Antibody Titer Correlates with Omicron Infection in Vaccinated Healthcare Workers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Barouch, D.H. COVID-19 Vaccines—Immunity, Variants, Boosters. N. Engl. J. Med. 2022, 387, 1011–1020. [Google Scholar] [CrossRef]
- Rojas-Botero, M.L.; Fernández-Niño, J.A.; Arregocés-Castillo, L.; Ruiz-Gómez, F. Estimated number of deaths directly avoided because of COVID-19 vaccination among older adults in Colombia in 2021: An ecological, longitudinal observational study. F1000Research 2022, 11, 198. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.S.; Agrawal, B. Heterologous immunity induced by 1st generation COVID-19 vaccines and its role in developing a pan-coronavirus vaccine. Front. Immunol. 2022, 13, 952229. [Google Scholar] [CrossRef] [PubMed]
- Jeyanathan, M.; Afkhami, S.; Smaill, F.; Miller, M.S.; Lichty, B.D.; Xing, Z. Immunological considerations for COVID-19 vaccine strategies. Nat. Rev. Immunol. 2020, 20, 615–632. [Google Scholar] [CrossRef]
- Choi, J.Y.; Smith, D.M. SARS-CoV-2 Variants of Concern. Yonsei Med. J. 2021, 62, 961–968. [Google Scholar] [CrossRef]
- Shen, X.; Tang, H.; McDanal, C.; Wagh, K.; Fischer, W.; Theiler, J.; Yoon, H.; Li, D.; Haynes, B.F.; Sanders, K.O.; et al. SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host Microbe 2021, 29, 529–539.e3. [Google Scholar] [CrossRef]
- Kannan, S.R.; Spratt, A.N.; Cohen, A.R.; Naqvi, S.H.; Chand, H.S.; Quinn, T.P.; Lorson, C.L.; Byrareddy, S.N.; Singh, K. Evolutionary analysis of the Delta and Delta Plus variants of the SARS-CoV-2 viruses. J. Autoimmun. 2021, 124, 102715. [Google Scholar] [CrossRef]
- Hui, K.P.Y.; Ho, J.C.W.; Cheung, M.-C.; Ng, K.-C.; Ching, R.H.H.; Lai, K.-L.; Kam, T.T.; Gu, H.; Sit, K.-Y.; Hsin, M.K.Y.; et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature 2022, 603, 715–720. [Google Scholar] [CrossRef]
- Arora, S. Omicron: A variant of concern not a cause of panic. J. Adv. Pharm. Technol. Res. 2022, 13, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Bekliz, M.; Adea, K.; Vetter, P.; Eberhardt, C.S.; Hosszu-Fellous, K.; Vu, D.-L.; Puhach, O.; Essaidi-Laziosi, M.; Waldvogel-Abramowski, S.; Stephan, C.; et al. Neutralization capacity of antibodies elicited through homologous or heterologous infection or vaccination against SARS-CoV-2 VOCs. Nat. Commun. 2022, 13, 3840. [Google Scholar] [CrossRef]
- Shao, W.; Chen, X.; Zheng, C.; Liu, H.; Wang, G.; Zhang, B.; Li, Z.; Zhang, W. Effectiveness of COVID-19 vaccines against SARS-CoV-2 variants of concern in real-world: A literature review and meta-analysis. Emerg. Microbes Infect. 2022, 11, 2383–2392. [Google Scholar] [CrossRef]
- Bonelli, F.; Blocki, F.A.; Bunnell, T.; Chu, E.; De La, O.A.; Grenache, D.G.; Marzucchi, G.; Montomoli, E.; Okoye, L.; Pallavicini, L.; et al. Evaluation of the automated LIAISON® SARS-CoV-2 TrimericS IgG assay for the detection of circulating antibodies. Clin. Chem. Lab. Med. 2021, 59, 1463–1467. [Google Scholar] [CrossRef] [PubMed]
- Arbel, R.; Sergienko, R.; Friger, M.; Peretz, A.; Beckenstein, T.; Yaron, S.; Netzer, D.; Hammerman, A. Effectiveness of a second BNT162b2 booster vaccine against hospitalization and death from COVID-19 in adults aged over 60 years. Nat. Med. 2022, 28, 1486–1490. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.J.; Oster, Y.; Moses, A.E.; Spitzer, A.; Benenson, S.; Israeli-Hospitals 4th Vaccine Working Group; Abu-Ahmad, A.; Angel, Y.; Ben-Ami, R.; Ben-David, D.; et al. Association of Receiving a Fourth Dose of the BNT162b Vaccine With SARS-CoV-2 Infection Among Health Care Workers in Israel. JAMA Netw. Open 2022, 5, e2224657. [Google Scholar] [CrossRef]
- Muhsen, K.; Maimon, N.; Mizrahi, A.Y.; Boltyansky, B.; Bodenheimer, O.; Diamant, Z.H.; Gaon, L.; Cohen, D.; Dagan, R. Association of Receipt of the Fourth BNT162b2 Dose With Omicron Infection and COVID-19 Hospitalizations Among Residents of Long-term Care Facilities. JAMA Intern. Med. 2022, 182, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Beltran, W.F.; St Denis, K.J.; Hoelzemer, A.; Lam, E.C.; Nitido, A.D.; Sheehan, M.L.; Berrios, C.; Ofoman, O.; Chang, C.C.; Hauser, B.M.; et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 2022, 185, 457–466.e454. [Google Scholar] [CrossRef] [PubMed]
- Azzolini, E.; Pozzi, C.; Germagnoli, L.; Oresta, B.; Carriglio, N.; Calleri, M.; Selmi, C.; De Santis, M.; Finazzi, S.; Carlo-Stella, C.; et al. mRNA COVID-19 vaccine booster fosters B- and T-cell responses in immunocompromised patients. Life Sci. Alliance 2022, 5, e202201381. [Google Scholar] [CrossRef] [PubMed]
- Accorsi, E.K.; Britton, A.; Fleming-Dutra, K.E.; Smith, Z.R.; Shang, N.; Derado, G.; Miller, J.; Schrag, S.J.; Verani, J.R. Association Between 3 Doses of mRNA COVID-19 Vaccine and Symptomatic Infection Caused by the SARS-CoV-2 Omicron and Delta Variants. JAMA 2022, 327, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Khoury, D.S.; Docken, S.S.; Subbarao, K.; Kent, S.J.; Davenport, M.P.; Cromer, D. Predicting the efficacy of variant-modified COVID-19 vaccine boosters. medRxiv 2022. [Google Scholar] [CrossRef]
Overall | Omicron Infection | Non-Omicron Infection | p-Value | |
---|---|---|---|---|
Total | 2324 | 288 | 2036 | |
Males (n, %) | 638 (27.5%) | 65 (22.6%) | 573 (28.1%) | 0.056 |
Females (n, %) | 1686 (72.5%) | 223 (77.4%) | 1463 (71.9%) | |
Age (mean, SD) | 45.3 (12.7) | 42.6 (11.0) | 45.7 (12.7) | <0.001 |
Body Mass Index (mean, SD) | 23.8 (4.0) | 23.4 (3.7) | 23.9 (4.1) | 0.076 |
IgG level (mean, SD) | 626.5 (639.0) | 482.4 (502.3) | 646.9 (653.6) | 0.003 |
Allergy (n, %) | 783 (33.7%) | 119 (41.3%) | 664 (32.6%) | 0.004 |
Previous SARS-CoV-2 Infection (n, %) | 398 (17.1%) | 36 (12.5%) | 362 (17.8%) | 0.032 |
Days between IgG sampling and 3rd dose (mean, SD) | 49.5 (18.4) | 47.5 (16.5) | 49.8 (18.7) | 0.129 |
Features | Odds Ratio (95% CI) | p-Value |
---|---|---|
Intercept | 0.16 (0.11–0.25) | <0.001 |
Sex | 0.76 (0.56–1.03) | 0.079 |
Age | 0.75 (0.66–0.86) | <0.001 |
Body Mass Index | 0.97 (0.85–1.11) | 0.633 |
Allergy | 1.40 (1.08–1.80) | 0.010 |
IgG level | 0.74 (0.62–0.87) | <0.001 |
Previous SARS-CoV-2 Infection | 0.85 (0.57–1.26) | 0.416 |
Days between IgG sampling and 3rd dose | 0.99 (0.99–1.00) | 0.194 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollura, M.; Sarti, R.; Levi, R.; Pozzi, C.; Azzolini, E.; Politi, L.S.; Mantovani, A.; Barbieri, R.; Rescigno, M. Antibody Titer Correlates with Omicron Infection in Vaccinated Healthcare Workers. Viruses 2022, 14, 2605. https://doi.org/10.3390/v14122605
Mollura M, Sarti R, Levi R, Pozzi C, Azzolini E, Politi LS, Mantovani A, Barbieri R, Rescigno M. Antibody Titer Correlates with Omicron Infection in Vaccinated Healthcare Workers. Viruses. 2022; 14(12):2605. https://doi.org/10.3390/v14122605
Chicago/Turabian StyleMollura, Maximiliano, Riccardo Sarti, Riccardo Levi, Chiara Pozzi, Elena Azzolini, Letterio S. Politi, Alberto Mantovani, Riccardo Barbieri, and Maria Rescigno. 2022. "Antibody Titer Correlates with Omicron Infection in Vaccinated Healthcare Workers" Viruses 14, no. 12: 2605. https://doi.org/10.3390/v14122605