The Positive Rhinovirus/Enterovirus Detection and SARS-CoV-2 Persistence beyond the Acute Infection Phase: An Intra-Household Surveillance Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Detection of SARS-CoV-2 RNA and RNA/DNA of Other Respiratory Viruses
2.3. Detection of SARS-CoV-2 Antibodies
2.4. Statistical Analysis
2.5. Ethics Statement
3. Results
3.1. Selection of Family Households
3.2. Epidemiological and Clinical Characteristics of Participants
3.3. SARS-CoV-2 RNA Detection and Antibody Response in Participants
3.4. Nasopharyngeal Detection of Other Respiratory Viruses in Participants
3.5. Persistent Nasopharyngeal SARS-CoV-2 RNA Detection in First-Reported Adult Cases and Associated Factors
3.6. Nasopharyngeal SARS-CoV-2 RNA Detection in Children According to Virus Persistence in Adults and Other Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- World Health Organization. Novel Coronavirus (2019-nCoV). Situation Report—1. 21 January 2020; WHO: Geneva, Switzerland, 2020. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf (accessed on 26 June 2021).
- European Centre for Disease Prevention and Control. COVID-19 Situation Update Worldwide, as of Week 24, updated 24 June 2021. Available online: from:https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases (accessed on 26 June 2021).
- Government Decrees State of Emergency to Stop Spread of Coronavirus COVID-19; Council of Ministers: Madrid, Spain, 2020. Available online: https://www.lamoncloa.gob.es/lang/en/gobierno/councilministers/Paginas/2020/20200314council-extr.aspx (accessed on 26 June 2021).
- Tang, Y.-W.; Schmitz, J.E.; Persing, D.H.; Stratton, C.W. Laboratory diagnosis of COVID-19: Current issues and challenges. J. Clin. Microbiol. 2020, 58, e00512–e00520. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Qi, T.; Liu, L.; Ling, Y.; Qian, Z.; Li, T.; Li, F.; Xu, Q.; Zhang, Y.; Xu, S.; et al. Clinical progression of patients with COVID-19 in Shanghai, China. J. Infect. 2020, 80, e1–e6. [Google Scholar] [CrossRef] [PubMed]
- Xiao, A.T.; Tong, Y.X.; Gao, C.; Zhu, L.; Zhang, Y.J.; Zhang, S. Dynamic profile of RT-PCR findings from 301 COVID-19 patients in Wuhan, China: A descriptive study. J. Clin. Virol. 2020, 127, 104346. [Google Scholar] [CrossRef]
- To, K.K.; Tsang, O.T.; Leung, W.S.; Tam, A.R.; Wu, T.C.; Lung, D.C.; Yip, C.C.; Cai, J.P.; Chan, J.M.; Chik, T.S.; et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 2020, 20, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Hazra, A.; Collison, M.; Pisano, J.; Kumar, M.; Oehler, C.; Ridgway, J.P. Coinfections with SARS-CoV-2 and other respiratory pathogens. Infect. Control. Hosp. Epidemiol. 2020, 41, 1228–1229. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Upadhyay, P.; Reddy, J.; Granger, J. SARS-CoV-2 respiratory co-infections: Incidence of viral and bacterial co-pathogens. Int. J. Infect. Dis. 2021, 105, 617–620. [Google Scholar] [CrossRef]
- Nowak, M.D.; Sordillo, E.M.; Gitman, M.R.; PanizMondolfi, A.E. Coinfection in SARS-CoV-2 infected patients: Where are influenza virus and rhinovirus/enterovirus? J. Med. Virol. 2020, 92, 1699–1700. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Quinn, J.; Pinsky, B.; Shah, N.H.; Brown, I. Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA 2020, 323, 2085–2086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, W.; Shao, J.; Guo, Y.; Peng, X.; Li, Z.; Hu, D. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatr. Pulmonol. 2020, 55, 1169–1174. [Google Scholar] [CrossRef] [Green Version]
- Pinky, L.; Dobrovolny, H.M. SARS-CoV-2 coinfections: Could influenza and the common cold be beneficial? J. Med. Virol. 2020, 92, 2623–2630. [Google Scholar] [CrossRef]
- Wee, L.E.; Ko, K.K.K.; Ho, W.Q.; Kwek, G.T.C.; Tan, T.T.; Wijaya, L. Community-acquired viral respiratory infections amongst hospitalized inpatients during a COVID-19 outbreak in Singapore: Co-infection and clinical outcomes. J. Clin. Virol. 2020, 128, 104436. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ge, Y.; Wu, T.; Zhao, K.; Chen, Y.; Wu, B.; Zhu, F.; Zhu, B.; Cui, L. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res. 2020, 285, 198005. [Google Scholar] [CrossRef] [PubMed]
- Brotons, P.; Launes, C.; Buetas, E.; Fumado, V.; Henares, D.; de Sevilla, M.F.; Redin, A.; Fuente-Soro, L.; Cuadras, D.; Mele, M.; et al. Susceptibility to SARS-CoV-2 infection among children and adults: A seroprevalence study of family households in the Barcelona metropolitan region, Spain. Clin. Infect. Dis. 2020, 72, e970–e977. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; GU, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Xiao, A.T.; Tong, Y.X.; Zhang, S. False negative of RT-PCR and prolonged nucleic acid conversion in COVID-19: Rather than recurrence. J. Med. Virol. 2020, 92, 1755–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.; Kou, S.; Liang, Y.; Zeng, J.; Pan, Y.; Liu, L. Polymerase chain reaction assays reverted to positive in 25 discharged patients with COVID-19. Clin. Infect. Dis. 2020, 71, 2230–2232. [Google Scholar] [CrossRef] [Green Version]
- Sohn, Y.; Jeong, S.J.; Chung, W.S.; Hyun, J.H.; Baek, Y.J.; Cho, Y.; Kim, J.H.; Ahn, J.Y.; Choi, J.Y.; Yeom, J.S.; et al. Assessing viral shedding and infectivity of asymptomatic or mildly symptomatic patients with COVID-19 in a later phase. J. Clin. Med. 2020, 9, 2924. [Google Scholar] [CrossRef]
- Laferl, H.; Kelani, H.; Seitz, T.; Holzer, B.; Zimpernik, I.; Steinrigl, A.; Schmoll, F.; Wenisch, C.; Allerberger, F. An approach to lifting self-isolation for health care workers with prolonged shedding of SARS-CoV-2 RNA. Infection 2021, 49, 95–101. [Google Scholar] [CrossRef]
- Bullard, J.; Dust, K.; Funk, D.; Strong, J.E.; Alexander, D.; Garnett, L.; Boodman, C.; Bello, A.; Hedley, A.; Schiffman, Z.; et al. Predicting infectious severe acute respiratory syndrome coronavirus 2 from diagnostic samples. Clin. Infect. Dis. 2020, 71, 2663–2666. [Google Scholar] [CrossRef]
- La Scola, B.; Le Bideau, M.; Andreani, J.; Hoang, V.T.; Grimaldier, C.; Colson, P.; Gautret, P.; Raoult, D. Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1059–1061. [Google Scholar] [CrossRef]
- Arons, M.M.; Hatfield, K.M.; Reddy, S.C.; Kimball, A.; James, A.; Jacobs, J.R.; Taylor, J.; Spicer, K.; Bardossy, A.C.; Oakley, L.P.; et al. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. N. Engl. J. Med. 2020, 382, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.C.; Lai, Y.; Barrow, K.A.; Hamerman, J.A.; Lacy-Hulbert, A.; Piliponsky, A.M.; Ziegler, S.F.; Altemeier, W.A.; Debley, J.S.; Gharib, S.A.; et al. Effects of asthma and human rhinovirus A16 on the expression of SARS-CoV-2 entry factors in human airway epithelium. Am. J. Respir. Cell Mol. Biol. 2020, 63, 859–863. [Google Scholar] [CrossRef]
- Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 2005, 11, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Kuba, K.; Rao, S.; Huan, Y.; Guo, F.; Guan, B.; Yang, P.; Sarao, R.; Wada, T.; Leong-Poi, H.; et al. Angiotensin converting enzyme 2 protects from severe acute lung failure. Nature 2005, 436, 112–116. [Google Scholar] [CrossRef]
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Ann. Intern. Med. 2020, 172, 577–582. [Google Scholar] [CrossRef] [Green Version]
Variable | No. (%) |
---|---|
First-reported adult cases | 404 (100.0) |
Mean age (SD), years | 41.3 (7.1) |
15–24 | 1 (0.3) |
25–34 | 47 (11.6) |
35–44 | 261 (64.6) |
45–55 | 89 (22.0) |
≥55 | 6 (1.5) |
Sex, female | 254 (62.9) |
Health worker | 224 (55.4) |
Obesity a (n = 401) | 50 (12.5) |
Autoimmune disease (n = 379) | 27 (7.1) |
Asthma (n = 379) | 19 (5.0) |
Hypertension b (n = 402) | 14 (3.5) |
Hospitalization during the past COVID-19 episode | 93 (23.0) |
Child contacts | 708 (100.0) |
Mean age (SD), years | 6.0 (3.8) |
0–4 | 344 (48.6) |
5–14 | 364 (51.4) |
Sex, male | 379 (53.5) |
Vaginal delivery (n = 695) | 488 (70.2) |
Breastfeeding (n = 693) | 594 (85.7) |
Vaccines received according to vaccination schedule | 689 (99.0) |
Recent respiratory infection c | 254 (35.9) |
Attendance of kindergarten/school before lockdown (n = 702) | 196 (27.9) |
Public transport use to go to school before lockdown (n = 693) | 97 (14.0) |
Variable | Group 1 a,b | Group2 a,b | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|---|
SARS-CoV-2 Positive c (%) | SARS-CoV-2 Positive c (%) | OR (95% CI) | p-Value | aOR (95% CI) | p-Value | |
Age, 15–40 vs. >40 years | 65/188 (34.6) | 72/216 (33.3) | 0.95 (0.63–1.43) | 0.79 | ||
Sex, female vs. male | 95/254 (37.4) | 42/150 (28.0) | 1.54 (0.99–2.38) | 0.05 | 1,44 (0.87–2.39) | 0.16 |
Profession, health worker vs. others | 88/224 (39.3) | 36/145 (24.8) | 1.96 (1.23–3.11) | 0.004 | 1.75 (1.04–2.94) | 0.04 |
Obesity, yes vs. no | 18/50 (36.0) | 118/351 (33.6) | 1.11 (0.60–2.06) | 0.74 | ||
Hypertension, yes vs. no | 10/27 (37.0) | 117/352 (33.2) | 1.18 (0.52–2.66) | 0.69 | ||
COVID-19 severity, hospital care vs. outpatient care | 24/93 (25.8) | 113/311 (36.3) | 0.61 (0.36–1.02) | 0.06 | 0.97 (0.53–1.79) | 0.93 |
Rhinovirus/enterovirus infection, yes vs. no | 15/18 (83.3) | 122/385 (31.7) | 10.78 (3.06–37.93) | <0.001 | 9.31 (2.57–33.80) | 0.001 |
Antibody detection by LFA, yes vs. no | 64/180 (35.6) | 73/224 (32.6) | 1.14 (0.75–1.73) | 0.53 | ||
Antibody detection by ELISA, yes vs. no | 80/214 (37.4) | 10/36 (27.8) | 1.55 (0.71–3.39) | 0.27 |
Variable | Group 1 a,b | Group2 a,b | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|---|
SARS-CoV-2 Positive c (%) | SARS-CoV-2 Positive c (%) | OR (95% CI) | p-Value | aOR (95% CI) | p-Value | |
Age, 5–14 vs. 0–4 years | 46/364 (12.6) | 38/344 (11.1) | 1.08 (0.86–1.36) | 0.51 | ||
Sex, female vs. male | 35/329 (10.6) | 49/379 (12.9) | 0.80 (0.50–1.27) | 0.35 | ||
Delivery type, C-section vs. vaginal | 23/207 (11.1) | 60/488 (12.3) | 0.89 (0.54–1.49) | 0.66 | ||
Feeding type, breastfeeding vs. formula | 68/594 (11.5) | 15/99 (15.2) | 0.72 (0.40–1.33) | 0.29 | ||
Vaccination according to schedule, yes vs. no | 83/689 (12.1) | 0/7 (0.0) | 1.00 | 0.33 | ||
Recent respiratory infection c, yes vs. no | 31/254 (12.2) | 53/452 (11.7) | 1.05 (0.65–1.68) | 0.85 | ||
Kindergarten/school attendance before lockdown, yes vs. no | 20/196 (10.2) | 63/507 (12.4) | 0.80 (0.47–1.36) | 0.41 | ||
Public transport use to go to school before lockdown, yes vs. no | 18/97 (18.6) | 65/598 (10.9) | 1.87 (1.05–3.31) | 0.03 | 1.25 (0.64–2.43) | 0.51 |
Persistent SARS-CoV-2 infection in adult, yes vs. no | 48/228 (21.1) | 37/480 (7.7) | 3.14 (1.97–5.00) | <0.001 | 2.08 (1.24–3.51) | 0.006 |
Rhinovirus/enterovirus infection in child, yes vs. no | 26/120 (21.7) | 56/581 (9.6) | 2.65 (1.60–4.43) | <0.001 | 2.04 (1.13–3.68) | 0.018 |
Rhinovirus/enterovirus infection in adult, yes vs. no | 7/34 (20.6) | 77/670 (11.5) | 2.00 (0.84–4.74) | 0.12 | ||
Antibody detection by LFA, yes vs. no | 44/122 (36.1) | 40/586 (6.8) | 7.70 (4.72–12.56) | <0.001 | 7.20 (4.27–12.15) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brotons, P.; Jordan, I.; Bassat, Q.; Henares, D.; Fernandez de Sevilla, M.; Ajanovic, S.; Redin, A.; Fumado, V.; Baro, B.; Claverol, J.; et al. The Positive Rhinovirus/Enterovirus Detection and SARS-CoV-2 Persistence beyond the Acute Infection Phase: An Intra-Household Surveillance Study. Viruses 2021, 13, 1598. https://doi.org/10.3390/v13081598
Brotons P, Jordan I, Bassat Q, Henares D, Fernandez de Sevilla M, Ajanovic S, Redin A, Fumado V, Baro B, Claverol J, et al. The Positive Rhinovirus/Enterovirus Detection and SARS-CoV-2 Persistence beyond the Acute Infection Phase: An Intra-Household Surveillance Study. Viruses. 2021; 13(8):1598. https://doi.org/10.3390/v13081598
Chicago/Turabian StyleBrotons, Pedro, Iolanda Jordan, Quique Bassat, Desiree Henares, Mariona Fernandez de Sevilla, Sara Ajanovic, Alba Redin, Vicky Fumado, Barbara Baro, Joana Claverol, and et al. 2021. "The Positive Rhinovirus/Enterovirus Detection and SARS-CoV-2 Persistence beyond the Acute Infection Phase: An Intra-Household Surveillance Study" Viruses 13, no. 8: 1598. https://doi.org/10.3390/v13081598
APA StyleBrotons, P., Jordan, I., Bassat, Q., Henares, D., Fernandez de Sevilla, M., Ajanovic, S., Redin, A., Fumado, V., Baro, B., Claverol, J., Varo, R., Cuadras, D., Hecht, J., Barrabeig, I., Garcia-Garcia, J. J., Launes, C., & Muñoz-Almagro, C. (2021). The Positive Rhinovirus/Enterovirus Detection and SARS-CoV-2 Persistence beyond the Acute Infection Phase: An Intra-Household Surveillance Study. Viruses, 13(8), 1598. https://doi.org/10.3390/v13081598