COVID-19 Associated Myocarditis Clinical Outcomes among Hospitalized Patients in the United States: A Propensity Matched Analysis of National Inpatient Sample
Abstract
:1. Introduction
2. Materials and Methods
2.1. Covariates
- a.
- Patient: age, race, sex, comorbidities, insurance status, mean income in patient’s zip code, and disposition.
- b.
- Hospital: location, teaching status, bed size, and region.
- c.
- Illness severity: length of stay, mortality, hospitalization cost, Elixhauser comorbidity score [16], in-hospital complications, mechanical ventilation, circulatory support, and vasopressor use.
2.2. Study Outcomes
2.3. Statistical Methods
3. Results
3.1. Demographics and Baseline Comorbidities
3.2. In-Hospital Mortality
3.3. Mortality Predictors in COVID Myocarditis
3.4. In-Hospital Complications
3.5. In-Hospital Quality Measures and Disposition
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciotti, M.; Ciccozzi, M.; Terrinoni, A.; Jiang, W.-C.; Wang, C.-B.; Bernardini, S. The COVID-19 pandemic. Crit. Rev. Clin. Lab. Sci. 2020, 57, 365–388. [Google Scholar] [CrossRef] [PubMed]
- Rampal, L.; Liew, B.S. Coronavirus disease (COVID-19) pandemic. Med. J. Malays. 2020, 75, 95–97. [Google Scholar]
- Long, B.; Brady, W.J.; Koyfman, A.; Gottlieb, M. Cardiovascular complications in COVID-19. Am. J. Emerg. Med. 2020, 38, 1504–1507. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5, 802–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cizgici, A.Y.; Zencirkiran Agus, H.; Yildiz, M. COVID-19 myopericarditis: It should be kept in mind in today’s conditions. Am. J. Emerg. Med. 2020, 38, 1547.e5–1547.e6. [Google Scholar] [CrossRef]
- Rubens, M.; Ramamoorthy, V.; Saxena, A.; Zevallos, J.C.; Ruiz-Pelaez, J.G.; Ahmed, M.A.; Zhang, Z.; McGranaghan, P.; Veledar, E.; Jimenez, J.; et al. Hospital Outcomes Among COVID-19 Hospitalizations With Myocarditis from the California State Inpatient Database. Am. J. Cardiol. 2022, 183, 109–114. [Google Scholar] [CrossRef]
- Boehmer, T.K.; Kompaniyets, L.; Lavery, A.M.; Hsu, J.; Ko, J.Y.; Yusuf, H.; Romano, S.D.; Gundlapalli, A.V.; Oster, M.E.; Harris, A.M. Association Between COVID-19 and Myocarditis Using Hospital-Based Administrative Data—United States, March 2020-January 2021. MMWR Morb. Mortal Wkly. Rep. 2021, 70, 1228–1232. [Google Scholar] [CrossRef]
- Annie, F.H.; Embrey, S.; Alkhaimy, H.; Elashery, A.R.; Nanjundappa, A. Association between myocarditis and mortality in covid-19 patients in a large registry. J. Am. Coll. Cardiol. 2021, 77, 3037. [Google Scholar] [CrossRef]
- Caforio, A.L.P.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Heliö, T.; Heymans, S.; Jahns, R.; et al. European Society of Cardiology Working Group on Myocardial and Pericardial Diseases Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636–2648. [Google Scholar] [CrossRef]
- Mason, J.W.; O’Connell, J.B.; Herskowitz, A.; Rose, N.R.; McManus, B.M.; Billingham, M.E.; Moon, T.E. A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N. Engl. J. Med. 1995, 333, 269–275. [Google Scholar] [CrossRef]
- Kang, M.; Chippa, V.; An, J. Viral Myocarditis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Ammirati, E.; Frigerio, M.; Adler, E.D.; Basso, C.; Birnie, D.H.; Brambatti, M.; Friedrich, M.G.; Klingel, K.; Lehtonen, J.; Moslehi, J.J.; et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy: An expert consensus document. Circ. Heart Fail. 2020, 13, e007405. [Google Scholar] [CrossRef] [PubMed]
- Dec, G.W.; Palacios, I.F.; Fallon, J.T.; Aretz, H.T.; Mills, J.; Lee, D.C.; Johnson, R.A. Active myocarditis in the spectrum of acute dilated cardiomyopathies. Clinical features, histologic correlates, and clinical outcome. N. Engl. J. Med. 1985, 312, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Siripanthong, B.; Nazarian, S.; Muser, D.; Deo, R.; Santangeli, P.; Khanji, M.Y.; Cooper, L.T.; Chahal, C.A.A. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020, 17, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- NIS Database Documentation. Available online: https://hcup-us.ahrq.gov/db/nation/nis/nisdbdocumentation.jsp (accessed on 25 November 2022).
- Stagg, V. ELIXHAUSER: Stata Module to Calculate Elixhauser Index of Comorbidity. 2015. Available online: https://econpapers.repec.org/software/bocbocode/s458077.htm. (accessed on 15 October 2022).
- Sawalha, K.; Abozenah, M.; Kadado, A.J.; Battisha, A.; Al-Akchar, M.; Salerno, C.; Hernandez-Montfort, J.; Islam, A.M. Systematic Review of COVID-19 Related Myocarditis: Insights on Management and Outcome. Cardiovasc. Revasc. Med. 2021, 23, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Cocker, M.S.; Abdel-Aty, H.; Strohm, O.; Friedrich, M.G. Age and gender effects on the extent of myocardial involvement in acute myocarditis: A cardiovascular magnetic resonance study. Heart 2009, 95, 1925–1930. [Google Scholar] [CrossRef] [PubMed]
- Coronado, M.J.; Brandt, J.E.; Kim, E.; Bucek, A.; Bedja, D.; Abston, E.D.; Shin, J.; Gabrielson, K.L.; Mitzner, W.; Fairweather, D. Testosterone and interleukin-1β increase cardiac remodeling during coxsackievirus B3 myocarditis via serpin A 3n. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H1726–H1736. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, F.J.; Anderson, N.W. Trends in Health Equity in the United States by Race/Ethnicity, Sex, and Income, 1993–2017. JAMA Netw. Open 2019, 2, e196386. [Google Scholar] [CrossRef]
- Raifman, M.A.; Raifman, J.R. Disparities in the Population at Risk of Severe Illness From COVID-19 by Race/Ethnicity and Income. Am. J. Prev. Med. 2020, 59, 137–139. [Google Scholar] [CrossRef]
- Ho, J.S.; Sia, C.-H.; Chan, M.Y.; Lin, W.; Wong, R.C. Coronavirus-induced myocarditis: A meta-summary of cases. Heart Lung 2020, 49, 681–685. [Google Scholar] [CrossRef]
- Buckley, B.J.R.; Harrison, S.L.; Fazio-Eynullayeva, E.; Underhill, P.; Lane, D.A.; Lip, G.Y.H. Prevalence and clinical outcomes of myocarditis and pericarditis in 718,365 COVID-19 patients. Eur. J. Clin. Investig. 2021, 51, e13679. [Google Scholar] [CrossRef]
- Halushka, M.K.; Vander Heide, R.S. Myocarditis is rare in COVID-19 autopsies: Cardiovascular findings across 277 postmortem examinations. Cardiovasc. Pathol. 2021, 50, 107300. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.J.; Jung, S.I. Age-Related Morbidity and Mortality among Patients with COVID-19. Infect. Chemother. 2020, 52, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Laganà, N.; Cei, M.; Evangelista, I.; Cerutti, S.; Colombo, A.; Conte, L.; Mormina, E.; Rotiroti, G.; Versace, A.G.; Porta, C.; et al. Suspected myocarditis in patients with COVID-19: A multicenter case series. Medicine 2021, 100, e24552. [Google Scholar] [CrossRef] [PubMed]
- Puntmann, V.O.; Carerj, M.L.; Wieters, I.; Fahim, M.; Arendt, C.; Hoffmann, J.; Shchendrygina, A.; Escher, F.; Vasa-Nicotera, M.; Zeiher, A.M.; et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Haussner, W.; DeRosa, A.P.; Haussner, D.; Tran, J.; Torres-Lavoro, J.; Kamler, J.; Shah, K. COVID-19 associated myocarditis: A systematic review. Am. J. Emerg. Med. 2022, 51, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Hata, N.; Yokoyama, S.; Shinada, T.; Kobayashi, N.; Shirakabe, A.; Tomita, K.; Kitamura, M.; Kurihara, O.; Takahashi, Y. Acute kidney injury and outcomes in acute decompensated heart failure: Evaluation of the RIFLE criteria in an acutely ill heart failure population. Eur. J. Heart Fail. 2010, 12, 32–37. [Google Scholar] [CrossRef]
- Singh, S.; Kanwar, A.; Sundaragiri, P.R.; Cheungpasitporn, W.; Truesdell, A.G.; Rab, S.T.; Singh, M.; Vallabhajosyula, S. Acute kidney injury in cardiogenic shock: An updated narrative review. J. Cardiovasc. Dev. Dis. 2021, 8, 88. [Google Scholar] [CrossRef]
- Santoso, A.; Pranata, R.; Wibowo, A.; Al-Farabi, M.J.; Huang, I.; Antariksa, B. Cardiac injury is associated with mortality and critically ill pneumonia in COVID-19: A meta-analysis. Am. J. Emerg. Med. 2021, 44, 352–357. [Google Scholar] [CrossRef]
- Ma, K.-L.; Liu, Z.-H.; Cao, C.; Liu, M.-K.; Liao, J.; Zou, J.-B.; Kong, L.-X.; Wan, K.-Q.; Zhang, J.; Wang, Q.-B.; et al. COVID-19 Myocarditis and Severity Factors: An Adult Cohort Study. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Priyadarshni, S.; Westra, J.; Kuo, Y.-F.; Baillargeon, J.G.; Khalife, W.; Raji, M. COVID-19 Infection and Incidence of Myocarditis: A Multi-Site Population-Based Propensity Score-Matched Analysis. Cureus 2022, 14, e21879. [Google Scholar] [CrossRef]
- Närhi, F.; Moonesinghe, S.R.; Shenkin, S.D.; Drake, T.M.; Mulholland, R.H.; Donegan, C.; Dunning, J.; Fairfield, C.J.; Girvan, M.; Hardwick, H.E.; et al. ISARIC4C investigators Implementation of corticosteroids in treatment of COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK: Prospective, cohort study. Lancet Digit. Health 2022, 4, e220–e234. [Google Scholar] [CrossRef] [PubMed]
- Kariyanna, P.T.; Sutarjono, B.; Grewal, E.; Singh, K.P.; Aurora, L.; Smith, L.; Chandrakumar, H.P.; Jayarangaiah, A.; Goldman, S.A.; Salifu, M.O.; et al. A Systematic Review of COVID-19 and Myocarditis. AJMCR 2020, 8, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Agdamag, A.C.C.; Edmiston, J.B.; Charpentier, V.; Chowdhury, M.; Fraser, M.; Maharaj, V.R.; Francis, G.S.; Alexy, T. Update on COVID-19 Myocarditis. Medicina 2020, 56, 678. [Google Scholar] [CrossRef] [PubMed]
- Taggarsi, D.A. Is It Time to Revisit Remdesivir Use for Severe COVID-19? Indian J. Crit. Care Med. 2022, 26, 983–984. [Google Scholar] [CrossRef]
- Mehra, M.R.; Desai, S.S.; Kuy, S.; Henry, T.D.; Patel, A.N. Cardiovascular Disease, Drug Therapy, and Mortality in COVID-19. N. Engl. J. Med. 2020, 382, e102. [Google Scholar] [CrossRef]
- Kuster, G.M.; Pfister, O.; Burkard, T.; Zhou, Q.; Twerenbold, R.; Haaf, P.; Widmer, A.F.; Osswald, S. SARS-CoV2: Should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19? Eur. Heart J. 2020, 41, 1801–1803. [Google Scholar] [CrossRef] [Green Version]
- Bozkurt, B.; Kamat, I.; Hotez, P.J. Myocarditis With COVID-19 mRNA Vaccines. Circulation 2021, 144, 471–484. [Google Scholar] [CrossRef]
- Verma, A.K.; Lavine, K.J.; Lin, C.-Y. Myocarditis after Covid-19 mRNA Vaccination. N. Engl. J. Med. 2021, 385, 1332–1334. [Google Scholar] [CrossRef]
- Patone, M.; Mei, X.W.; Handunnetthi, L.; Dixon, S.; Zaccardi, F.; Shankar-Hari, M.; Watkinson, P.; Khunti, K.; Harnden, A.; Coupland, C.A.C.; et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat. Med. 2022, 28, 410–422. [Google Scholar] [CrossRef]
- Jain, V.K.; Iyengar, K.P.; Ish, P. Elucidating causes of COVID-19 infection and related deaths after vaccination. Diabetes Metab. Syndr. 2021, 15, 102212. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, B.; Zheng, X.; Wang, D.; Zhao, C.; Qi, Y.; Sun, R.; Tian, Z.; Xu, X.; Wei, H. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl. Sci. Rev. 2020, 7, 998–1002. [Google Scholar] [CrossRef] [PubMed]
- Filbin, M.R.; Mehta, A.; Schneider, A.M.; Kays, K.R.; Guess, J.R.; Gentili, M.; Fenyves, B.G.; Charland, N.C.; Gonye, A.L.K.; Gushterova, I.; et al. Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions. Cell Rep. Med. 2021, 2, 100287. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Chen, D.; Yuan, D.; Lausted, C.; Choi, J.; Dai, C.L.; Voillet, V.; Duvvuri, V.R.; Scherler, K.; Troisch, P.; et al. Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-19. Cell 2020, 183, 1479–1495. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Su, Y.; Baloni, P.; Chen, D.; Pavlovitch-Bedzyk, A.J.; Yuan, D.; Duvvuri, V.R.; Ng, R.H.; Choi, J.; Xie, J.; et al. Integrated analysis of plasma and single immune cells uncovers metabolic changes in individuals with COVID-19. Nat. Biotechnol. 2022, 40, 110–120. [Google Scholar] [CrossRef]
- Long COVID or Post-COVID Conditions. CDC. Available online: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html (accessed on 4 October 2022).
- Puntmann, V.O.; Martin, S.; Shchendrygina, A.; Hoffmann, J.; Ka, M.M.; Giokoglu, E.; Vanchin, B.; Holm, N.; Karyou, A.; Laux, G.S.; et al. Long-term cardiac pathology in individuals with mild initial COVID-19 illness. Nat. Med. 2022, 28, 2117–2123. [Google Scholar] [CrossRef]
- Eiros, R.; Barreiro-Pérez, M.; Martín-García, A.; Almeida, J.; Villacorta, E.; Pérez-Pons, A.; Merchán, S.; Torres-Valle, A.; Sánchez-Pablo, C.; González-Calle, D.; et al. En representación de los investigadores CCC (cardiac COVID-19 healthcare workers) [Pericardial and myocardial involvement after SARS-CoV-2 infection: A cross-sectional descriptive study in healthcare workers]. Rev. Esp. Cardiol. 2022, 75, 735–747. [Google Scholar] [CrossRef]
- Szarpak, L.; Pruc, M.; Filipiak, K.J.; Popieluch, J.; Bielski, A.; Jaguszewski, M.J.; Gilis-Malinowska, N.; Chirico, F.; Rafique, Z.; Peacock, F.W. Myocarditis: A complication of COVID-19 and long-COVID-19 syndrome as a serious threat in modern cardiology. Cardiol. J. 2022, 29, 178–179. [Google Scholar] [CrossRef]
- Kompaniyets, L.; Bull-Otterson, L.; Boehmer, T.K.; Baca, S.; Alvarez, P.; Hong, K.; Hsu, J.; Harris, A.M.; Gundlapalli, A.V.; Saydah, S. Post-COVID-19 Symptoms and Conditions Among Children and Adolescents—United States, 1 March 2020–31 January 2022. MMWR Morb. Mortal Wkly. Rep. 2022, 71, 993–999. [Google Scholar] [CrossRef]
- Bajaj, R.; Sinclair, H.C.; Patel, K.; Low, B.; Pericao, A.; Manisty, C.; Guttmann, O.; Zemrak, F.; Miller, O.; Longhi, P.; et al. Delayed-onset myocarditis following COVID-19. Lancet Respir. Med. 2021, 9, e32–e34. [Google Scholar] [CrossRef]
- CDC. New ICD-10-CM code for the 2019 Novel Coronavirus (COVID-19). 3 December 2020. Available online: https://www.cdc.gov/nchs/data/icd/Announcement-New-ICD-code-for-coronavirus-19-508.pdf (accessed on 27 November 2022).
Characteristics | COVID 19 without Myocarditis | COVID 19 with Myocarditis | p Value |
---|---|---|---|
N = 1,659,040 | N = 1,652,585 (99.6%) | N = 6455 (0.38%) | |
Sex (Female) | 47.98% | 38.57% | <0.001 |
Mean Age Years (SD) | 0.458 | ||
Male | 63.43 (16.28) | 61.16 (18.27) | |
Female | 63.06 (18.85) | 65.57 (17.02) | |
Age Groups | 0.150 | ||
≥18–29 | 4.94% | 6.12% | |
30–49 | 16.8% | 16.27% | |
50–69 | 37.24% | 35.4% | |
≥70 | 41.02% | 42.22% | |
*Race | 0.018 | ||
Caucasians | 50.93% | 46.06% | |
African American | 19.05% | 20.8% | |
Hispanics | 21.46% | 23.19% | |
Asian or Pacific Islander | 3.24% | 4.22% | |
Native American | 1.03% | 1.35% | |
Others | 4.29% | 4.38% | |
Median Household Income | 0.046 | ||
<49,999 $ | 34.13% | 30.76% | |
50,000–64,999 $ | 27.19% | 28.15% | |
65,000–85,999 $ | 22.16% | 22.08% | |
>86,000 $ | 16.52% | 19.01% | |
Insurance Status | 0.466 | ||
Medicare | 53.24% | 53.46% | |
Medicaid | 15.16% | 14.56% | |
Private | 27.64% | 27.18% | |
Self-pay | 3.96% | 4.8% | |
Hospital Division | <0.001 | ||
New England | 3.79% | 5.03% | |
Middle Atlantic | 14.59% | 19.44% | |
East North Central | 15.54% | 15.18% | |
West North Central | 6.7% | 7.67% | |
South Atlantic | 20.09% | 16.73% | |
East South Central | 6.72% | 6.35% | |
West South Central | 14.33% | 11.54% | |
Mountain | 6.92% | 5.73% | |
Pacific | 11.29% | 12.32% | |
Hospital Bedsize | 0.001 | ||
Small | 24.35% | 19.13% | |
Medium | 28.98% | 30.36% | |
Large | 46.67% | 50.5% | |
Hospital Teaching Status | 0.000 | ||
Rural | 9.81% | 7.59% | |
Urban Non-teaching | 18.67% | 14.87% | |
Urban Teaching | 71.52% | 77.54% |
Characteristics | COVID 19 without Myocarditis | COVID with Myocarditis | p Value |
---|---|---|---|
N = 11730 | N = 5865 | N = 5865 | |
Sex (Female) | 39.22% | 39.39% | 0.935 |
Mean Age Years (SD) | 63.39 (12.12) | 63.33 (12.19) | 0.939 |
Age Groups | 0.998 | ||
≥18–29 | 5.8% | 5.88% | |
30–49 | 15.52% | 15.69% | |
50–69 | 35.64% | 35.29% | |
≥70 | 43.05% | 43.14% | |
Race | 0.996 | ||
Caucasians | 46.8% | 46.89% | |
African American | 20.55% | 20.46% | |
Hispanics | 23.1% | 22.85% | |
Asian or Pacific Islander | 4.35% | 4.35% | |
Native American | 0.94% | 1.19% | |
Others | 4.26% | 4.26% | |
Median Household Income | 0.999 | ||
<49,999 $ | 31.12% | 31.12% | |
50,000–64,999 $ | 27.45% | 27.45% | |
65,000–85,999 $ | 22.17% | 22.25% | |
>86,000 $ | 19.27% | 19.18% | |
Insurance Status | 0.99 | ||
Medicare | 53.2% | 53.28% | |
Medicaid | 14.15% | 14.15% | |
Private | 27.88% | 27.71% | |
Self-pay | 4.77% | 4.86% | |
Hospital Division | <0.001 | ||
New England | 73.49% | 5.12% | |
Middle Atlantic | 20.55% | 20.29% | |
East North Central | 3.32% | 15.94% | |
West North Central | 0.85% | 7.25% | |
South Atlantic | 0.77% | 16.2% | |
East South Central | 1 | 6.05% | |
West South Central | 0.34% | 11.59% | |
Mountain | 0.43% | 5.63% | |
Pacific | 0.17% | 11.94% | |
Hospital Bedsize | <0.001 | ||
Small | 30.61% | 19.01% | |
Medium | 33.84% | 30.52% | |
Large | 35.55% | 50.47% | |
Hospital Teaching Status | <0.001 | ||
Rural | 2.98% | 6.82% | |
Urban non-teaching | 10.32% | 15% | |
Urban teaching | 86.7% | 78.18% |
Variable | Patients without Myocarditis | Patients with Myocarditis | p Value |
---|---|---|---|
In-Hospital Mortality (N = 2560) | 13.13% Adjusted odds ratio 1: 2.98(95% CI 2.14–4.16) | 30.52% | <0.001 |
Vasopressor Use | 3.92% Adjusted odds ratio 1: 5.18 (95% CI 2.72–9.88) | 9.89% | <0.001 |
Mechanical ventilation | 15.77% Adjusted odds ratio 1: 3.36 (95% CI 2.38–4.73) | 41.69% | <0.001 |
Acute kidney Injury requiring hemodialysis | 2.64% Adjusted odds ratio 1: 3.01 (95% CI 1.64–5.50) | 9.46% | <0.001 |
Sudden Cardiac Arrest | 1.79% Adjusted odds ratio 1: 3.2 (95% CI 1.5–6.69) | 9.12% | 0.002 |
Cardiogenic Shock | 0.6% Adjusted odds ratio 1: 16.4 (95% CI 9.09–29.62) | 10.49% | <0.001 |
Mechanical Circulatory Support (LVAD 2 or pVAD 3 or ECMO 4) | 0.51% Adjusted odds ratio 1: 2.34 (95% CI 0.48–11.4) | 2.64% | 0.292 |
Mean Total Hospitalization Charge ($) | 72,072 $Adjusted total charge 1: 61,153 $ higher | 173,226$ | <0.001 |
Mean Length of Stay (Days) | 8.4 Adjusted length of stay1: 1.9 day higher | 11.7 | 0.007 |
Disposition | 0.097 | ||
Home/Routine | 51.58% | 51.17% | |
SNF/LTAC/Nursing home | 24.82% | 28.31% | |
Home Health | 22.08% | 20% | |
AMA | 1.53% | 0.52% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, M.G.; Bobba, A.; Chourasia, P.; Gangu, K.; Shuja, H.; Dandachi, D.; Farooq, A.; Avula, S.R.; Shekhar, R.; Sheikh, A.B. COVID-19 Associated Myocarditis Clinical Outcomes among Hospitalized Patients in the United States: A Propensity Matched Analysis of National Inpatient Sample. Viruses 2022, 14, 2791. https://doi.org/10.3390/v14122791
Davis MG, Bobba A, Chourasia P, Gangu K, Shuja H, Dandachi D, Farooq A, Avula SR, Shekhar R, Sheikh AB. COVID-19 Associated Myocarditis Clinical Outcomes among Hospitalized Patients in the United States: A Propensity Matched Analysis of National Inpatient Sample. Viruses. 2022; 14(12):2791. https://doi.org/10.3390/v14122791
Chicago/Turabian StyleDavis, Monique G., Aniesh Bobba, Prabal Chourasia, Karthik Gangu, Hina Shuja, Dima Dandachi, Asif Farooq, Sindhu Reddy Avula, Rahul Shekhar, and Abu Baker Sheikh. 2022. "COVID-19 Associated Myocarditis Clinical Outcomes among Hospitalized Patients in the United States: A Propensity Matched Analysis of National Inpatient Sample" Viruses 14, no. 12: 2791. https://doi.org/10.3390/v14122791
APA StyleDavis, M. G., Bobba, A., Chourasia, P., Gangu, K., Shuja, H., Dandachi, D., Farooq, A., Avula, S. R., Shekhar, R., & Sheikh, A. B. (2022). COVID-19 Associated Myocarditis Clinical Outcomes among Hospitalized Patients in the United States: A Propensity Matched Analysis of National Inpatient Sample. Viruses, 14(12), 2791. https://doi.org/10.3390/v14122791