno-depressive person | Immunologic & hematologic disorders | Reproductive life woman, immuno-depressive person | |
Epidemiology | Key point | (+) 11.3% of global seroprevalence | (+) 90% of the toddlers | (+) 90% of the global population | (+) mostly of the school ages children | 100% of cervical cancer origin |
Items | Species | HSV-2 | HHV-6 | EBV | PB19 | HPV |
---|---|---|---|---|---|---|
Non-infectious reactivation | Factors | Environnemental stressors (UV exposition, hypoxia, trauma, pain), hormonal treatment, immunosuppression state, or «spontaneous» | Pregnancy? | Environnemental stressors (UV exposition, hypoxia), hormonal treatment, immunosuppression state | Oxygen, stress, Pregnancy | Environmental stressors (UV exposition, hypoxia), smoking, hormonal treatment, pregnancy, genital wart |
Pathogen-induced reactivation and consequences | Virus triggers | HIV, HPV | EBV, CMV | HIV | Unknown | EBV, HSV-2, HHV-6, PB19 |
Consequences | HIV sexual transmission, HPV-related cervical cancer | EBV and CMV antibodies production, CMV lymphopenia aggravation | B-cell immortalization, anti-apoptotic signalization, tumorgenesis | - | HPV genomic instability (EBV), HPV oncogenesis (HSV-2), HPV clearance inhibition (HHV-6) | |
Pregnancy induced reactivation (woman pre-conceptual) | Context | Recurrent genital herpes | HHV6-A variant | 35% of reactivation related to HIV coinfection | 13–20 weeks pregnancy (fetal oxygen demand) | Genital warts (mostly asymptomatic) |
Consequences | ST and VT | 1% of VT | ? | VT | VT and PT | |
Pregnancy outcome | Abortion, low birth weight, premature delivery | Infertility, miscarriage, embryogenesis affect | Placental cells changes, Th2 predominance at placental interface | Hypoxia-induced inflammation and fetal abnormal development | Infertility, abortion, choriocarcinoma |
Items | Species | HSV-2 | HHV-6 | EBV | PB19 | HPV |
---|---|---|---|---|---|---|
Latency sites | Cell types | Neuronal cells | CD34+HSCs | Memory B cells | Erythroid progenitor cells | Epithelial cells (basal stem cells) |
Tissues tropism | Sensory nerves | Lymphoid organs (e.g. spleen), lymph nodes) | Salivary glands, lymphoid organs | Unspecific tissues (e.g. skin, liver, synovial membrane) | Skin (epidermis), Genital tract (cervix), oral cavity (salivary glands, tonsillar crypts) | |
Latency forms | Viral DNA form | Circular episome | Proviral form | Circular, episome | Proviral form | Circular episome |
Cell DNA link | Free | Integrated | Linked | Integrated | Linked | |
Localization | Nucleus | Nucleus | Nucleus | Nucleus | Nucleus | |
Latency establishment | Viral DNA-host DNA relation | HSV-2 DNA “chromatin form” and independent | Viral genome as a integral part of host chromosome | Host DNA binding via specific structurally region | Viral genome as a integral part of host chromosome | Host DNA binding via specific structurally region |
Host cell cycle | Only in non-dividing cells | Synchronic duplication (S phase) | Synchronic duplication (S phase) | S and G2/M phases arrest | S phase quiescent | |
Viral genome keys | Telomeric junction area integration | Chromosomally tethered virus | Palindromic repeat sequences | Chromosomally tethered virus | ||
Latency maintain | Principe | Limited viral transcription | Limited viral transcription | Survival immortalization infected B cells | Down-regulated erythroid cell cycle | Non-cyclic cells growth and tumorgenesis |
Regulation | Epigenetic process | Epigenetic process | Epigenetic process | DNA replicative machinery using and DDR disturbing | DNA replicative machinery using and DDR disturbing | |
Key factors | LATs, ICP10, miRNA | H6-LTs, ORFs, U94, miRNA-U86 | EBNA1, OBPs, LMPs, EBNA-2, EBNA-LP, miRNA | Hypoxia, NS1, EPO/EPO rcp. | HPV6/7 activators, HPV2 replication |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grayo, S. Is the ZIKV Congenital Syndrome and Microcephaly Due to Syndemism with Latent Virus Coinfection? Viruses 2021, 13, 669. https://doi.org/10.3390/v13040669
Grayo S. Is the ZIKV Congenital Syndrome and Microcephaly Due to Syndemism with Latent Virus Coinfection? Viruses. 2021; 13(4):669. https://doi.org/10.3390/v13040669
Chicago/Turabian StyleGrayo, Solène. 2021. "Is the ZIKV Congenital Syndrome and Microcephaly Due to Syndemism with Latent Virus Coinfection?" Viruses 13, no. 4: 669. https://doi.org/10.3390/v13040669
APA StyleGrayo, S. (2021). Is the ZIKV Congenital Syndrome and Microcephaly Due to Syndemism with Latent Virus Coinfection? Viruses, 13(4), 669. https://doi.org/10.3390/v13040669