A “Drug-Dependent” Immune System Can Compromise Protection against Infection: The Relationships between Psychostimulants and HIV
Abstract
:1. Introduction
1.1. Epidemiology of the Co-Occurrence of HIV Infection and Psychostimulant Use
1.2. Neuroimmunology behind the Scenes
2. How Psychostimulants Can Influence Peripheral Immunity
2.1. Catecholamines
2.1.1. Catecholamines as Neuro- and Immune-Transmitters
2.1.2. How Psychostimulants Can Modulate Catecholamine Levels
2.2. Enkephalins
2.2.1. Enkephalins as Neuro- and Immune-Modulators
2.2.2. How Psychostimulants Modulate Enkephalin Levels
2.3. Toll-Like Receptors (TLRs)
2.3.1. TLRs as Immune and CNS Receptors
2.3.2. How Psychostimulants Can Modulate TLR Activation
3. How Psychostimulants Can Influence HIV Infection
3.1. How HIV Infection Can Be Modulated by Catecholamines Released by Psychostimulants
3.2. How HIV Infection Can Be Modulated by Enkephalins That Are Released by Psychostimulants
3.3. How HIV Infection Can Be Modulated by TLRs Activated by Psychostimulants
3.4. Other Immune Factors That Can Mediate Psychostimulant-Induced Effects on HIV Infection
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pellegrino, T.; Bayer, B.M. In vivo effects of cocaine on immune cell function. J. Neuroimmunol. 1998, 83, 139–147. [Google Scholar] [CrossRef]
- Padgett, D.A.; Glaser, R. How stress influences the immune response. Trends Immunol. 2003, 24, 444–448. [Google Scholar] [CrossRef]
- Halaris, A. Inflammation and depression but where does the inflammation come from? Curr. Opin. Psychiatry 2019, 32, 422–428. [Google Scholar] [CrossRef]
- Assis, M.A.; Hansen, C.; Lux-Lantos, V.; Cancela, L.M. Sensitization to amphetamine occurs simultaneously at immune level and in met-enkephalin of the nucleus accumbens and spleen: An involved NMDA glutamatergic mechanism. Brain Behav. Immun. 2009, 23, 464–473. [Google Scholar] [CrossRef]
- Vallejo, R.; de Leon-Casasola, O.; Benyamin, R. Opioid therapy and immunosuppression: A review. Am. J. Ther. 2004, 11, 354–365. [Google Scholar] [CrossRef]
- Islam, S.K.; Hossain, K.J.; Kamal, M.; Ahsan, M. Serum immunoglobulins and white blood cells status of drug addicts: Influence of illicit drugs and sex habit. Addict. Biol. 2004, 9, 27–33. [Google Scholar] [CrossRef]
- Friedman, H.; Eisenstein, T.K. Neurological basis of drug dependence and its effects on the immune system. J. Neuroimmunol. 2004, 147, 106–108. [Google Scholar] [CrossRef]
- Friedman, S.R.; Ompad, D.C.; Maslow, C.; Young, R.; Case, P.; Hudson, S.M.; Diaz, T.; Morse, E.; Bailey, S.; Des Jarlais, D.C.; et al. HIV prevalence, risk behaviors, and high-risk sexual and injection networks among young women injectors who have sex with women. Am. J. Public Health 2003, 93, 902–906. [Google Scholar] [CrossRef]
- Pellegrino, T.C.; Bayer, B.M. Modulation of immune cell function following fluoxetine administration in rats. Pharmacol. Biochem. Behav. 1998, 59, 151–157. [Google Scholar] [CrossRef]
- Baldwin, G.C.; Roth, M.D.; Tashkin, D.P. Acute and chronic effects of cocaine on the immune system and the possible link to AIDS. J. Neuroimmunol. 1998, 83, 133–138. [Google Scholar] [CrossRef]
- Connor, T.J. Methylenedioxymethamphetamine (MDMA, ’Ecstasy’): A stressor on the immune system. Immunology 2004, 111, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Perez-Casanova, A.E.; Tirado, G.; Noel, R.J.; Torres, C.; Rodriguez, I.; Martinez, M.; Staprans, S.; Kraiselburd, E.; Yamamura, Y.; et al. Increased viral replication in simian immunodeficiency virus/simian-HIV-infected macaques with self-administering model of chronic alcohol consumption. J. Acquir. Immune Defic. Syndr. 2005, 39, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control (CDC). Kaposi’s sarcoma and Pneumocystis pneumonia among homosexual men—New York City and California. MMWR Morb. Mortal. Wkly. Rep. 1981, 30, 305–308. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Pneumocystis pneumonia—Los Angeles. 1981. MMWR Morb. Mortal. Wkly. Rep. 1996, 45, 729–733. [Google Scholar]
- Strathdee, S.A.; Stockman, J.K. Epidemiology of HIV among injecting and non-injecting drug users: Current trends and implications for interventions. Curr. HIV/AIDS Rep. 2010, 7, 99–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoptaw, S.; Montgomery, B.; Williams, C.T.; El-Bassel, N.; Aramrattana, A.; Metsch, L.; Metzger, D.S.; Kuo, I.; Bastos, F.I.; Strathdee, S.A. Not just the needle: The state of HIV-prevention science among substance users and future directions. J. Acquir. Immune Defic. Syndr. 2013, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slawek, D.; Cunningham, C. Substance Use Disorder and HIV. In HIV in US Communities of Color; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 169–189. [Google Scholar]
- Des Jarlais, D.C.; Sypsa, V.; Feelemyer, J.; Abagiu, A.O.; Arendt, V.; Broz, D.; Chemtob, D.; Seguin-Devaux, C.; Duwve, J.M.; Fitzgerald, M.; et al. HIV outbreaks among people who inject drugs in Europe, North America, and Israel. Lancet HIV 2020, 7, e434–e442. [Google Scholar] [CrossRef]
- Koblin, B.A.; Husnik, M.J.; Colfax, G.; Huang, Y.; Madison, M.; Mayer, K.; Barresi, P.J.; Coates, T.J.; Chesney, M.A.; Buchbinder, S. Risk factors for HIV infection among men who have sex with men. AIDS 2006, 20, 731–739. [Google Scholar] [CrossRef]
- Ostrow, D.G.; Plankey, M.W.; Cox, C.; Li, X.; Shoptaw, S.; Jacobson, L.P.; Stall, R.C. Specific sex drug combinations contribute to the majority of recent HIV seroconversions among MSM in the MACS. J. Acquir. Immune Defic. Syndr. 2009, 51, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Wohl, A.R.; Frye, D.M.; Johnson, D.F. Demographic characteristics and sexual behaviors associated with methamphetamine use among MSM and non-MSM diagnosed with AIDS in Los Angeles County. AIDS Behav. 2008, 12, 705–712. [Google Scholar] [CrossRef]
- Besedovsky, H.O.; del Rey, A. Immune-neuro-endocrine interactions: Facts and hypotheses. Endocr. Rev. 1996, 17, 64–102. [Google Scholar] [CrossRef]
- Madden, K.S. Catecholamines, sympathetic innervation, and immunity. Brain Behav. Immun. 2003, 17 (Suppl. 1), S5–S10. [Google Scholar] [CrossRef]
- Blalock, J.E.; Smith, E.M. Conceptual development of the immune system as a sixth sense. Brain Behav. Immun. 2007, 21, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Blalock, J.E. The immune system as a sensory organ. J. Immunol. 1984, 132, 1067–1070. [Google Scholar]
- Blalock, J.E. The immune system as the sixth sense. J. Intern. Med. 2005, 257, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Boldyrev, A.A.; Carpenter, D.O.; Johnson, P. Emerging evidence for a similar role of glutamate receptors in the nervous and immune systems. J. Neurochem. 2005, 95, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Ader, R. On the development of psychoneuroimmunology. Eur. J. Pharmacol. 2000, 405, 167–176. [Google Scholar] [CrossRef]
- Brodde, O.E.; Daul, A.E.; Wang, X.L.; Michel, M.C.; Galal, O. Dynamic exercise-induced increase in lymphocyte beta-2-adrenoceptors: Abnormality in essential hypertension and its correction by antihypertensives. Clin. Pharmacol. Ther. 1987, 41, 371–379. [Google Scholar] [CrossRef]
- Sato, K.Z.; Fujii, T.; Watanabe, Y.; Yamada, S.; Ando, T.; Kazuko, F.; Kawashima, K. Diversity of mRNA expression for muscarinic acetylcholine receptor subtypes and neuronal nicotinic acetylcholine receptor subunits in human mononuclear leukocytes and leukemic cell lines. Neurosci. Lett. 1999, 266, 17–20. [Google Scholar] [CrossRef]
- McKenna, F.; McLaughlin, P.J.; Lewis, B.J.; Sibbring, G.C.; Cummerson, J.A.; Bowen-Jones, D.; Moots, R.J. Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: A flow cytometric study. J. Neuroimmunol. 2002, 132, 34–40. [Google Scholar] [CrossRef]
- Lombardi, G.; Dianzani, C.; Miglio, G.; Canonico, P.L.; Fantozzi, R. Characterization of ionotropic glutamate receptors in human lymphocytes. Br. J. Pharmacol. 2001, 133, 936–944. [Google Scholar] [CrossRef]
- Sedqi, M.; Roy, S.; Ramakrishnan, S.; Elde, R.; Loh, H.H. Complementary DNA cloning of a mu-opioid receptor from rat peritoneal macrophages. Biochem. Biophys. Res. Commun. 1995, 209, 563–574. [Google Scholar] [CrossRef]
- Gaveriaux, C.; Peluso, J.; Simonin, F.; Laforet, J.; Kieffer, B. Identification of kappa- and delta-opioid receptor transcripts in immune cells. FEBS Lett. 1995, 369, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Chau, C.; Hales, T.G.; Kaufman, D.L. GABA(A) receptors mediate inhibition of T cell responses. J. Neuroimmunol. 1999, 96, 21–28. [Google Scholar] [CrossRef]
- Cosentino, M.; Fietta, A.M.; Ferrari, M.; Rasini, E.; Bombelli, R.; Carcano, E.; Saporiti, F.; Meloni, F.; Marino, F.; Lecchini, S. Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 2007, 109, 632–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Y.H.; Peng, Y.P.; Jiang, J.M.; Wang, J.J. Expression of tyrosine hydroxylase in lymphocytes and effect of endogenous catecholamines on lymphocyte function. Neuroimmunomodulation 2004, 11, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Amenta, F.; Bronzetti, E.; Cantalamessa, F.; El-Assouad, D.; Felici, L.; Ricci, A.; Tayebati, S.K. Identification of dopamine plasma membrane and vesicular transporters in human peripheral blood lymphocytes. J. Neuroimmunol. 2001, 117, 133–142. [Google Scholar] [CrossRef]
- Hodo, T.W.; de Aquino, M.T.P.; Shimamoto, A.; Shanker, A. Critical Neurotransmitters in the Neuroimmune Network. Front. Immunol. 2020, 11, 1869. [Google Scholar] [CrossRef]
- Haas, H.S.; Schauenstein, K. Neuroimmunomodulation via limbic structures—The neuroanatomy of psychoimmunology. Prog. Neurobiol. 1997, 51, 195–222. [Google Scholar] [CrossRef]
- Tracey, K.J. The inflammatory reflex. Nature 2000, 420, 853–859. [Google Scholar] [CrossRef]
- Steinman, L. Elaborate interactions between the immune and nervous systems. Nat. Immunol. 2004, 5, 575–581. [Google Scholar] [CrossRef]
- Bryant, H.U.; Bernton, E.W.; Kenner, J.R.; Holaday, J.W. Role of adrenal cortical activation in the immunosuppressive effects of chronic morphine treatment. Endocrinology 1991, 128, 3253–3258. [Google Scholar] [CrossRef]
- Fecho, K.; Maslonek, K.A.; Dykstra, L.A.; Lysle, D.T. Evidence for sympathetic and adrenal involvement in the immunomodulatory effects of acute morphine treatment in rats. J. Pharmacol. Exp. Ther. 1996, 277, 633–645. [Google Scholar] [PubMed]
- Edgar, V.A.; Silberman, D.M.; Cremaschi, G.A.; Zieher, L.M.; Genaro, A.M. Altered lymphocyte catecholamine reactivity in mice subjected to chronic mild stress. Biochem. Pharmacol. 2003, 65, 15–23. [Google Scholar] [CrossRef]
- Weigent, D.A.; Blalock, J.E. Interactions between the neuroendocrine and immune systems: Common hormones and receptors. Immunol. Rev. 1987, 100, 79–108. [Google Scholar] [CrossRef] [PubMed]
- Broome, S.T.; Louangaphay, K.; Keay, K.; Leggio, G.; Musumeci, G.; Castorina, A. Dopamine: An immune transmitter. Neural Regen. Res. 2020, 15, 2173–2185. [Google Scholar]
- Yirmiya, R.; Goshen, I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun. 2011, 25, 181–213. [Google Scholar] [CrossRef]
- Kipnis, J.; Filiano, A.J. The central nervous system: Privileged by immune connections. Nat. Rev. Immunol. 2018, 18, 83–84. [Google Scholar] [CrossRef]
- Subramanian, S.; Bourdette, D.N.; Corless, C.; Vandenbark, A.A.; Offner, H.; Jones, R.E. T lymphocytes promote the development of bone marrow-derived APC in the central nervous system. J. Immunol. 2001, 166, 370–376. [Google Scholar] [CrossRef] [Green Version]
- Korn, T.; Kallies, A. T cell responses in the central nervous system. Nat. Rev. Immunol. 2017, 17, 179–194. [Google Scholar] [CrossRef]
- Filiano, A.J.; Xu, Y.; Tustison, N.J.; Marsh, R.L.; Baker, W.; Smirnov, I.; Overall, C.C.; Gadani, S.P.; Turner, S.D.; Weng, Z.; et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 2016, 535, 425–429. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-K.; Tvrdik, P.; Peden, E.; Cho, S.; Wu, S.; Spangrude, G.; Capecchi, M.R. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 2010, 141, 775–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz, D.; Lepousez, G.; Gheusi, G.; Alonso, J.R.; Lledo, P.-M.; Weruaga, E. Bone marrow cell transplantation restores olfaction in the degenerated olfactory bulb. J. Neurosci. 2012, 32, 9053–9058. [Google Scholar] [CrossRef] [Green Version]
- Lal, H.; Bennett, M.; Bennett, D.; Forster, M.J.; Nandy, K. Learning deficits occur in young mice following transfer of immunity from senescent mice. Life Sci. 1986, 39, 507–512. [Google Scholar] [CrossRef]
- Walkley, S.U.; Thrall, M.A.; Dobrenis, K.; Huang, M.; March, P.A.; Siegel, D.A.; Wurzelmann, S. Bone marrow transplantation corrects the enzyme defect in neurons of the central nervous system in a lysosomal storage disease. Proc. Natl. Acad. Sci. USA 1994, 91, 2970–2974. [Google Scholar] [CrossRef] [Green Version]
- Lescaudron, L.; Unni, D.; Dunbar, G.L. Autologous adult bone marrow stem cell transplantation in an animal model of huntington’s disease: Behavioral and morphological outcomes. Int. J. Neurosci. 2003, 113, 945–956. [Google Scholar] [CrossRef]
- Irwin, M.R.; Miller, A.H. Depressive disorders and immunity: 20 years of progress and discovery. Brain Behav. Immun. 2007, 21, 374–383. [Google Scholar] [CrossRef]
- Leonard, B.E. The concept of depression as a dysfunction of the immune system. Curr. Immunol. Rev. 2010, 6, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Irwin, M.; Daniels, M.; Bloom, E.T.; Smith, T.L.; Weiner, H. Life events, depressive symptoms, and immune function. Am. J. Psychiatry 1987, 144, 437–441. [Google Scholar] [CrossRef]
- Stein, M.; Miller, A.H.; Trestman, R.L. Depression, the immune system, and health and illness: Findings in search of meaning. Arch. Gen. Psychiatry 1991, 48, 171–177. [Google Scholar] [CrossRef]
- Schleifer, S.J.; Keller, S.E.; Siris, S.G.; Davis, K.L.; Stein, M. Depression and Immunity: Lymphocyte Function in Ambulatory Depressed Patients, Hospitalized Schizophrenic Patients, and Patients Hospitalized for Herniorrhaphy. Arch. Gen. Psychiatry 1985, 42, 129–133. [Google Scholar] [CrossRef]
- Buttarelli, F.R.; Fanciulli, A.; Pellicano, C.; Pontieri, F.E. The Dopaminergic System in Peripheral Blood Lymphocytes: From Physiology to Pharmacology and Potential Applications to Neuropsychiatric Disorders. Curr. Neuropharmacol. 2011, 9, 278–288. [Google Scholar] [CrossRef] [Green Version]
- Kubera, M.; Filip, M.; Budziszewska, B.; Basta-Kaim, A.; Wydra, K.; Leskiewicz, M.; Regulska, M.; Jaworska-Feil, L.; Przegalinski, E.; Machowska, A.; et al. Immunosuppression induced by a conditioned stimulus associated with cocaine self-administration. J. Pharmacol. Sci. 2008, 107, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Assis, M.A.; Valdomero, A.; García-Keller, C.; Sotomayor, C.; Cancela, L.M. Decrease of lymphoproliferative response by amphetamine is mediated by dopamine from the nucleus accumbens: Influence on splenic met-enkephalin levels. Brain Behav. Immun. 2011, 25, 647–657. [Google Scholar] [CrossRef]
- Assis, M.A.; Collino, C.; Figuerola, M.d.L.; Sotomayor, C.; Cancela, L.M. Amphetamine triggers an increase in met-enkephalin simultaneously in brain areas and immune cells. J. Neuroimmunol. 2006, 178, 62–75. [Google Scholar] [CrossRef]
- Fecho, K.; Maslonek, K.A.; Dykstra, L.A.; Lysle, D.T. Assessment of the involvement of central nervous system and peripheral opioid receptors in the immunomodulatory effects of acute morphine treatment in rats. J. Pharmacol. Exp. Ther. 1996, 276, 626–636. [Google Scholar]
- Dash, S.; Balasubramaniam, M.; Villalta, F.; Dash, C.; Pandhare, J. Impact of cocaine abuse on HIV pathogenesis. Front. Microbiol. 2015, 6, 1111. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ho, W.Z. Drugs of abuse and HIV infection/replication: Implications for mother-fetus transmission. Life Sci. 2011, 88, 972–979. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Nosova, E.; Reddon, H.; Nolan, S.; Socias, E.; Barrios, R.; Milloy, M.-J. Longitudinal patterns of illicit drug use, ART exposure and plasma HIV-1 RNA viral load among HIV-positive people who use illicit drugs. AIDS 2020, 34, 1389–1396. [Google Scholar] [CrossRef]
- Lucas, G.M.; Griswold, M.; Gebo, K.A.; Keruly, J.; Chaisson, R.E.; Moore, R.D. Illicit drug use and HIV-1 disease progression: A longitudinal study in the era of highly active antiretroviral therapy. Am. J. Epidemiol. 2006, 163, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Baum, M.K.; Rafie, C.; Lai, S.; Sales, S.; Page, B.; Campa, A. Crack-cocaine use accelerates HIV disease progression in a cohort of HIV-positive drug users. J. Acquir. Immune Defic. Syndr. 2009, 50, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Calderon, T.M.; Williams, D.W.; Lopez, L.; Eugenin, E.A.; Cheney, L.; Gaskill, P.J.; Veenstra, M.; Anastos, K.; Morgello, S.; Berman, J.W. Dopamine Increases CD14+CD16+ Monocyte Transmigration across the Blood Brain Barrier: Implications for Substance Abuse and HIV Neuropathogenesis. J. Neuroimmune Pharmacol. 2017, 12, 353–370. [Google Scholar] [CrossRef]
- Chilunda, V.; Calderon, T.M.; Martinez-Aguado, P.; Berman, J.W. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res. 2019, 1724, 146426. [Google Scholar] [CrossRef]
- Hauser, K.F.; Knapp, P.E. Interactions of HIV and drugs of abuse. The importance of glia, neural progenitors, and host genetic factors. In International Review of Neurobiology; Academic Press Inc.: Cambridge, MA, USA, 2014; Volume 118, pp. 231–313. [Google Scholar]
- Crews, F.T.; Zou, J.; Qin, L. Induction of innate immune genes in brain create the neurobiology of addiction. Brain Behav. Immun. 2011, 25 (Suppl. 1), S4–S12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crews, F.T.; Walter, T.J.; Coleman, L.G.; Vetreno, R.P. Toll-like receptor signaling and stages of addiction. Psychopharmacology 2017, 234, 1483–1498. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Mactutus, C.F.; Wallace, D.R.; Booze, R.M. HIV-1 tat protein-induced rapid and reversible decrease in [ 3H]dopamine uptake: Dissociation of [3H]dopamine uptake and [3H]2β-carbomethoxy-3-β-(4-fluorophenyl)tropane (WIN 35,428) binding in rat striatal synaptosomes. J. Pharmacol. Exp. Ther. 2009, 329, 1071–1083. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Ananthan, S.; Zhan, C.G. The role of human dopamine transporter in NeuroAIDS. Pharmacol. Ther. 2018, 183, 78–89. [Google Scholar] [CrossRef]
- Kesby, J.P.; Najera, J.A.; Romoli, B.; Fang, Y.; Basova, L.; Birmingham, A.; Marcondes, M.C.G.; Dulcis, D.; Semenova, S. HIV-1 TAT protein enhances sensitization to methamphetamine by affecting dopaminergic function. Brain Behav. Immun. 2017, 65, 210–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesby, J.P.; Markou, A.; Semenova, S. The effects of HIV-1 regulatory TAT protein expression on brain reward function, response to psychostimulants and delay-dependent memory in mice. Neuropharmacology 2016, 109, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Zigmond, R.E.; Schwarzschild, M.A.; Rittenhouse, A.R. Acute regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters via phosphorylation. Annu. Rev. Neurosci. 1989, 12, 415–461. [Google Scholar] [CrossRef]
- Schuldiner, S. A molecular glimpse of vesicular monoamine transporters. J. Neurochem. 1994, 62, 2067–2078. [Google Scholar] [CrossRef]
- Kahlig, K.M.; Galli, A. Regulation of dopamine transporter function and plasma membrane expression by dopamine, amphetamine, and cocaine. Eur. J. Pharmacol. 2003, 479, 153–158. [Google Scholar] [CrossRef]
- Meyer, J.S.; Quenzer, L.F. Psychopharmacology. Drugs, the Brain and the Behavior; Sinauer Associates, Inc.: Sunderland, MA, USA, 2005; ISBN 0-87893-534-7. [Google Scholar]
- Bergquist, J.; Tarkowski, A.; Ekman, R.; Ewing, A. Discovery of endogenous catecholamines in lymphocytes and evidence for catecholamine regulation of lymphocyte function via an autocrine loop. Proc. Natl. Acad. Sci. USA 1994, 91, 12912–12916. [Google Scholar] [CrossRef] [Green Version]
- Musso, N.R.; Brenci, S.; Setti, M.; Indiveri, F.; Lotti, G. Catecholamine content and in vitro catecholamine synthesis in peripheral human lymphocytes. J. Clin. Endocrinol. Metab. 1996, 81, 3553–3557. [Google Scholar]
- Marino, F.; Cosentino, M.; Bombelli, R.; Ferrari, M.; Lecchini, S.; Frigo, G. Endogenous catecholamine synthesis, metabolism storage, and uptake in human peripheral blood mononuclear cells. Exp. Hematol. 1999, 27, 489–495. [Google Scholar] [CrossRef]
- Bergquist, J.; Tarkowski, A.; Ewing, A.; Ekman, R. Catecholaminergic suppression of immunocompetent cells. Immunol. Today 1998, 19, 562–567. [Google Scholar] [CrossRef]
- Cosentino, M.; Zaffaroni, M.; Marino, F.; Bombelli, R.; Ferrari, M.; Rasini, E.; Lecchini, S.; Ghezzi, A.; Frigo, G. Catecholamine production and tyrosine hydroxylase expression in peripheral blood mononuclear cells from multiple sclerosis patients: Effect of cell stimulation and possible relevance for activation-induced apoptosis. J. Neuroimmunol. 2002, 133, 233–240. [Google Scholar] [CrossRef]
- Cosentino, M.; Marino, F.; Bombelli, R.; Ferrari, M.; Rasini, E.; Lecchini, S.; Frigo, G. Stimulation with phytohaemagglutinin induces the synthesis of catecholamines in human peripheral blood mononuclear cells: Role of protein kinase C and contribution of intracellular calcium. J. Neuroimmunol. 2002, 125, 125–133. [Google Scholar] [CrossRef]
- Ferrari, M.; Cosentino, M.; Marino, F.; Bombelli, R.; Rasini, E.; Lecchini, S.; Frigo, G. Dopaminergic D1-like receptor-dependent inhibition of tyrosine hydroxylase mRNA expression and catecholamine production in human lymphocytes. Biochem. Pharmacol. 2004, 67, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Kipnis, J.; Cardon, M.; Avidan, H.; Lewitus, G.M.; Mordechay, S.; Rolls, A.; Shani, Y.; Schwartz, M. Dopamine, through the extracellular signal-regulated kinase pathway, downregulates CD4+CD25+ regulatory T-cell activity: Implications for neurodegeneration. J. Neurosci. 2004, 24, 6133–6143. [Google Scholar] [CrossRef] [Green Version]
- Ugalde, V.; Contreras, F.; Prado, C.; Chovar, O.; Espinoza, A.; Pacheco, R. Dopaminergic signalling limits suppressive activity and gut homing of regulatory T cells upon intestinal inflammation. Mucosal Immunol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Nasi, G.; Ahmed, T.; Rasini, E.; Fenoglio, D.; Marino, F.; Filaci, G.; Cosentino, M. Dopamine inhibits human CD8+ Treg function through D1-like dopaminergic receptors. J. Neuroimmunol. 2019, 332, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Keren, A.; Gilhar, A.; Ullmann, Y.; Zlotkin-Frušić, M.; Soroka, Y.; Domb, A.J.; Levite, M. Instantaneous depolarization of T cells via dopamine receptors, and inhibition of activated T cells of Psoriasis patients and inflamed human skin, by D1-like receptor agonist: Fenoldopam. Immunology 2019, 158, 171–193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lei, B.; Yuan, Y.; Zhang, L.; Hu, L.; Jin, S.; Kang, B.; Liao, X.; Sun, W.; Xu, F.; et al. Brain control of humoral immune responses amenable to behavioural modulation. Nature 2020, 581, 204–208. [Google Scholar] [CrossRef]
- Felten, D.L.; Felten, S.Y.; Carlson, S.L.; Olschowka, J.A.; Livnat, S. Noradrenergic and peptidergic innervation of lymphoid tissue. J. Immunol. 1985, 135, 755s–765s. [Google Scholar] [PubMed]
- Felten, D.L.; Ackerman, K.D.; Wiegand, S.J.; Felten, S.Y. Noradrenergic sympathetic innervation of the spleen: I. Nerve fibers associate with lymphocytes and macrophages in specific compartments of the splenic white pulp. J. Neurosci. Res. 1987, 18, 28–36; 118–121. [Google Scholar] [CrossRef] [PubMed]
- Novotny, G.E.; Sommerfeld, H.; Zirbes, T. Thymic innervation in the rat: A light and electron microscopical study. J. Comp. Neurol. 1990, 302, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, M.; Marino, F.; Maestroni, G.J.M. Sympathoadrenergic modulation of hematopoiesis: A review of available evidence and of therapeutic perspectives. Front. Cell. Neurosci. 2015, 9, 302. [Google Scholar] [CrossRef]
- Elenkov, I.J.; Wilder, R.L.; Chrousos, G.P.; Vizi, E.S. The sympathetic nerve—An integrative interface between two supersystems: The brain and the immune system. Pharmacol. Rev. 2000, 52, 595–638. [Google Scholar]
- Lundberg, J.M.; Rudehill, A.; Sollevi, A. Pharmacological characterization of neuropeptide Y and noradrenaline mechanisms in sympathetic control of pig spleen. Eur. J. Pharmacol. 1989, 163, 103–113. [Google Scholar] [CrossRef]
- Bencsics, A.; Sershen, H.; Baranyi, M.; Hashim, A.; Lajtha, A.; Vizi, E.S. Dopamine, as well as norepinephrine, is a link between noradrenergic nerve terminals and splenocytes. Brain Res. 1997, 761, 236–243. [Google Scholar] [CrossRef]
- Van Loon, G.R. Plasma dopamine: Regulation and significance. Fed. Proc. 1983, 42, 3012–3018. [Google Scholar] [CrossRef]
- Cosentino, M.; Marino, F. Adrenergic and dopaminergic modulation of immunity in multiple sclerosis: Teaching old drugs new tricks? J. Neuroimmune Pharmacol. 2013, 8, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Elenkov, I.J.; Papanicolaou, D.A.; Wilder, R.L.; Chrousos, G.P. Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: Clinical implications. Proc. Assoc. Am. Physicians 1996, 108, 374–381. [Google Scholar] [PubMed]
- Miksa, M.; Das, P.; Zhou, M.; Wu, R.; Dong, W.; Ji, Y.; Goyert, S.M.; Ravikumar, T.S.; Wang, P. Pivotal role of the α2A-adrenoceptor in producing inflammation and organ injury in a rat model of sepsis. PLoS ONE 2009, 4, e5504. [Google Scholar] [CrossRef] [Green Version]
- Grisanti, L.A.; Woster, A.P.; Dahlman, J.; Sauter, E.R.; Combs, C.K.; Porter, J.E. α1-adrenergic receptors positively regulate toll-like receptor cytokine production from human monocytes and macrophages. J. Pharmacol. Exp. Ther. 2011, 338, 648–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elenkov, I.J.; Vizi, E.S. Presynaptic modulation of release of noradrenaline from the sympathetic nerve terminals in the rat spleen. Neuropharmacology 1991, 30, 1319–1324. [Google Scholar] [CrossRef]
- Glowinski, J.; Axelrod, J. Effect of Drugs on the Uptake, Release, and Metabolism of H3-Norepinephrine in the Rat Brain. J. Pharmacol. Exp. Ther. 1965, 149, 43–49. [Google Scholar]
- Amara, S.G.; Kuhar, M.J. neurotransmitter transporters: Recent progress. Annu. Rev. Neurosci. 1993, 16, 73–93. [Google Scholar] [CrossRef]
- Harraz, M.M.; Guha, P.; Kang, I.G.; Semenza, E.R.; Malla, A.P.; Song, Y.J.; Reilly, L.; Treisman, I.; Cortés, P.; Coggiano, M.A.; et al. Cocaine-induced locomotor stimulation involves autophagic degradation of the dopamine transporter. Mol. Psychiatry 2021. [Google Scholar] [CrossRef]
- Uhl, G.R.; Hall, F.S.; Sora, I. Cocaine, reward, movement and monoamine transporters. Mol. Psychiatry 2002, 7, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Di Chiara, G.; Imperato, A.; Mulas, A. Preferential stimulation of dopamine release in the mesolimbic system: A common feature of drugs of abuse. In Neurotransmitter Interactions in the Basal Ganglia; Sandler, M., Feuerstein, R., Seatton, B., Eds.; Raven Press: New York, NY, USA, 1987; pp. 171–182. [Google Scholar]
- Ritz, M.C.; Lamb, R.J.; Goldberg, S.R.; Kuhar, M.J. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 1987, 237, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Ordway, G.A.; Stockmeier, C.A.; Cason, G.W.; Klimek, V. Pharmacology and distribution of norepinephrine transporters in the human locus coeruleus and raphe nuclei. J. Neurosci. 1997, 17, 1710–1719. [Google Scholar] [CrossRef] [PubMed]
- Pacak, K.; Palkovits, M. Stressor specificity of central neuroendocrine responses: Implications for stress-related disorders. Endocr. Rev. 2001, 22, 502–548. [Google Scholar] [CrossRef]
- Saurer, T.B.; Carrigan, K.A.; Ijames, S.G.; Lysle, D.T. Morphine-induced alterations of immune status are blocked by the dopamine D2-like receptor agonist 7-OH-DPAT. J. Neuroimmunol. 2004, 148, 54–62. [Google Scholar] [CrossRef]
- Irwin, M.R.; Olmos, L.; Wang, M.; Valladares, E.M.; Motivala, S.J.; Fong, T.; Newton, T.; Butch, A.; Olmstead, R.; Cole, S.W. Cocaine dependence and acute cocaine induce decreases of monocyte proinflammatory cytokine expression across the diurnal period: Autonomic mechanisms. J. Pharmacol. Exp. Ther. 2007, 320, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Nistico, G.; Caroleo, M.C.; Arbitrio, M.; Pulvirenti, L. Evidence for an involvement of dopamine D1 receptors in the limbic system in the control of immune mechanisms. Neuroimmunomodulation 1994, 1, 174–180. [Google Scholar] [CrossRef]
- Bhatt, R.; Bhatt, S.; Hameed, M.; Rameshwar, P.; Siegel, A. Amygdaloid kindled seizures can induce functional and pathological changes in thymus of rat: Role of the sympathetic nervous system. Neurobiol. Dis. 2006, 21, 127–137. [Google Scholar] [CrossRef]
- Wolf, M.E. Addiction: Making the connection between behavioral changes and neuronal plasticity in specific pathways. Mol. Interv. 2002, 2, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Assis, M.A.; Díaz, D.; Ferrado, R.; Ávila-Zarza, C.A.; Weruaga, E.; Ambrosio, E. Transplantation with Lewis bone marrow induces the reinstatement of cocaine-seeking behavior in male F344 resistant rats. Brain Behav. Immun. 2020. [Google Scholar] [CrossRef]
- Sabol, S.L.; Liang, C.M.; Dandekar, S.; Kranzler, L.S. In vitro biosynthesis and processing of immunologically identified methionine-enkephalin precursor protein. J. Biol. Chem. 1983, 258, 2697–2704. [Google Scholar] [CrossRef]
- Mindroiu, T.; Carretero, O.A.; Walz, D.; Scicli, A.G. Tissue kallikrein processes small proenkephalin peptides. Biochim. Biophys. Acta BBA Protein Struct. Mol. 1991, 1076, 9–14. [Google Scholar] [CrossRef]
- Metters, K.M.; Rossier, J.; Paquin, J.; Chretien, M.; Seidah, N.B. Selective cleavage of proenkephalin-derived peptides (<23,300 daltons) by plasma kallikrein. J. Biol. Chem. 1988, 263, 12543–12553. [Google Scholar] [CrossRef]
- Lindberg, I.; Shaw, E.; Finley, J.; Leone, D.; Deininger, P. Posttranslational modifications of rat proenkephalin overexpressed in Chinese hamster ovary cells. Endocrinology 1991, 128, 1849–1856. [Google Scholar] [CrossRef]
- Gacel, G.; Fournie-Zaluski, M.C.; Fellion, E.; Roques, B.P. Evidence of the preferential involvement of mu receptors in analgesia using enkephalins highly selective for peripheral mu or delta receptors. J. Med. Chem. 1981, 24, 1119–1124. [Google Scholar] [CrossRef]
- Pert, C.B.; Snyder, S.H. Opiate receptor: Demonstration in nervous tissue. Science 1973, 179, 1011–1014. [Google Scholar] [CrossRef]
- Spanagel, R.; Herz, A.; Shippenberg, T.S. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc. Natl. Acad. Sci. USA 1992, 89, 2046–2050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brejchova, J.; Holan, V.; Svoboda, P. Expression of opioid receptors in cells of the immune system. Int. J. Mol. Sci. 2021, 22, 1–13. [Google Scholar]
- Cechova, K.; Hlouskova, M.; Javorkova, E.; Roubalova, L.; Ujcikova, H.; Holan, V.; Svoboda, P. Up-regulation of μ-, δ- and κ-opioid receptors in concanavalin A-stimulated rat spleen lymphocytes. J. Neuroimmunol. 2018, 321, 12–23. [Google Scholar] [CrossRef]
- McLaughlin, P.J.; Zagon, I.S. The opioid growth factor-opioid growth factor receptor axis: Homeostatic regulator of cell proliferation and its implications for health and disease. Biochem. Pharmacol. 2012, 84, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Keshet, E.; Polakiewicz, R.D.; Itin, A.; Ornoy, A.; Rosen, H. Proenkephalin A is expressed in mesodermal lineages during organogenesis. EMBO J. 1989, 8, 2917–2923. [Google Scholar] [CrossRef]
- Roth, K.A.; Lorenz, R.G.; Unanue, R.A.; Weaver, C.T. Nonopiate active proenkephalin-derived peptides are secreted by T helper cells. FASEB J. 1989, 3, 2401–2407. [Google Scholar] [CrossRef] [Green Version]
- Böttger, A.; Spruce, B.A. Proenkephalin is a nuclear protein responsive to growth arrest and differentiation signals. J. Cell Biol. 1995, 130, 1251–1262. [Google Scholar] [CrossRef]
- Vilijn, M.H.; Das, B.; Kessler, J.A.; Fricker, L.D. Cultured astrocytes and neurons synthesize and secrete carboxypeptidase E, a neuropeptide-processing enzyme. J. Neurochem. 1989, 53, 1487–1493. [Google Scholar] [CrossRef] [PubMed]
- Saravia, F.; Padros, M.R.; Ase, A.; Aloyz, R.; Duran, S.; Vindrola, O. Differential response to a stress stimulus of proenkephalin peptide content in immune cells of naive and chronically stressed rats. Neuropeptides 1998, 32, 351–359. [Google Scholar] [CrossRef]
- Vindrola, O.; Lindberg, I. Biosynthesis of the prohormone convertase mPC1 in AtT-20 cells. Mol. Endocrinol. 1992, 6, 1088–1094. [Google Scholar] [PubMed] [Green Version]
- Mathis, J.P.; Lindberg, I. Posttranslational processing of proenkephalin in AtT-20 cells: Evidence for cleavage at a Lys-Lys site. Endocrinology 1992, 131, 2287–2296. [Google Scholar] [CrossRef] [PubMed]
- Kuis, W.; Villiger, P.M.; Leser, H.G.; Lotz, M. Differential processing of proenkephalin-A by human peripheral blood monocytes and T lymphocytes. J. Clin. Investig. 1991, 88, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Padros, M.R.; Vindrola, O.; Zunszain, P.; Fainboin, L.; Finkielman, S.; Nahmod, V.E. Mitogenic activation of the human lymphocytes induce the release of proenkephalin derived peptides. Life Sci. 1989, 45, 1805–1811. [Google Scholar] [CrossRef]
- Fulford, A.J.; Harbuz, M.S.; Jessop, D.S. Antisense inhibition of pro-opiomelanocortin and proenkephalin A messenger RNA translation alters rat immune cell function in vitro. J. Neuroimmunol. 2000, 106, 6–13. [Google Scholar] [CrossRef]
- McTavish, N.; Copeland, L.A.; Saville, M.K.; Perkins, N.D.; Spruce, B.A. Proenkephalin assists stress-activated apoptosis through transcriptional repression of NF-kappaB- and p53-regulated gene targets. Cell Death Differ. 2007, 14, 1700–1710. [Google Scholar] [CrossRef]
- Roda, L.G.; Bongiorno, L.; Trani, E.; Urbani, A.; Marini, M. Positive and negative immunomodulation by opioid peptides. Int. J. Immunopharmacol. 1996, 18, 1–16. [Google Scholar] [CrossRef]
- Roy, S.; Loh, H.H. Effects of opioids on the immune system. Neurochem. Res. 1996, 21, 1375–1386. [Google Scholar] [CrossRef]
- Eisenstein, T.K. The Role of Opioid Receptors in Immune System Function. Front. Immunol. 2019, 10, 2904. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, M.R.; Zhang, Y.; Shridhar, M.; Evans, J.H.; Buchanan, M.M.; Zhao, T.X.; Slivka, P.F.; Coats, B.D.; Rezvani, N.; Wieseler, J.; et al. Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav. Immun. 2010, 24, 83–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Chen, W.; Meng, J.; Lu, C.; Wang, E.; Shan, F. Induction on differentiation and modulation of bone marrow progenitor of dendritic cell by methionine enkephalin (MENK). Cancer Immunol. Immunother. 2012, 61, 1699–1711. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liu, J.; Meng, J.; Lu, C.; Li, X.; Wang, E.; Shan, F. Macrophage polarization induced by neuropeptide methionine enkephalin (MENK) promotes tumoricidal responses. Cancer Immunol. Immunother. 2012, 61, 1755–1768. [Google Scholar] [CrossRef]
- Tuo, Y.; Zhang, Z.; Tian, C.; Hu, Q.; Xie, R.; Yang, J.; Zhou, H.; Lu, L.; Xiang, M. Anti-inflammatory and metabolic reprogramming effects of MENK produce antitumor response in CT26 tumor-bearing mice. J. Leukoc. Biol. 2020, 108, 215–228. [Google Scholar] [CrossRef]
- Li, W.; Chen, W.; Herberman, R.B.; Plotnikoff, N.P.; Youkilis, G.; Griffin, N.; Wang, E.; Lu, C.; Shan, F. Immunotherapy of cancer via mediation of cytotoxic T lymphocytes by methionine enkephalin (MENK). Cancer Lett. 2014, 344, 212–222. [Google Scholar] [CrossRef]
- Wang, D.M.; Wang, G.C.; Yang, J.; Plotnikoff, N.P.; Griffin, N.; Han, Y.M.; Qi, R.Q.; Gao, X.H.; Shan, F.P. Inhibition of the growth of human melanoma cells by methionine enkephalin. Mol. Med. Rep. 2016, 14, 5521–5527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, J.; Qu, N.; Jiao, X.; Wang, X.; Geng, J.; Griffin, N.; Shan, F. Methionine enkephalin inhibits influenza A virus infection through upregulating antiviral state in RAW264.7 cells. Int. Immunopharmacol. 2020, 78. [Google Scholar] [CrossRef] [PubMed]
- Shime, H.; Odanaka, M.; Tsuiji, M.; Matoba, T.; Imai, M.; Yasumizu, Y.; Uraki, R.; Minohara, K.; Watanabe, M.; Bonito, A.J.; et al. Proenkephalin+ regulatory T cells expanded by ultraviolet B exposure maintain skin homeostasis with a healing function. Proc. Natl. Acad. Sci. USA 2020, 117, 20696–20705. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, P.P.; Dhawan, V.C.; Haq, W.; Mathur, K.B.; Dutta, G.P.; Srimal, R.C.; Dhawan, B.N. Lymphokines production by concanavalin A-stimulated mouse splenocytes: Modulation by Met-enkephalin and a related peptide. Immunopharmacology 1994, 27, 245–251. [Google Scholar] [CrossRef]
- Heijnen, C.J.; Bevers, C.; Kavelaars, A.; Ballieux, R.E. Effect of alpha-endorphin on the antigen-induced primary antibody response of human blood B cells in vitro. J. Immunol. 1986, 136, 136. [Google Scholar]
- Cheido, M.A.; Idova, G.V. Participation of opiate δ-receptors in immunomodulation. Neurosci. Behav. Physiol. 1994, 24, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Robbins, T.W.; Everitt, B.J. Limbic-striatal memory systems and drug addiction. Neurobiol. Learn. Mem. 2002, 78, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Kalivas, P.W.; Volkow, N.D. The neural basis of addiction: A pathology of motivation and choice. Am. J. Psychiatry 2005, 162, 1403–1413. [Google Scholar] [CrossRef]
- Ward, S.J.; Roberts, D.C. Microinjection of the delta-opioid receptor selective antagonist naltrindole 5’-isothiocyanate site specifically affects cocaine self-administration in rats responding under a progressive ratio schedule of reinforcement. Behav. Brain Res. 2007, 182, 140–144. [Google Scholar] [CrossRef] [Green Version]
- Crespo, J.A.; Manzanares, J.; Oliva, J.M.; Corchero, J.; Palomo, T.; Ambrosio, E. Extinction of cocaine self-administration produces a differential time-related regulation of proenkephalin gene expression in rat brain. Neuropsychopharmacology 2001, 25, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.; Manzanares, J.; Corchero, J.; Garcia-Lecumberri, C.; Crespo, J.A.; Fuentes, J.A.; Ambrosio, E. Differential basal proenkephalin gene expression in dorsal striatum and nucleus accumbens, and vulnerability to morphine self-administration in Fischer 344 and Lewis rats. Brain Res. 1999, 821, 350–355. [Google Scholar] [CrossRef]
- Sánchez-Cardoso, P.; Higuera-Matas, A.; Martín, S.; del Olmo, N.; Miguéns, M.; García-Lecumberri, C.; Ambrosio, E. Modulation of the endogenous opioid system after morphine self-administration and during its extinction: A study in Lewis and Fischer 344 rats. Neuropharmacology 2007, 52, 931–948. [Google Scholar] [CrossRef]
- Sun, H.; Luessen, D.J.; Kind, K.O.; Zhang, K.; Chen, R. Cocaine Self-administration Regulates Transcription of Opioid Peptide Precursors and Opioid Receptors in Rat Caudate Putamen and Prefrontal Cortex. Neuroscience 2020, 443, 131–139. [Google Scholar] [CrossRef]
- Mongi-Bragato, B.; Zamponi, E.; García-Keller, C.; Assis, M.A.; Virgolini, M.B.; Mascó, D.H.; Zimmer, A.; Cancela, L.M. Enkephalin is essential for the molecular and behavioral expression of cocaine sensitization. Addict. Biol. 2016, 21, 326–338. [Google Scholar] [CrossRef]
- Wang, X.; Northcutt, A.L.; Cochran, T.A.; Zhang, X.; Fabisiak, T.J.; Haas, M.E.; Amat, J.; Li, H.; Rice, K.C.; Maier, S.F.; et al. Methamphetamine Activates Toll-Like Receptor 4 to Induce Central Immune Signaling within the Ventral Tegmental Area and Contributes to Extracellular Dopamine Increase in the Nucleus Accumbens Shell. ACS Chem. Neurosci. 2019, 10, 3622–3634. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, L.A.J.; Golenbock, D.; Bowie, A.G. The history of Toll-like receptors-redefining innate immunity. Nat. Rev. Immunol. 2013, 13, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Midwood, K.S.; Piccinini, A.M. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Oliveira-Nascimento, L.; Massari, P.; Wetzler, L.M. The role of TLR2 ininfection and immunity. Front. Immunol. 2012, 3, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, D.M.; Caldas, A.P.; Oliveira, L.L.; Bressan, J.; Hermsdorff, H.H. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 2016, 244, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, H.S.; Zhao, J.; Kazmierski, E.; Kinane, D.F.; Benakanakere, M.R. TLR3-Dependent Activation of TLR2 Endogenous Ligands via the MyD88 Signaling Pathway Augments the Innate Immune Response. Cells 2020, 9, 1910. [Google Scholar] [CrossRef]
- Huang, J.; Gandini, M.A.; Chen, L.; M’Dahoma, S.; Stemkowski, P.L.; Chung, H.; Muruve, D.A.; Zamponi, G.W. Hyperactivity of Innate Immunity Triggers Pain via TLR2-IL-33-Mediated Neuroimmune Crosstalk. Cell Rep. 2020, 33, 108233. [Google Scholar] [CrossRef]
- Tang, S.C.; Arumugam, T.V.; Xu, X.; Cheng, A.; Mughal, M.R.; Dong, G.J.; Lathia, J.D.; Siler, D.A.; Chigurupati, S.; Ouyang, X.; et al. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc. Natl. Acad. Sci. USA 2007, 104, 13798–13803. [Google Scholar] [CrossRef] [Green Version]
- Gou, X.; Ying, J.; Yue, Y.; Qiu, X.; Hu, P.; Qu, Y.; Li, J.; Mu, D. The Roles of High Mobility Group Box 1 in Cerebral Ischemic Injury. Front. Cell. Neurosci. 2020, 14, 600280. [Google Scholar] [CrossRef]
- Li, L.; Acioglu, C.; Heary, R.F.; Elkabes, S. Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain Behav. Immun. 2021, 91, 740–755. [Google Scholar] [CrossRef]
- Block, M.L.; Zecca, L.; Hong, J.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007, 8, 57–69. [Google Scholar] [CrossRef]
- Giansante, G.; Marte, A.; Romei, A.; Prestigio, C.; Onofri, F.; Benfenati, F.; Baldelli, P.; Valente, P. Presynaptic L-Type Ca21 channels increase glutamate release probability and excitatory strength in the hippocampus during chronic neuroinflammation. J. Neurosci. 2020, 40, 6825–6841. [Google Scholar] [CrossRef]
- Hoffmann, O.; Braun, J.S.; Becker, D.; Halle, A.; Freyer, D.; Dagand, E.; Lehnardt, S.; Weber, J.R. TLR2 Mediates Neuroinflammation and Neuronal Damage. J. Immunol. 2007, 178, 6476–6481. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Korgaonkar, A.A.; Swietek, B.; Wang, J.; Elgammal, F.S.; Elkabes, S.; Santhakumar, V. Toll-like receptor 4 enhancement of non-NMDA synaptic currents increases dentate excitability after brain injury. Neurobiol. Dis. 2015, 74, 240–253. [Google Scholar] [CrossRef] [Green Version]
- Maroso, M.; Balosso, S.; Ravizza, T.; Liu, J.; Aronica, E.; Iyer, A.M.; Rossetti, C.; Molteni, M.; Casalgrandi, M.; Manfredi, A.A.; et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat. Med. 2010, 16, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Grigoryan, G.; Lonnemann, N.; Korte, M. Immune challenge alters reactivity of hippocampal noradrenergic system in prenatally stressed aged mice. Neural Plast. 2019, 2019. [Google Scholar] [CrossRef]
- Hauss-Wegrzyniak, B.; Lynch, M.A.; Vraniak, P.D.; Wenk, G.L. Chronic brain inflammation results in cell loss in the entorhinal cortex and impaired LTP in perforant path-granule cell synapses. Exp. Neurol. 2002, 176, 336–341. [Google Scholar] [CrossRef]
- Chen, C.Y.; Shih, Y.C.; Hung, Y.F.; Hsueh, Y.P. Beyond defense: Regulation of neuronal morphogenesis and brain functions via Toll-like receptors. J. Biomed. Sci. 2019, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cen, P.; Ye, L.; Su, Q.J.; Wang, X.; Li, J.L.; Lin, X.Q.; Liang, H.; Ho, W.Z. Methamphetamine inhibits toll-like receptor 9-mediated anti-HIV activity in macrophages. AIDS Res. Hum. Retroviruses 2013, 29, 1129–1137. [Google Scholar] [CrossRef] [Green Version]
- El-Hage, N.; Podhaizer, E.M.; Sturgill, J.; Hauser, K.F. Toll-like receptor expression and activation in astroglia: Differential regulation by HIV-1 Tat, gp120, and morphine. Immunol. Investig. 2011, 40, 498–522. [Google Scholar] [CrossRef]
- Franchi, S.; Moretti, S.; Castelli, M.; Lattuada, D.; Scavullo, C.; Panerai, A.E.; Sacerdote, P. Mu opioid receptor activation modulates Toll like receptor 4 in murine macrophages. Brain Behav. Immun. 2012, 26, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, M.R.; Bland, S.T.; Johnson, K.W.; Rice, K.C.; Maier, S.F.; Watkins, L.R. Opioid-Induced Glial Activation: Mechanisms of Activation and Implications for Opioid Analgesia, Dependence, and Reward. Sci. World J. 2007, 7, 98–111. [Google Scholar] [CrossRef]
- Li, Y.; Sun, X.L.; Zhang, Y.; Huang, J.J.; Hanley, G.; Ferslew, K.E.; Peng, Y.; Yin, D.L. Morphine promotes apoptosis via TLR2, and this is negatively regulated by β-arrestin 2. Biochem. Biophys. Res. Commun. 2009, 378, 857–861. [Google Scholar] [CrossRef]
- Crews, F.T.; Qin, L.; Sheedy, D.; Vetreno, R.P.; Zou, J. High mobility group box 1/toll-like receptor danger signaling increases brain neuroimmune activation in alcohol dependence. Biol. Psychiatry 2013, 73, 602–612. [Google Scholar] [CrossRef] [Green Version]
- Northcutt, A.L.; Hutchinson, M.R.; Wang, X.; Baratta, M.V.; Hiranita, T.; Cochran, T.A.; Pomrenze, M.B.; Galer, E.L.; Kopajtic, T.A.; Li, C.M.; et al. DAT isn’t all that: Cocaine reward and reinforcement require Toll-like receptor 4 signaling. Mol. Psychiatry 2015, 20, 1525–1537. [Google Scholar] [CrossRef] [Green Version]
- Liao, K.; Guo, M.; Niu, F.; Yang, L.; Callen, S.E.; Buch, S. Cocaine-mediated induction of microglial activation involves the ER stress-TLR2 axis. J. Neuroinflamm. 2016, 13, 33. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.L.; Liao, K.; Periyasamy, P.; Yang, L.; Cai, Y.; Callen, S.E.; Buch, S. Cocaine-mediated microglial activation involves the ER stress-autophagy axis. Autophagy 2015, 11, 995–1009. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Jin, C.; Ding, Z.; Zhu, Y.; He, Q.; Zhang, X.; Ai, R.; Yin, Y.; He, Y. TLR4 regulates ROS and autophagy to control neutrophil extracellular traps formation against Streptococcus pneumoniae in acute otitis media. Pediatr. Res. 2020. [Google Scholar] [CrossRef]
- Periyasamy, P.; Liao, K.; Kook, Y.H.; Niu, F.; Callen, S.E.; Guo, M.L.; Buch, S. Cocaine-Mediated Downregulation of miR-124 Activates Microglia by Targeting KLF4 and TLR4 Signaling. Mol. Neurobiol. 2018, 55, 3196–3210. [Google Scholar] [CrossRef]
- Kashima, D.T.; Grueter, B.A. Toll-like receptor 4 deficiency alters nucleus accumbens synaptic physiology and drug reward behavior. Proc. Natl. Acad. Sci. USA 2017, 114, 8865–8870. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.T.; Levis, S.C.; O’Neill, C.E.; Northcutt, A.L.; Fabisiak, T.J.; Watkins, L.R.; Bachtell, R.K. Innate immune signaling in the ventral tegmental area contributes to drug-primed reinstatement of cocaine seeking. Brain Behav. Immun. 2018, 67, 130–138. [Google Scholar] [CrossRef]
- Burkovetskaya, M.E.; Small, R.; Guo, L.; Buch, S.; Guo, M.L. Cocaine self-administration differentially activates microglia in the mouse brain. Neurosci. Lett. 2020, 728. [Google Scholar] [CrossRef]
- Dutilleul, A.; Rodari, A.; Van Lint, C. Depicting HIV-1 Transcriptional Mechanisms: A Summary of What We Know. Viruses 2020, 12, 1385. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.R.; Mota, T.M.; Jones, R.B. Immunological approaches to HIV cure. Semin. Immunol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Araos, P.; Pedraz, M.; Serrano, A.; Lucena, M.; Barrios, V.; García-Marchena, N.; Campos-Cloute, R.; Ruiz, J.J.; Romero, P.; Suárez, J.; et al. Plasma profile of pro-inflammatory cytokines and chemokines in cocaine users under outpatient treatment: Influence of cocaine symptom severity and psychiatric co-morbidity. Addict. Biol. 2015, 20, 756–772. [Google Scholar] [CrossRef]
- Lo Iacono, L.; Catale, C.; Martini, A.; Valzania, A.; Viscomi, M.T.; Chiurchiù, V.; Guatteo, E.; Bussone, S.; Perrone, F.; Di Sabato, P.; et al. From traumatic childhood to cocaine abuse: The critical function of the immune system. Biol. Psychiatry 2018, 84, 905–916. [Google Scholar] [CrossRef] [Green Version]
- Kubera, M.; Filip, M.; Basta-Kaim, A.; Nowak, E.; Budziszewska, B.; Tetich, M.; Holan, V.; Korzeniak, B.; Przegalinski, E. The effect of amphetamine sensitization on mouse immunoreactivity. J. Physiol. Pharmacol. 2002, 53, 233–242. [Google Scholar] [PubMed]
- O’Connell, K.A.; Bailey, J.R.; Blankson, J.N. Elucidating the elite: Mechanisms of control in HIV-1 infection. Trends Pharmacol. Sci. 2009, 30, 631–637. [Google Scholar] [CrossRef]
- Sáez-Cirión, A.; Bacchus, C.; Hocqueloux, L.; Ronique Avettand-Fenoel, V.; Girault, I.; Lecuroux, C.; Potard, V.; Versmisse, P.; Melard, A.; Prazuck, T.; et al. Post-Treatment HIV-1 Controllers with a Long-Term Virological Remission after the Interruption of Early Initiated Antiretroviral Therapy ANRS VISCONTI Study. PLoS Pathog. 2013, 9, e1003211. [Google Scholar] [CrossRef]
- Sáez-Cirión, A.; Lacabaratz, C.; Lambotte, O.; Versmisse, P.; Urrutia, A.; Boufassa, F.; Barré-Sinoussi, F.; Delfraissy, J.F.; Sinet, M.; Pancino, G.; et al. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc. Natl. Acad. Sci. USA 2007, 104, 6776–6781. [Google Scholar] [CrossRef] [Green Version]
- Pohlmeyer, C.W.; Gonzalez, V.D.; Irrinki, A.; Ramirez, R.N.; Li, L.; Mulato, A.; Murry, J.P.; Arvey, A.; Hoh, R.; Deeks, S.G.; et al. Identification of NK Cell Subpopulations That Differentiate HIV-Infected Subject Cohorts with Diverse Levels of Virus Control. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [Green Version]
- Goulder, P.; Deeks, S.G. HIV control: Is getting there the same as staying there? PLoS Pathog. 2018, 14, e1007222. [Google Scholar] [CrossRef] [Green Version]
- Nickoloff-Bybel, E.A.; Calderon, T.M.; Gaskill, P.J.; Berman, J.W. HIV Neuropathogenesis in the Presence of a Disrupted Dopamine System. J. Neuroimmune Pharmacol. 2020, 15, 729–742. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Wang, X.; Chen, H.; Song, L.; Ye, L.; Wang, S.H.; Wang, Y.J.; Zhou, L.; Ho, W.Z. Methamphetamine enhances HIV infection of macrophages. Am. J. Pathol. 2008, 172, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Nair, M.P.N.; Saiyed, Z.M.; Nair, N.; Gandhi, N.H.; Rodriguez, J.W.; Boukli, N.; Provencio-Vasquez, E.; Malow, R.M.; Miguez-Burbano, M.J. Methamphetamine enhances HIV-1 infectivity in monocyte derived dendritic cells. J. Neuroimmune Pharmacol. 2009, 4, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Najera, J.A.; Bustamante, E.A.; Bortell, N.; Morsey, B.; Fox, H.S.; Ravasi, T.; Marcondes, M.C.G. Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets. BMC Immunol. 2016, 17. [Google Scholar] [CrossRef] [Green Version]
- Nair, M.P.N.; Chadha, K.C.; Hewitt, R.G.; Mahajan, S.; Sweet, A.; Schwartz, S.A. Cocaine differentially modulates chemokine production by mononuclear cells from normal donors and human immunodeficiency virus type 1-infected patients. Clin. Diagn. Lab. Immunol. 2000, 7, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Roth, M.D. Cocaine and σ-1 receptors modulate HIV infection, chemokine receptors, and the HPA axis in the huPBL-SCID model. J. Leukoc. Biol. 2005, 78, 1198–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.G.; Lowe, E.L.; Dixit, D.; Youn, C.S.; Kim, I.J.; Jung, J.B.; Rovner, R.; Zack, J.A.; Vatakis, D.N. Cocaine-mediated impact on HIV infection in humanized BLT mice. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Gaskill, P.J.; Yano, H.H.; Kalpana, G.V.; Javitch, J.A.; Berman, J.W. Dopamine receptor activation increases HIV entry into primary human macrophages. PLoS ONE 2014, 9, e108232. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.G.; Jung, J.B.; Dixit, D.; Rovner, R.; Zack, J.A.; Baldwin, G.C.; Vatakis, D.N. Cocaine exposure enhances permissiveness of quiescent T cells to HIV infection. J. Leukoc. Biol. 2013, 94, 835–843. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.N.; Casaubon, J.T.; Paul Regan, J.; Monroe, L. Cocaine-induced splenic rupture. J. Surg. Case Rep. 2017, 2017, rjx054. [Google Scholar] [CrossRef] [Green Version]
- Madden, K.S.; Sanders, V.M.; Felten, D.L. Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu. Rev. Pharmacol. Toxicol. 1995, 35, 417–448. [Google Scholar] [CrossRef]
- Dhillon, N.K.; Williams, R.; Peng, F.; Tsai, Y.J.; Dhillon, S.; Nicolay, B.; Gadgil, M.; Kumar, A.; Buch, S.J. Cocaine-mediated enhancement of virus replication in macrophages: Implications for human immunodeficiency virus-associated dementia. J. Neurovirol. 2007, 13, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Buch, S.; Periyasamy, P.; Thangaraj, A.; Sil, S.; Chivero, E.T.; Tripathi, A. Opioid-Mediated HIV-1 Immunopathogenesis. J. Neuroimmune Pharmacol. 2020, 15, 628–642. [Google Scholar] [CrossRef]
- Suzuki, S.; Chuang, L.F.; Yau, P.; Doi, R.H.; Chuang, R.Y. Interactions of opioid and chemokine receptors: Oligomerization of mu, kappa, and delta with CCR5 on immune cells. Exp. Cell Res. 2002, 280, 192–200. [Google Scholar] [CrossRef]
- Mahajan, S.D.; Schwartz, S.A.; Shanahan, T.C.; Chawda, R.P.; Nair, M.P. Morphine regulates gene expression of alpha- and beta-chemokines and their receptors on astroglial cells via the opioid mu receptor. J. Immunol. 2002, 169, 3589–3599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Li, J.; Bot, G.; Szabo, I.; Rogers, T.J.; Liu-Chen, L.Y. Heterodimerization and cross-desensitization between the μ-opioid receptor and the chemokine CCR5 receptor. Eur. J. Pharmacol. 2004, 483, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Rahim, R.T.; Davey, P.C.; Bednar, F.; Bardi, G.; Zhang, L.; Zhang, N.; Oppenheim, J.J.; Rogers, T.J. Protein kinase Cζ mediates μ-opioid receptor-induced cross-desensitization of chemokine receptor CCR5. J. Biol. Chem. 2011, 286, 20354–20365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pello, O.M.; Martínez-Muñoz, L.; Parrillas, V.; Serrano, A.; Rodríguez-Frade, J.M.; Toro, M.J.; Lucas, P.; Monterrubio, M.; Martínez-A, C.; Mellado, M. Ligand stabilization of CXCR4/δ-opioid receptor heterodimers reveals a mechanism for immune response regulation. Eur. J. Immunol. 2008, 38, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Steele, A.D.; Henderson, E.E.; Rogers, T.J. μ-Opioid modulation of HIV-1 coreceptor expression and HIV-1 replication. Virology 2003, 309, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Strazza, M.; Banerjee, A.; Alexaki, A.; Passic, S.R.; Meucci, O.; Pirrone, V.; Wigdahl, B.; Nonnemacher, M.R. Effect of μ-opioid agonist DAMGO on surface CXCR4 and HIV-1 replication in TF-1 human bone marrow progenitor cells. BMC Res. Notes 2014, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, S.; Fitting, S.; Hahn, Y.K.; Welch, S.P.; El-Hage, N.; Hauser, K.F.; Knapp, P.E. Morphine potentiates neurodegenerative effects of HIV-1 Tat through actions at μ-opioid receptor-expressing glia. In Proceedings of the Brain; Oxford University Press: Oxford, UK, 2011; Volume 134, pp. 3613–3628. [Google Scholar]
- Kim, S.; Hahn, Y.K.; Podhaizer, E.M.; McLane, V.D.; Zou, S.; Hauser, K.F.; Knapp, P.E. A central role for glial CCR5 in directing the neuropathological interactions of HIV-1 Tat and opiates. J. Neuroinflamm. 2018, 15. [Google Scholar] [CrossRef] [Green Version]
- Sil, S.; Periyasamy, P.; Guo, M.L.; Callen, S.; Buch, S. Morphine-Mediated Brain Region-Specific Astrocytosis Involves the ER Stress-Autophagy Axis. Mol. Neurobiol. 2018, 55, 6713–6733. [Google Scholar] [CrossRef]
- Han, C.; Lei, D.; Liu, L.; Xie, S.; He, L.; Wen, S.; Zhou, H.; Ma, T.; Li, S. Morphine induces the differentiation of T helper cells to Th2 effector cells via the PKC-θ–GATA3 pathway. Int. Immunopharmacol. 2020, 80. [Google Scholar] [CrossRef]
- Das, S.; Kelschenbach, J.; Charboneau, R.; Barke, R.A.; Roy, S. Morphine withdrawal stress modulates lipopolysaccharide-induced interleukin 12 p40 (IL-12p40) expression by activating extracellular signal-regulated kinase 1/2, which is further potentiated by glucocorticoids. J. Biol. Chem. 2011, 286, 29806–29817. [Google Scholar] [CrossRef] [Green Version]
- Szabo, I.; Rojavin, M.; Bussiere, J.L.; Eisenstein, T.K.; Adler, M.W.; Rogers, T.J. Suppression of peritoneal macrophage phagocytosis of Candida albicans by opioids. J. Pharmacol. Exp. Ther. 1993, 267, 703–706. [Google Scholar] [PubMed]
- El-Hage, N.; Dever, S.M.; Podhaizer, E.M.; Arnatt, C.K.; Zhang, Y.; Hauser, K.F. A novel bivalent HIV-1 entry inhibitor reveals fundamental differences in CCR5-μ-opioid receptor interactions in human astroglia and microglia. AIDS 2013, 27, 2181–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Y.; Gao, X.; Chen, W.; Plotnikoff, N.P.; Griffin, N.; Zhang, G.; Shan, F. Methionine enkephalin (MENK) mounts antitumor effect via regulating dendritic cells (DCs). Int. Immunopharmacol. 2017, 44, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Turchan-Cholewo, J.; Dimayuga, F.O.; Ding, Q.; Keller, J.N.; Hauser, K.F.; Knapp, P.E.; Bruce-Keller, A.J. Cell-specific actions of HIV-tat and morphine on opioid receptor expression in glia. J. Neurosci. Res. 2008, 86, 2100–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, R.; Krishnan, A.; Meng, J.; Das, S.; Ma, J.; Banerjee, S.; Wang, J.; Charboneau, R.; Prakash, O.; Barke, R.A.; et al. Morphine modulation of Toll-like receptors in microglial cells potentiates neuropathogenesis in a HIV-1 model of coinfection with pneumococcal pneumoniae. J. Neurosci. 2012, 32, 9917–9930. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.E.; Jaworowski, A.; Hearps, A.C. The HIV reservoir in monocytes and macrophages. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulou, L.; Holt, A.C.; Medzhitov, R.; Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 2001, 413, 732–738. [Google Scholar] [CrossRef]
- Heil, F.; Hemmi, H.; Hochrein, H.; Ampenberger, F.; Kirschning, C.; Akira, S.; Lipford, G.; Wagner, H.; Bauer, S. Species-Specific Recognition of Single-Stranded RNA via Till-like Receptor 7 and 8. Science 2004, 303, 1526–1529. [Google Scholar] [CrossRef] [Green Version]
- Hemmi, H.; Takeuchi, O.; Kawai, T.; Kaisho, T.; Sato, S.; Sanjo, H.; Matsumoto, M.; Hoshino, K.; Wagner, H.; Takeda, K.; et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000, 408, 740–745. [Google Scholar] [CrossRef]
- Macedo, A.B.; Novis, C.L.; Bosque, A. Targeting Cellular and Tissue HIV Reservoirs With Toll-Like Receptor Agonists. Front. Immunol. 2019, 10, 2450. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Wang, Q.; Li, G.; Banga, R.; Ma, J.; Yu, H.; Yasui, F.; Zhang, Z.; Pantaleo, G.; Perreau, M.; et al. TLR3 agonist and CD40-targeting vaccination induces immune responses and reduces HIV-1 reservoirs. J. Clin. Investig. 2018, 128, 4387–4396. [Google Scholar] [CrossRef] [Green Version]
- Tsai, A.; Irrinki, A.; Kaur, J.; Cihlar, T.; Kukolj, G.; Sloan, D.D.; Murry, J.P. Toll-Like Receptor 7 Agonist GS-9620 Induces HIV Expression and HIV-Specific Immunity in Cells from HIV-Infected Individuals on Suppressive Antiretroviral Therapy. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vibholm, L.; Schleimann, M.H.; Højen, J.F.; Benfield, T.; Offersen, R.; Rasmussen, K.; Olesen, R.; Dige, A.; Agnholt, J.; Grau, J.; et al. Short-course toll-like receptor 9 agonist treatment impacts innate immunity and plasma viremia in individuals with human immunodeficiency virus infection. Clin. Infect. Dis. 2017, 64, 1686–1695. [Google Scholar] [CrossRef] [PubMed]
- Henrick, B.M.; Yao, X.D.; Zahoor, M.A.; Abimiku, A.; Osawe, S.; Rosenthal, K.L. TLR10 senses HIV-1 proteins and significantly enhances HIV-1 infection. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Henrick, B.M.; Yao, X.D.; Rosenthal, K.L. HIV-1 structural proteins serve as PAMPs for TLR2 heterodimers significantly increasing infection and innate immune activation. Front. Immunol. 2015, 6. [Google Scholar] [CrossRef]
- Toossi, Z.; Xia, L.; Wu, M.; Salvekar, A. Transcriptional activation of HIV by Mycobacterium tuberculosis in human monocytes. Clin. Exp. Immunol. 1999, 117, 324–330. [Google Scholar] [CrossRef]
- Equils, O.; Faure, E.; Thomas, L.; Bulut, Y.; Trushin, S.; Arditi, M. Bacterial Lipopolysaccharide Activates HIV Long Terminal Repeat Through Toll-Like Receptor 4. J. Immunol. 2001, 166, 2342–2347. [Google Scholar] [CrossRef] [Green Version]
- Nordone, S.K.; Ignacio, G.A.; Su, L.; Sempowski, G.D.; Golenbock, D.T.; Li, L.; Dean, G.A. Failure of TLR4-driven NF-κB activation to stimulate virus replication in models of HIV type 1 activation. AIDS Res. Hum. Retroviruses 2007, 23, 1387–1395. [Google Scholar] [CrossRef] [Green Version]
- Novis, C.L.; Archin, N.M.; Buzon, M.J.; Verdin, E.; Round, J.L.; Lichterfeld, M.; Margolis, D.M.; Planelles, V.; Bosque, A. Reactivation of latent HIV-1 in central memory CD4+ T cells through TLR-1/2 stimulation. Retrovirology 2013, 10. [Google Scholar] [CrossRef] [Green Version]
- Equils, O.; Salehi, K.K.; Cornataeanu, R.; Lu, D.; Singh, S.; Whittaker, K.; Baldwin, G.C. Repeated lipopolysaccharide (LPS) exposure inhibits HIV replication in primary human macrophages. Microbes Infect. 2006, 8, 2469–2476. [Google Scholar] [CrossRef]
- Viglianti, G.A.; Planelles, V.; Hanley, T.M. Interactions with Commensal and Pathogenic Bacteria Induce HIV-1 Latency in Macrophages through Altered Transcription Factor Recruitment to the LTR. J. Virol. 2021. [Google Scholar] [CrossRef]
- Carrico, A.W.; Cherenack, E.M.; Roach, M.E.; Riley, E.D.; Oni, O.; Dilworth, S.E.; Shoptaw, S.; Hunt, P.; Roy, S.; Pallikkuth, S.; et al. Substance-associated elevations in monocyte activation among methamphetamine users with treated HIV infection. AIDS 2018, 32, 767–771. [Google Scholar] [CrossRef]
- Ichise, Y.; Saegusa, J.; Tanaka-Natsui, S.; Naka, I.; Hayashi, S.; Kuroda, R.; Morinobu, A. Soluble CD14 Induces Pro-inflammatory Cytokines in Rheumatoid Arthritis Fibroblast-Like Synovial Cells via Toll-Like Receptor 4. Cells 2020, 9, 1689. [Google Scholar] [CrossRef]
- Kuzmich, N.N.; Sivak, K.V.; Chubarev, V.N.; Porozov, Y.B.; Savateeva-Lyubimova, T.N.; Peri, F. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines 2017, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Carrico, A.W.; Flentje, A.; Kober, K.; Lee, S.; Hunt, P.; Riley, E.D.; Shoptaw, S.; Flowers, E.; Dilworth, S.E.; Pahwa, S.; et al. Recent stimulant use and leukocyte gene expression in methamphetamine users with treated HIV infection. Brain Behav. Immun. 2018, 71, 108–115. [Google Scholar] [CrossRef]
- Soder, H.E.; Berumen, A.M.; Gomez, K.E.; Green, C.E.; Suchting, R.; Wardle, M.C.; Vincent, J.; Teixeira, A.L.; Schmitz, J.M.; Lane, S.D. Elevated neutrophil to lymphocyte ratio in older adults with cocaine use disorder as a marker of chronic inflammation. Clin. Psychopharmacol. Neurosci. 2020, 18, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Silverstein, P.S.; Singh, V.; Shah, A.; Qureshi, N.; Kumar, A. Methamphetamine increases LPS-mediated expression of IL-8, TNF-α and IL-1β in human macrophages through common signaling pathways. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Shah, A.; Silverstein, P.S.; Kumar, S.; Singh, D.P.; Kumar, A. Synergistic Cooperation between Methamphetamine and HIV-1 gsp120 through the P13K/Akt Pathway Induces IL-6but not IL-8 Expression in Astrocytes. PLoS ONE 2012, 7, e52060. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, E.; Tu, G.; Liu, H.; Luo, J.; Xiong, H. Methamphetamine potentiates HIV-1gp120-induced microglial neurotoxic activity by enhancing microglial outward K+ current. Mol. Cell. Neurosci. 2017, 82, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Massanella, M.; Gianella, S.; Schrier, R.; Dan, J.M.; Pérez-Santiago, J.; Oliveira, M.F.; Richman, D.D.; Little, S.J.; Benson, C.A.; Daar, E.S.; et al. Methamphetamine Use in HIV-infected Individuals Affects T-cell Function and Viral Outcome during Suppressive Antiretroviral Therapy. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef]
- Marcondes, M.C.G.; Morsey, B.; Emanuel, K.; Lamberty, B.G.; Flynn, C.T.; Fox, H.S. CD8+ T cells maintain suppression of simian immunodeficiency virus in the central nervous system. J. Infect. Dis. 2015, 211, 40–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartwright, E.K.; Spicer, L.; Smith, S.A.; Lee, D.; Fast, R.; Paganini, S.; Lawson, B.O.; Nega, M.; Easley, K.; Schmitz, J.E.; et al. CD8+ Lymphocytes Are Required for Maintaining Viral Suppression in SIV-Infected Macaques Treated with Short-Term Antiretroviral Therapy. Immunity 2016, 45, 656–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, A.; Hayes, T.L.; Bosinger, S.E.; Lawson, B.O.; Vanderford, T.; Schmitz, J.E.; Paiardini, M.; Betts, M.; Chahroudi, A.; Estes, J.D.; et al. Differential Impact of In Vivo CD8 + T Lymphocyte Depletion in Controller versus Progressor Simian Immunodeficiency Virus-Infected Macaques. J. Virol. 2015, 89, 8677–8686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillem, K.; Ahmed, S.H.; Peoples, L.L. Escalation of cocaine intake and incubation of cocaine seeking are correlated with dissociable neuronal processes in different accumbens subregions. Biol. Psychiatry 2014, 76, 31–39. [Google Scholar] [CrossRef]
- Self, D.W.; Choi, K.-H.; Simmons, D.; Walker, J.R.; Smagula, C.S. Extinction Training Regulates Neuroadaptive Responses to Withdrawal from Chronic Cocaine Self-Administration. Learn. Mem. 2004, 11, 648–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, T.E.; Berridge, K.C. The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Res. Rev. 1993, 18, 247–291. [Google Scholar] [CrossRef]
- Robinson, T.E.; Berridge, K.C. The incentive sensitization theory of addiction: Some current issues. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 3137–3146. [Google Scholar] [CrossRef]
- Robinson, T.E.; Becker, J.B. Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis. Brain Res. 1986, 396, 157–198. [Google Scholar] [CrossRef]
- Stewart, J.; Badiani, A. Tolerance and sensitization to the behavioral effects of drugs. Behav. Pharmacol. 1993, 4, 289–312. [Google Scholar] [CrossRef]
- Carrico, A.W.; Horvath, K.J.; Grov, C.; Moskowitz, J.T.; Pahwa, S.; Pallikkuth, S.; Hirshfield, S. Double Jeopardy: Methamphetamine Use and HIV as Risk Factors for COVID-19. AIDS Behav. 2020, 24, 3020–3023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Molecules Classically Associated with the Immune System that Are Expressed by Neural Cells | Molecules Classically Associated with the CNS that Are Expressed by Immune Cells |
---|---|
CCL-2 1 | Adrenocorticotropic hormone (ACTH) 2 |
CD3ζ | Arginine-vasopressin 2 |
Complement system (C1q, C3) | Atrial natriuretic peptide |
CX3CL-1 1 | Corticotropin-releasing hormone (CRH) 2 |
IFN-γ 1 | Chorionic gonadotropin |
IL-1β 1 | Dopamine (DA) 2,3 |
Il-2 1 | Endocannabinoids 2 |
IL-6 1 | Endorphins 2 |
MHC-I | Epinephrine 2,3 |
TLR2 | Follicle-stimulant hormone (FSH) |
TLR3 | γ-aminobutyric acid (GABA) 2 |
TLR4 | Glutamate 2 |
TNF-α 1 | Growth hormone 2 |
Insulin-like growth factor I (IGF-I) 2 | |
Luteinizing hormone-releasing hormone (LHRH) | |
Luteinizing hormone (LH) | |
Met-enkephalin 2 | |
Norepinephrine 2,3 | |
Oxytocin | |
Prolactin 2 | |
Parathyroid hormone-related protein (PTHrP) | |
Serotonin 2,3 | |
Substance P 2 | |
Thyroid-stimulating hormone (TSH) | |
Vasoactive intestinal peptide (VIP) 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assis, M.A.; Carranza, P.G.; Ambrosio, E. A “Drug-Dependent” Immune System Can Compromise Protection against Infection: The Relationships between Psychostimulants and HIV. Viruses 2021, 13, 722. https://doi.org/10.3390/v13050722
Assis MA, Carranza PG, Ambrosio E. A “Drug-Dependent” Immune System Can Compromise Protection against Infection: The Relationships between Psychostimulants and HIV. Viruses. 2021; 13(5):722. https://doi.org/10.3390/v13050722
Chicago/Turabian StyleAssis, María Amparo, Pedro Gabriel Carranza, and Emilio Ambrosio. 2021. "A “Drug-Dependent” Immune System Can Compromise Protection against Infection: The Relationships between Psychostimulants and HIV" Viruses 13, no. 5: 722. https://doi.org/10.3390/v13050722
APA StyleAssis, M. A., Carranza, P. G., & Ambrosio, E. (2021). A “Drug-Dependent” Immune System Can Compromise Protection against Infection: The Relationships between Psychostimulants and HIV. Viruses, 13(5), 722. https://doi.org/10.3390/v13050722