Impact of HCV Eradication on Lipid Metabolism in HIV/HCV Coinfected Patients: Data from ICONA and HepaICONA Foundation Cohort Study
Abstract
:1. Introduction
2. Patients and Methods
3. Statistical Analysis
- DRV/r ← previous use of LPV/r → LDL-C;
- DRV/r ← previous use of ATV/r → LDL-C;
- DRV/r ← time since HIV diagnosis → LDL-C.
- RBV-based DAA-driven HCV eradication ←HCV genotype →LDL-C;
- RBV-based DAA-driven HCV eradication ←Hepatic stiffness value →LDL-C.
4. Results
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dai, C.-Y.; Chuang, W.-L.; Ho, C.-K.; Hsieh, M.-Y.; Huang, J.-F.; Lee, L.-P.; Hou, N.-J.; Lin, Z.-Y.; Chen, S.-C.; Wang, L.-Y.; et al. Associations between hepatitis C viremia and low serum triglyceride and cholesterol levels: A community-based study. J. Hepatol. 2008, 49, 9–16. [Google Scholar] [CrossRef]
- Gastaminza, P.; Cheng, G.; Wieland, S.; Zhong, J.; Liao, W.; Chisari, F.V. Cellular Determinants of Hepatitis C Virus Assembly, Maturation, Degradation, and Secretion. J. Virol. 2008, 82, 2120–2129. [Google Scholar] [CrossRef] [Green Version]
- Negro, F. Abnormalities of lipid metabolism in hepatitis C virus infection. Gut 2010, 59, 1279–1287. [Google Scholar] [CrossRef]
- Crouchet, E.; Baumert, T.F.; Schuster, C. Hepatitis C virus–apolipoprotein interactions: Molecular mechanisms and clinical impact. Expert Rev. Proteom. 2017, 14, 593–606. [Google Scholar] [CrossRef]
- Hofer, H.; Bankl, H.C.; Wrba, F.; Steindl-Munda, P.; Peck-Radosavljevic, M.; Österreicher, C.; Mueller, C.; Gangl, A.; Ferenci, P. Hepatocellular fat accumulation and low serum cholesterol in patients infected with HCV-3a. Am. J. Gastroenterol. 2002, 97, 2880–2885. [Google Scholar] [CrossRef]
- Negro, F.; Sanyal, A.J. Hepatitis C virus, steatosis and lipid abnormalities: Clinical and pathogenic data. Liver Int. 2009, 29 (Suppl. 2), 26–37. [Google Scholar] [CrossRef]
- Mirandola, S.; Realdon, S.; Iqbal, J.; Gerotto, M.; Dal Pero, F.; Bortoletto, G.; Marcolongo, M.; Vario, A.; Datz, C.; Hussain, M.M.; et al. Liver microsomal triglyceride transfer protein is involved in hepatitis C liver steatosis. Gastroenterology 2006, 130, 1661–1669. [Google Scholar] [CrossRef]
- Chida, T.; Kawata, K.; Ohta, K.; Matsunaga, E.; Ito, J.; Shimoyama, S.; Yamazaki, S.; Noritake, H.; Suzuki, T.; Suda, T.; et al. Rapid Changes in Serum Lipid Profiles during Combination Therapy with Daclatasvir and Asunaprevir in Patients Infected with Hepatitis C Virus Genotype 1b. Gut Liver 2018, 12, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Morales, A.L.; Junga, Z.; Singla, M.B.; Sjogren, M.; Torres, D. Hepatitis C eradication with sofosbuvir leads to significant metabolic changes. World J. Hepatol. 2016, 8, 1557–1563. [Google Scholar] [CrossRef]
- Hashimoto, S.; Yatsuhashi, H.; Abiru, S.; Yamasaki, K.; Komori, A.; Nagaoka, S.; Saeki, A.; Uchida, S.; Bekki, S.; Kugiyama, Y.; et al. Rapid Increase in Serum Low-Density Lipoprotein Cholesterol Concentration during Hepatitis C Interferon-Free Treatment. PLoS ONE 2016, 11, e0163644. [Google Scholar] [CrossRef]
- Triant, V.A.; Lee, H.; Hadigan, C.; Grinspoon, S.K. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J. Clin. Endocrinol. Metab. 2007, 92, 2506–2512. [Google Scholar] [CrossRef]
- Smit, M.; Cassidy, R.; Cozzi-Lepri, A.; Quiros-Roldan, E.; Girardi, E.; Mammone, A.; Antinori, A.; Saracino, A.; Bai, F.; Rusconi, S.; et al. Projections of non-communicable disease and health care costs among HIV-positive persons in Italy and the U.S.A.: A modelling study. PLoS ONE 2017, 12, e0186638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsue, P.Y.; Lo, J.C.; Franklin, A.; Bolger, A.F.; Martin, J.N.; Deeks, S.G.; Waters, D.D. Progression of Atherosclerosis as Assessed by Carotid Intima-Media Thickness in Patients With HIV Infection. Circulation 2004, 109, 1603–1608. [Google Scholar] [CrossRef] [Green Version]
- Sabin, C.; Worm, S.W.; Weber, R.; Reiss, P.; Elsadr, W.; Dabis, F.; De Wit, S.; Monforte, A.D.; Friis-Moller, N.; Kirk, O.; et al. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A:D study: A multi-cohort collaboration. Lancet 2008, 371, 1417–1426. [Google Scholar] [CrossRef] [Green Version]
- Friis-Moller, N.; Reiss, P.; Sabin, C.; Weber, R.; Monforte, A.D.; El-Sadr, W.; Thiebaut, R.; De Wit, S.; Kirk, O.; Fontas, E.E.; et al. Class of Antiretroviral Drugs and the Risk of Myocardial Infarction. N. Engl. J. Med. 2007, 356, 1723–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryom, L.; Lundgren, J.D.; El-Sadr, W.; Reiss, P.; Kirk, O.; Law, M.; Phillips, A.; Weber, R.; Fontas, E.; Monforte, A.D.A.; et al. Cardiovascular disease and use of contemporary protease inhibitors: The D:A:D international prospective multicohort study. Lancet HIV 2018, 5, e291–e300. [Google Scholar] [CrossRef] [Green Version]
- Osibogun, O.; Ogunmoroti, O.; Michos, E.D.; Spatz, E.S.; Olubajo, B.; Nasir, K.; Maziak, W. A systematic review of the associations between HIV/HCV coinfection and biomarkers of cardiovascular disease. Rev. Med. Virol. 2017, 28, e1953. [Google Scholar] [CrossRef]
- Monforte, A.D.A.; Lepri, A.C.; Rezza, G.; Pezzotti, P.; Antinori, A.; Phillips, A.N.; Angarano, G.; Colangeli, V.; De Luca, A.; Ippolito, G.; et al. Insights into the reasons for discontinuation of the first highly active antiretroviral therapy (HAART) regimen in a cohort of antiretroviral naïve patients. I.CO.N.A. Study Group. Italian Cohort of Antiretroviral-Naïve Patient. AIDS 2000, 14, 499–507. [Google Scholar] [CrossRef]
- Pearl, J.; Mackenzie, D. The Book of Why: The New Science of Cause and Effect; Basic Books: New York, NY, USA, 2008. [Google Scholar]
- Meissner, E.G.; Lee, Y.J.; Osinusi, A.; Sims, Z.; Qin, J.; Sturdevant, D.; McHutchison, J.; Subramanian, M.; Sampson, M.; Naggie, S.; et al. Effect of sofosbuvir and ribavirin treatment on peripheral and hepatic lipid metabolism in chronic hepatitis C virus, genotype 1-infected patients. Hepatology 2015, 61, 790–801. [Google Scholar] [CrossRef]
- Mauss, S.; Berger, F.; Wehmeyer, M.H.; Ingiliz, P.; Hueppe, D.; Lutz, T.; Simon, K.G.; Schewe, K.; Rockstroh, J.K.; Baumgarten, A.; et al. Effect of antiviral therapy for HCV on lipid levels. Antivir. Ther. 2016, 22, 81–88. [Google Scholar] [CrossRef]
- Townsend, K.; Meissner, E.G.; Sidharthan, S.; Sampson, M.; Remaley, A.T.; Tang, L.; Kohli, A.; Osinusi, A.; Masur, H.; Kottilil, S. Interferon-free treatment of hepatitis c virus in HIV/hepatitis C viruscoinfected subjects results in increased serum lowdensity lipoprotein concentration. AIDS Res. Hum. Retroviruses. 2016, 32, 456–462. [Google Scholar] [CrossRef] [Green Version]
- Endo, D.; Satoh, K.; Shimada, N.; Hokari, A.; Aizawa, Y. Impact of interferon-free antivirus therapy on lipid profiles in patients with chronic hepatitis C genotype 1b. World J. Gastroenterol. 2017, 23, 2355–2364. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, T.; Miyaaki, H.; Miuma, S.; Motoyoshi, Y.; Narita, S.; Toda, S.; Takahashi, Y.; Honda, T.; Yajima, H.; Uehara, R.; et al. Carotid Intimamedia Thickness and Small Dense Lowdensity Lipoprotein Cholesterol Increase after One Year of Treatment with Directacting Antivirals in Patients with Hepatitis C Virus Infection. Intern. Med. 2019, 58, 1209–1215. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T.; Goto, T.; Iio, E.; Matsunami, K.; Fujiwara, K.; Shinkai, N.; Matsuura, K.; Matsui, T.; Nojiri, S.; Tanaka, Y. Changes in serum lipid profiles caused by three regimens of interferonfree direct-acting antivirals for patients infected with hepatitis C virus. Hepatol. Res. 2018, 48, E203–E212. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.; Soroida, Y.; Sato, M.; Hikita, H.; Kobayashi, T.; Endo, M.; Sato, M.; Gotoh, H.; Iwai, T.; Tateishi, R.; et al. Eradication of hepatitis C virus is associated with the attenuation of steatosis as evaluated using a controlled attenuation parameter. Sci. Rep. 2018, 8, 7845. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Stepanova, M.; Estep, M.; Negro, F.; Clark, P.; Hunt, S.; Song, Q.; Paulson, M.; Stamm, L.M.; Brainard, D.M.; et al. Dysregulation of distal cholesterol biosynthesis in association with relapse and advanced disease in CHC genotype 2 and 3 treated with sofosbuvir and ribavirin. J. Hepatol. 2016, 64, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Perlemuter, G.; Sabile, A.; Letteron, P.; Vona, G.; Topilco, A.; Chrétien, Y.; Koike, K.; Pessayre, D.; Chapman, J.; Barba, G.; et al. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: A model of viralrelated steatosis. FASEB J. 2002, 16, 185–194. [Google Scholar] [CrossRef]
- Noureddin, M.; Wong, M.M.; Todo, T.; Lu, S.C.; Sanyal, A.J.; Mena, E.A. Fatty liver in hepatitis C patients postsustained virological response with directacting antivirals. World J. Gastroenterol. 2018, 24, 1269–1277. [Google Scholar] [CrossRef]
- Kobayashi, N.; Iijima, H.; Tada, T.; Kumada, T.; Yoshida, M.; Aoki, T.; Nishimura, T.; Nakano, C.; Takata, R.; Yoh, K.; et al. Changes in liver stiffness and steatosis among patients with hepatitis C virus infection who received directacting antiviral therapy and achieved sustained virological response. Eur. J. Gastroenterol. Hepatol. 2018, 30, 546–551. [Google Scholar] [CrossRef]
- Tada, T.; Kumada, T.; Toyoda, H.; Sone, Y.; Takeshima, K.; Ogawa, S.; Goto, T.; Wakahata, A.; Nakashima, M.; Nakamuta, M.; et al. Viral eradication reduces both liver stiffness and steatosis in patients with chronic hepatitis C virus infection who received directacting antiviral therapy. Aliment Pharmacol. Ther. 2018, 47, 1012–1022. [Google Scholar]
- Ogasawara, N.; Kobayashi, M.; Akuta, N.; Kominami, Y.; Fujiyama, S.; Kawamura, Y.; Sezaki, H.; Hosaka, T.; Suzuki, F.; Saitoh, S.; et al. Serial changes in liver stiffness and controlled attenuation parameter following directacting antiviral therapy against hepatitis C virus genotype 1b. J. Med. Virol. 2018, 90, 313–319. [Google Scholar] [CrossRef]
- Phan, J.; Ng, V.; Sheinbaum, A.; French, S.; Choi, G.; El Kabany, M.; Durazo, F.; Saab, S.; Tong, M.; Busuttil, R.; et al. Hyperlipidemia and Nonalcoholic Steatohepatitis Predispose to Hepatocellular Carcinoma Development Without Cirrhosis. J. Clin. Gastroenterol. 2019, 53, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Down, C.; Mehta, N.; Marks, K. The Risk of Cardiovascular Disease, Diabetes, Liver-Related Outcomes, and Death Over 10 Years in HIV/HCV-Coinfected Patients with and Without Steatosis. AIDS Res. Hum. Retroviruses. 2016, 32, 868–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandera, A.; Lorenzini, P.; Taramasso, L.; Cozzi-Lepri, A.; Lapadula, G.; Mussini, C.; Saracino, A.; Ceccherini-Silberstein, F.; Puoti, M.; Quiros-Roldan, E.; et al. The impact of DAA-mediated HCV eradication on CD4+ and CD8+ T lymphocyte trajectories in HIV/HCV coinfected patients: Data from the ICONA Foundation Cohort. J. Viral. Hepat. 2021, 28, 779–786. [Google Scholar] [CrossRef]
- Postorino, M.C.; Quiros-Roldan, E.; Maggiolo, F.; Di Giambenedetto, S.; Ladisa, N.; Lapadula, G.; Lorenzotti, S.; Sighinolfi, L.; Castelnuovo, F.; Di Pietro, M.; et al. Exploratory Analysis for the Evaluation of Estimated Glomerular Filtration Rate, Cholesterol and Triglycerides after Switching from Tenofovir/Emtricitabine plus Atazanavir/Ritonavir (ATV/r) to Abacavir/Lamivudine plus ATV/r in Patients with Preserved Renal Function. Open AIDS J. 2016, 10, 136–143. [Google Scholar]
- Shepherd, J.; Cobbe, S.M.; Ford, I.; Isles, C.G.; Lorimer, A.R.; MacFarlane, P.W.; McKillop, J.H.; Packard, C.J. West of Scotland Coronary Prevention Study Group. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N. Engl. J. Med. 1995, 333, 1301–1307. [Google Scholar] [CrossRef]
- Stamler, J.; Wentworth, D.; Neaton, J.D. Is the relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA 1986, 256, 2823–2828. [Google Scholar] [CrossRef]
Patient Characteristics | Pair Contributions | |||
---|---|---|---|---|
T0–T1 (n = 82) | T1–T2 (n = 267) | Both (n = 350) | Total (n = 699) | |
Age, years, median (IQR) | 52 (49–55) | 51 (48–54) | 52 (49–55) | 52 (48–55) |
Female sex n (%) | 19 (23.2%) | 76 (28.5%) | 82 (23.4%) | 177 (25.3%) |
BMI, kg/m2, median (IQR) | 22 (19–24) | 24 (20–27) | 23 (21–26) | 23 (21–26) |
Time from HIV diagnosis, years, median (IQR) | 25 (15–29) | 24 (18–29) | 21 (15–28) | 23 (16–28) |
Time since first ART, years, median (IQR) | 18 (8–20) | 18 (13–20) | 17 (10–20) | 17 (10–20) |
Liver stiffness, kPa, median (IQR) | 8.6 (6.1–12.1) | 11.2 (7.9–18.6) | 10.8 (7.3–16.6) | 10.5 (7.2–16.6) |
Liver stiffness at DAA > 13 kPa, median (IQR) | 16 (19.5%) | 89(33.1%) | 107 (30.6%) | 212 (30.3%) |
Decompensated cirrhosis, n (%), median (IQR) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
HCC, n (%) | 1 (1.2%) | 1 (0.4%) | 4 (1.1%) | 6 (0.9%) |
Use of TDF, n (%) | 45 (54.9%) | 122 (45.7%) | 176 (50.3%) | 343 (49.1%) |
Use of TAF, n (%) | 1 (1.2%) | 11 (4.1%) | 3 (0.9%) | 15 (2.1%) |
Use of ABC, n (%) | 11 (13.4%) | 61 (22.8%) | 74 (21.1%) | 146 (20.9%) |
Use of LPV/r, n (%) | 2 (2.4%) | 10 (3.7%) | 18 (5.1%) | 30 (4.3%) |
Use of ATV/r, n (%) | 12 (14.6%) | 35 (13.1%) | 71 (20.3%) | 118 (16.9%) |
Use of DRV/r, n (%) | 22 (26.8%) | 61 (22.8%) | 77 (22.0%) | 160 (22.9%) |
Use of RAL, n (%) | 15 (18.3%) | 63 (23.6%) | 61 (17.4%) | 139 (19.9%) |
Analytical Data | Pair Contributions | |||
---|---|---|---|---|
T0-T1 (n = 82) | T1-T2 (n = 267) | Both (n = 350) | Total (n = 699) | |
HCV viral load at DAA, log10 copies/mL, median (IQR) | 6.08 (5.33–6.48) | 5.99 (5.49–6.48) | 6.05 (5.47–6.48) | 6.03 (5.48–6.48) |
Blood glucose, mg/dL, median (IQR) | 88 (82–102) | 90 (82–101) | 91 (82–104) | 90 (82–102) |
Creatinine, mg/dL, median (IQR) | 0.63 (0.10–0.83) | 0.74 (0.11–0.89) | 0.76 (0.51–0.96) | 0.75 (0.11–0.92) |
Total cholesterol, mg/dL, median (IQR) | 162 (139–188) | 160 (136–189) | 160 (133–188) | 160 (135–189) |
LDL cholesterol, mg/dL, median (IQR) | 92 (74–122) | 92 (69–119) | 92 (70–121) | 92 (70–120) |
HDL cholesterol, mg/dL, median (IQR) | 44 (37–53) | 44 (36–55) | 42 (32–53) | 43 (34–54) |
Triglycerides median (IQR) | 112 (73–147) | 106 (85–152) | 122 (87–175) | 112 (84–162) |
ALT, mg/dL, median (IQR) | 60 (38–92) | 58 (36–99) | 67 (39–108) | 63 (38–102) |
AST, mg/dL, median (IQR) | 52 (38–75) | 47 (34–83) | 55 (35–93) | 51 (34–84) |
GGT, mg/dL, median (IQR) | 71 (40–124) | 77 (41–125) | 82 (47–144) | 78 (42–133) |
Total bilirubin, mmol/L, median (IQR) | 0.50 (0.15–0.80) | 0.44 (0.08–0.80) | 0.58 (0.22–0.99) | 0.51 (0.13–0.89) |
Platelets, mg/dL, median (IQR) | 185 (151–227) | 160 (114–211) | 164 (110–213) | 165 (116–213) |
INR median (IQR) | 0.96 (0.88–1.07) | 1.02 (0.13–1.14) | 0.97 (0.15–1.08) | 0.99 (0.14–1.12) |
CD4 count, cells/mmc, median (IQR) | 562 (433–898) | 601 (369–828) | 600 (386–825) | 600 (386–830) |
CD4 at DAA > 500 cells/mmc, median (IQR) | 53 (64.6%) | 163 (61.7%) | 225 (64.3%) | 441 (63.4%) |
CD8 count, cells/mmc, median (IQR) | 851 (634–1054) | 882 (606–1214) | 815 (566–1129) | 842 (585–1154) |
CD4/CD8 median (IQR) | 0.81 (0.51–1.06) | 0.69 (0.42–1.00) | 0.74 (0.50–1.05) | 0.73 (0.48–1.04) |
HIV viral load < 50 copies/mL, n (%) | 72 (88.9%) | 237 (93.3%) | 309 (89.0%) | 618 (90.6%) |
Biomarker | Pairs | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T0–T1 (Both Pre-DAA Treatment) | T1–T2 (Pre- and Post-DAA Treatment) | |||||||||||||
N | Mean1 | SD1 | Mean2 | SD2 | Δ | p-Value | N | Mean1 | SD1 | Mean2 | SD2 | Δ | p-Value | |
BMI, kg/m2 | 139 | 26.5 | 27.2 | 25 | 21 | −1.4 | 0.33 | 237 | 26.1 | 23.3 | 28.4 | 32 | 2.3 | 0.19 |
Blood glucose, mg/dL | 551 | 96.21 | 30.04 | 94.88 | 26.43 | −1.32 | 0.23 | 868 | 95.46 | 26.68 | 95.31 | 26.97 | −0.16 | 0.82 |
Creatinine, mg/dL | 658 | 0.7 | 0.5 | 0.8 | 4 | 0.1 | 0.39 | 1027 | 0.8 | 3.2 | 0.7 | 0.7 | −0.1 | 0.39 |
Total cholesterol, mg/dL | 432 | 162.6 | 43.1 | 161.5 | 42.2 | −1.2 | 0.37 | 617 | 162 | 40.7 | 183.5 | 41 | 21.4 | <0.01 |
LDL cholesterol, mg/dL | 170 | 96.6 | 38.8 | 94.6 | 37.7 | −2 | 0.27 | 235 | 91.9 | 34.3 | 114.4 | 32.2 | 22.4 | <0.01 |
HDL cholesterol, mg/dL | 249 | 44.1 | 14.9 | 44.1 | 14.4 | 0 | 0.98 | 360 | 46 | 16.8 | 46.5 | 14.3 | 0.5 | 0.45 |
Triglycerides, mg/dL | 431 | 137.2 | 83 | 134.6 | 78.1 | −2.6 | 0.45 | 617 | 132.7 | 75.5 | 134.9 | 81.1 | 2.2 | 0.49 |
ALT, mg/dL | 667 | 83.79 | 78.14 | 78.24 | 62.42 | −5.56 | 0.02 | 1047 | 79.57 | 64.04 | 25.58 | 18.95 | −54 | <0.01 |
AST, mg/dL | 614 | 66.49 | 49.84 | 64.08 | 42.65 | −2.41 | 0.13 | 989 | 66.2 | 46.87 | 27.31 | 15.64 | −38.9 | <0.01 |
GGT, mg/dL | 417 | 126.6 | 169.7 | 109.3 | 112.2 | −17.3 | <0.01 | 650 | 107.9 | 116.2 | 47.01 | 90.8 | −60.9 | <0.01 |
Total bilirubin, mg/dL | 641 | 0.68 | 0.92 | 0.66 | 1.04 | −0.03 | 0.49 | 987 | 0.67 | 1.01 | 0.56 | 0.8 | −0.11 | <0.01 |
Platelets/mmc | 670 | 173.8 | 77.7 | 170.4 | 70.9 | −3.4 | 0.02 | 1055 | 308.3 | 4552 | 180 | 72.9 | −128 | 0.36 |
INR | 98 | 0.95 | 0.35 | 0.98 | 0.34 | 0.03 | 0.55 | 188 | 0.95 | 0.38 | 1 | 0.37 | 0.05 | 0.18 |
CD4 count, cells/mmc | 731 | 689.2 | 706.7 | 860.6 | 3807 | 171.4 | 0.22 | 1065 | 811.8 | 3206 | 748.2 | 824.7 | −63.7 | 0.52 |
CD8 count, cells/mmc | 669 | 923.9 | 498.8 | 926 | 546.3 | 2.14 | 0.87 | 924 | 916.5 | 565.4 | 957.5 | 577 | 40.97 | 0.01 |
CD4/CD8 ratio | 669 | 0.79 | 0.43 | 0.94 | 3.02 | 0.15 | 0.21 | 924 | 1.13 | 5.21 | 2.46 | 48.43 | 1.33 | 0.41 |
HIV RNA log10 cp/mL | 658 | 0.92 | 1.08 | 0.78 | 0.9 | −0.15 | <0.01 | 978 | 0.77 | 0.89 | 0.68 | 0.9 | −0.1 | <0.01 |
A | ||||
---|---|---|---|---|
Patients’ Drug Exposure (n) | Total Cholesterol Pre-/Post-DAA Treatment Analysis | |||
Unadjusted Difference in Means | Adjusted * Difference in Means | |||
Pre-/Post-DAA Treatment Variation (95% CI) | p-Value | Pre-/Post-DAA Treatment Variation (95% CI) | p-Value | |
TDF use (187) | −9.63 (−15.1–−4.14) | <0.001 | −8.43 (−14.3–−2.59) | 0.005 |
TAF use (159) | 0.59 (−11.5–12.65) | 0.923 | 3.26 (−8.80–15.31) | 0.597 |
Abacavir use (152) | 6.05 (−0.35–12.45) | 0.064 | 9.66 (3.11–16.21) | 0.004 |
Darunavir use (156) | 12.46 (5.91–19.00) | <0.001 | 14.20 (7.50–20.90) | <0.001 |
Lopinavir use (12) | 30.10 (11.83–48.37) | 0.001 | 33.82 (15.70–51.94) | <0.001 |
Atazanavir use (51) | 3.19 (−5.56–11.94) | 0.475 | 7.48 (−1.23–16.19) | 0.093 |
Raltegravir use (125) | −4.82 (−11.5–1.85) | 0.158 | −3.92 (−10.7–2.84) | 0.256 |
B | ||||
Patients’ Drug Exposure (n) | LDL Cholesterol Pre-/Post-DAA Treatment Analysis | |||
Unadjusted Difference in Means | Adjusted * Difference in Means | |||
Pre-/Post-DAA Treatment Variation (95% CI) | p-Value | Pre-/Post-DAA Treatment Variation (95% CI) | p-Value | |
TDF use (187) | −3.61 (−11.0–3.83) | 0.343 | −0.93 (−9.26–7.41) | 0.827 |
TAF use (159) | 13.32 (−6.35–33.00) | 0.186 | 8.29 (−13.0–29.62) | 0.447 |
Abacavir use (152) | 1.59 (−7.24–10.41) | 0.725 | 1.61 (−7.94–11.16) | 0.742 |
Darunavir use (156) | 11.93 (3.60–20.26) | 0.005 | 13.37 (4.55–22.18) | 0.003 |
Lopinavir use (12) | 9.07 (−10.7–28.80) | 0.369 | 14.01 (−5.74–33.77) | 0.166 |
Atazanavir use (51) | −0.92 (−11.7–9.82) | 0.867 | 3.24 (−7.62–14.11) | 0.559 |
Raltegravir use (125) | −1.36 (−10.5–7.79) | 0.771 | 0.57 (−8.82–9.97) | 0.905 |
C | ||||
Patients’ Drug Exposure (n) | HDL Cholesterol Pre-/Post-DAA Treatment Analysis | |||
Unadjusted Difference in Means | Adjusted * Difference in Means | |||
Pre-/Post-Treatment DAA Variation (95% CI) | p-Value | Pre-/Post-Treatment DAA Variation (95% CI) | p-Value | |
TDF use (187) | 2.39 (0.11–4.67) | 0.041 | 2.78 (0.21–5.35) | 0.035 |
TAF use (159) | −0.56 (−6.45–5.34) | 0.853 | −2.82 (−8.95–3.31) | 0.368 |
Abacavir use (152) | −1.15 (−3.87–1.56) | 0.405 | −1.41 (−4.30–1.47) | 0.338 |
Darunavir use (156) | −1.43 (−4.01–1.15) | 0.279 | −1.06 (−3.75–1.62) | 0.437 |
Lopinavir use (12) | 6.03 (−0.53–12.58) | 0.072 | 5.59 (−1.04–12.22) | 0.099 |
Atazanavir use (51) | 0.49 (−3.20–4.18) | 0.797 | 0.27 (−3.56–4.10) | 0.891 |
Raltegravir use (125) | 1.35 (−1.31–4.02) | 0.32 | 1.45 (−1.35–4.24) | 0.311 |
D | ||||
Patients’ Drug Exposure (n) | Triglycerides Pre-/Post-DAA Treatment Analysis | |||
Unadjusted Difference in Means | Adjusted * Difference in Means | |||
Pre-/Post-DAA Treatment Variation (95% CI) | p-Value | Pre-/Post-DAA Treatment Variation (95% CI) | p-Value | |
TDF use (187) | −28.6 (−40.5–−16.6) | <0.001 | −28.8 (−41.8–−15.8) | <0.001 |
TAF use (159) | 8.06 (−18.7–34.84) | 0.556 | 15.68 (−12.1–43.41) | 0.269 |
Abacavir use (152) | 14.21 (0.08–28.34) | 0.049 | 20.45 (5.39–35.50) | 0.008 |
Darunavir use (156) | 21.45 (6.80–36.10) | 0.004 | 20.41 (5.14–35.68) | 0.009 |
Lopinavir use (12) | 10.62 (−30.5–51.70) | 0.612 | 13.86 (−27.6–55.29) | 0.512 |
Atazanavir use (51) | −2.28 (−21.8–17.20) | 0.818 | 2.67 (−17.4–22.70) | 0.794 |
Raltegravir use (125) | −2.91 (−16.7–10.90) | 0.68 | −3.81 (−17.9–10.28) | 0.597 |
Biomarker | Adjusted * Difference in Lipid Changes | ||
---|---|---|---|
HCV Genotype 3 | Other HCV Genotypes | ||
Pre-/Post-DAA Variation (95% CI) | Pre-/Post-DAA Variation (95% CI) | Interaction p-Value | |
Total cholesterol, mg/dL | 37.74 (26.13–49.35) | 21.63 (16.09–27.18) | 0.002 |
LDL cholesterol, mg/dL | 45.35 (26.38–64.33) | 29.23 (20.87–37.58) | 0.2 |
HDL cholesterol, mg/dL | 2.82 (−3.29–8.94) | −1.29 (−3.82–1.25) | 0.17 |
Triglycerides, mg/dL | −4.17 (−25.5–17.16) | 12.65 (−1.20–26.50) | 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spaziante, M.; Taliani, G.; Marchetti, G.; Tavelli, A.; Lichtner, M.; Cingolani, A.; Cicalini, S.; Biliotti, E.; Girardi, E.; Antinori, A.; et al. Impact of HCV Eradication on Lipid Metabolism in HIV/HCV Coinfected Patients: Data from ICONA and HepaICONA Foundation Cohort Study. Viruses 2021, 13, 1402. https://doi.org/10.3390/v13071402
Spaziante M, Taliani G, Marchetti G, Tavelli A, Lichtner M, Cingolani A, Cicalini S, Biliotti E, Girardi E, Antinori A, et al. Impact of HCV Eradication on Lipid Metabolism in HIV/HCV Coinfected Patients: Data from ICONA and HepaICONA Foundation Cohort Study. Viruses. 2021; 13(7):1402. https://doi.org/10.3390/v13071402
Chicago/Turabian StyleSpaziante, Martina, Gloria Taliani, Giulia Marchetti, Alessandro Tavelli, Miriam Lichtner, Antonella Cingolani, Stefania Cicalini, Elisa Biliotti, Enrico Girardi, Andrea Antinori, and et al. 2021. "Impact of HCV Eradication on Lipid Metabolism in HIV/HCV Coinfected Patients: Data from ICONA and HepaICONA Foundation Cohort Study" Viruses 13, no. 7: 1402. https://doi.org/10.3390/v13071402
APA StyleSpaziante, M., Taliani, G., Marchetti, G., Tavelli, A., Lichtner, M., Cingolani, A., Cicalini, S., Biliotti, E., Girardi, E., Antinori, A., Puoti, M., d’Arminio Monforte, A., & Cozzi-Lepri, A. (2021). Impact of HCV Eradication on Lipid Metabolism in HIV/HCV Coinfected Patients: Data from ICONA and HepaICONA Foundation Cohort Study. Viruses, 13(7), 1402. https://doi.org/10.3390/v13071402