T-Cell Responses after Rotavirus Infection or Vaccination in Children: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. T-Cell Responses
2.5. Study Selection and Data Extraction
2.6. Quality Assessment and Data Synthesis
3. Results
3.1. Literature Search Results
3.2. Characteristics of Articles Included in Systematic Review
3.3. Quality Assessment of Individual Studies
3.4. T-Cell Proliferation against Rotavirus Develops and Broadens Reactivity with Increasing Age
3.5. Rotavirus T-Cell Proliferation and Frequency Coincides with Antibody Responses but Is More Transient
3.6. CD4 and CD8 T-Cells Are of Low Circulating Frequency in Acute Rotavirus
3.7. Proliferative, Helper and Cytotoxic T-Cells Profiles to Rotavirus Differ in Children Compared to Adults and Other Stimulants
3.8. Rotavirus Activates Proinflammatory, Regulatory and Gut Homing Effector T-Cell Phenotypes
4. Discussion
4.1. Summary Findings and Implications
4.2. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef]
- Kotloff, K.L.; Nasrin, D.; Blackwelder, W.C.; Wu, Y.; Farag, T.; Panchalingham, S.; Sow, S.O.; Sur, D.; Zaidi, A.K.M.; Faruque, A.S.G.; et al. The incidence, aetiology, and adverse clinical consequences of less severe diarrhoeal episodes among infants and children residing in low-income and middle-income countries: A 12-month case-control study as a follow-on to the Global Enteric Multicenter Study (GEMS). Lancet Glob. Health 2019, 7, e568–e584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troeger, C.; Blacker, B.F.; Khalil, I.A.; Rao, P.C.; Cao, S.; Zimsen, S.R.M.; Albertson, S.B.; Stanaway, J.D.; Deshpande, A.; Abebe, Z.; et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018, 18, 1211–1228. [Google Scholar] [CrossRef] [Green Version]
- Burnett, E.; Jonesteller, C.L.; Tate, J.E.; Yen, C.; Parashar, U.D. Global Impact of Rotavirus Vaccination on Childhood Hospitalizations and Mortality From Diarrhea. J. Infect. Dis. 2017, 215, 1666–1672. [Google Scholar] [CrossRef] [PubMed]
- Parashar, U.D.; Johnson, H.; Steele, A.D.; Tate, J.E. Health Impact of Rotavirus Vaccination in Developing Countries: Progress and Way Forward. Clin. Infect. Dis. 2016, 62, S91–S95. [Google Scholar] [CrossRef] [Green Version]
- Burke, R.M.; Tate, J.E.; Kirkwood, C.D.; Steele, A.D.; Parashar, U.D. Current and new rotavirus vaccines. Curr. Opin. Infect. Dis. 2019, 32, 435–444. [Google Scholar] [CrossRef]
- Angel, J.; Steele, A.D.; Franco, M.A. Correlates of protection for rotavirus vaccines: Possible alternative trial endpoints, opportunities, and challenges. Hum. Vaccin. Immunother. 2014, 10, 3659–3671. [Google Scholar] [CrossRef] [Green Version]
- Desselberger, U. Rotaviruses. Virus Res. 2014, 190, 75–96. [Google Scholar] [CrossRef] [Green Version]
- Velázquez, F.R.; Matson, D.O.; Calva, J.J.; Guerrero, M.L.; Morrow, A.L.; Carter-Campbell, S.; Glass, R.I.; Estes, M.K.; Pickering, L.K.; Ruiz-Palacios, G.M. Rotavirus Infection in Infants as Protection against Subsequent Infections. N. Engl. J. Med. 1996, 335, 1022–1028. [Google Scholar] [CrossRef]
- Desselberger, U.; Huppertz, H.-I. Immune responses to rotavirus infection and vaccination and associated correlates of protection. J. Infect. Dis. 2011, 203, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Chilengi, R.; Simuyandi, M.; Beach, L.; Mwila, K.; Becker-Dreps, S.; Emperador, D.M.; Velasquez, D.E.; Bosomprah, S.; Jiang, B. Association of Maternal Immunity with Rotavirus Vaccine Immunogenicity in Zambian Infants. PLoS ONE 2016, 11, e0150100. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.M.; Tate, J.E.; Leon, J.; Haber, M.J.; Pitzer, V.E.; Lopman, B.A. Postvaccination Serum Antirotavirus Immunoglobulin A as a Correlate of Protection Against Rotavirus Gastroenteritis Across Settings. J. Infect. Dis. 2020, 222, 309–318. [Google Scholar] [CrossRef]
- Lee, B.; Carmolli, M.; Dickson, D.M.; Colgate, E.R.; Diehl, S.A.; Uddin, M.I.; Islam, S.; Hossain, M.; Rafique, T.A.; Bhuiyan, T.R.; et al. Rotavirus-Specific Immunoglobulin A Responses Are Impaired and Serve as a Suboptimal Correlate of Protection Among Infants in Bangladesh. Clin. Infect. Dis. 2018, 67, 186–192. [Google Scholar] [CrossRef] [Green Version]
- McNeal, M.M.; Rae, M.N.; Ward, R.L. Evidence that resolution of rotavirus infection in mice is due to both CD4 and CD8 cell-dependent activities. J. Virol. 1997, 71, 8735–8742. [Google Scholar] [CrossRef] [Green Version]
- McNeal, M.M.; VanCott, J.L.; Choi, A.H.; Basu, M.; Flint, J.A.; Stone, S.C.; Clements, J.D.; Ward, R.L. CD4 T cells are the only lymphocytes needed to protect mice against rotavirus shedding after intranasal immunization with a chimeric VP6 protein and the adjuvant LT(R192G). J. Virol. 2002, 76, 560–568. [Google Scholar] [CrossRef] [Green Version]
- Rosé, J.R.; Williams, M.B.; Rott, L.S.; Butcher, E.C.; Greenberg, H.B. Expression of the mucosal homing receptor α4β7 correlates with the ability of CD8+ memory T cells to clear rotavirus infection. J. Virol. 1998, 72, 726–730. [Google Scholar] [CrossRef] [Green Version]
- Lee, B. Update on rotavirus vaccine underperformance in low- to middle-income countries and next-generation vaccines. Hum. Vaccin. Immunother. 2021, 17, 1787–1802. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The, P.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Shrotri, M.; van Schalkwyk, M.C.I.; Post, N.; Eddy, D.; Huntley, C.; Leeman, D.; Rigby, S.; Williams, S.V.; Bermingham, W.H.; Kellam, P.; et al. T cell response to SARS-CoV-2 infection in humans: A systematic review. PLoS ONE 2021, 16, e0245532. [Google Scholar] [CrossRef]
- Rahimzadeh, M.; Naderi, N. Toward an understanding of regulatory T cells in COVID-19: A systematic review. J. Med. Virol. 2021, 93, 4167–4181. [Google Scholar] [CrossRef]
- Dong, H.; Qu, S.; Chen, X.; Zhu, H.; Tai, X.; Pan, J. Changes in the cytokine expression of peripheral Treg and Th17 cells in children with rotavirus enteritis. Exp. Ther. Med. 2015, 10, 679–682. [Google Scholar] [CrossRef] [Green Version]
- Elaraby, I.; Elsharkawy, S.; Abbassy, A.; Hussein, M. A Study on Delayed-Hypersensitivity to Rotavirus in Infancy and Childhood. Ann. Trop. Paediatr. 1992, 12, 83–86. [Google Scholar] [CrossRef]
- Iwasa, T.; Matsubayashi, N. Protein-loosing enteropathy associated with rotavirus infection in an infant. World J. Gastroenterol. 2008, 14, 1630–1632. [Google Scholar] [CrossRef]
- Jaimes, M.C.; Rojas, O.L.; Gonzalez, A.M.; Cajiao, I.; Charpilienne, A.; Pothier, P.; Kohli, E.; Greenberg, H.B.; Franco, M.A.; Angel, J. Frequencies of virus-specific CD4+ and CD8+ T lymphocytes secreting gamma interferon after acute natural rotavirus infection in children and adults. J. Virol. 2002, 76, 4741–4749. [Google Scholar] [CrossRef] [Green Version]
- Makela, M.; Oling, V.; Marttila, J.; Waris, M.; Knip, M.; Simell, O.; Ilonen, J. Rotavirus-specific T cell responses and cytokine mRNA expression in children with diabetes-associated autoantibodies and type 1 diabetes. Clin. Exp. Immunol. 2006, 145, 261–270. [Google Scholar] [CrossRef]
- Makela, M.; Marttila, J.; Simell, O.; Ilonen, J. Rotavirus-specific T-cell responses in young prospectively followed-up children. Clin. Exp. Immunol. 2004, 137, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Mesa, M.C.; Gutierrez, L.; Duarte-Rey, C.; Angel, J.; Franco, M.A. A TGF-beta mediated regulatory mechanism modulates the T cell immune response to rotavirus in adults but not in children. Virology 2010, 399, 77–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Offit, P.A.; Hoffenberg, E.J.; Pia, E.S.; Panackal, P.A.; Hill, N.L. Rotavirus-specific helper T cell responses in newborns, infants, children, and adults. J. Infect. Dis. 1992, 165, 1107–1111. [Google Scholar] [CrossRef] [PubMed]
- Offit, P.A.; Hoffenberg, E.J.; Santos, N.; Gouvea, V. Rotavirus-specific humoral and cellular immune response after primary, symptomatic infection. J. Infect. Dis. 1993, 167, 1436–1440. [Google Scholar] [CrossRef] [PubMed]
- Parra, M.; Herrera, D.; Jacome, M.F.; Mesa, M.C.; Rodriguez, L.-S.; Guzman, C.; Angel, J.; Franco, M.A. Circulating rotavirus-specific T cells have a poor functional profile. Virology 2014, 468, 340–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parra, M.; Herrera, D.; Calvo-Calle, J.M.; Stern, L.J.; Parra-Lopez, C.A.; Butcher, E.; Franco, M.; Angel, J. Circulating human rotavirus specific CD4 T cells identified with a class II tetramer express the intestinal homing receptors α4β7 and CCR9. Virology 2014, 452, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Rojas, O.L.; Gonzalez, A.M.; Gonzalez, R.; Perez-Schael, I.; Greenberg, H.B.; Franco, M.A.; Angel, J. Human rotavirus specific T cells: Quantification by ELISPOT and expression of homing receptors on CD4+ T cells. Virology 2003, 314, 671–679. [Google Scholar] [CrossRef] [Green Version]
- Rott, L.S.; Rose, J.R.; Bass, D.; Williams, M.B.; Greenberg, H.B.; Butcher, E.C. Expression of mucosal homing receptor alpha4beta7 by circulating CD4+ cells with memory for intestinal rotavirus. J. Clin. Investig. 1997, 100, 1204–1208. [Google Scholar] [CrossRef]
- Wang, Y.; Dennehy Penelope, H.; Keyserling Harry, L.; Tang, K.; Gentsch Jon, R.; Glass Roger, I.; Jiang, B. Rotavirus Infection Alters Peripheral T-Cell Homeostasis in Children with Acute Diarrhea. J. Virol. 2007, 81, 3904–3912. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, A.; Lindsey, J.; Bosch, R.; Persaud, D.; Sato, P.; Ogwu, A.; Asmelash, A.; Bwakura-Dangarambezi, M.; Chi, B.H.; Canniff, J.; et al. B and T cell phenotypic profiles of African HIV-infected and HIV-exposed uninfected infants: Associations with antibody responses to the pentavalent rotavirus vaccine. Front. Immunol. 2018, 8, 2002. [Google Scholar] [CrossRef]
- Wood, D.J.; David, T.J.; Chrystie, I.L.; Totterdell, B. Chronic enteric virus infection in two T-cell immunodeficient children. J. Med. Virol. 1988, 24, 435–444. [Google Scholar] [CrossRef]
- Yasukawa, M.; Nakagomi, O.; Kobayashi, Y. Rotavirus induces proliferative response and augments non-specific cytotoxic activity of lymphocytes in humans. Clin. Exp. Immunol. 1990, 80, 49–55. [Google Scholar] [CrossRef]
- Kirkwood, C.D.; Ma, L.-F.; Carey, M.E.; Steele, A.D. The rotavirus vaccine development pipeline. Vaccine 2019, 37, 7328–7335. [Google Scholar] [CrossRef]
- Bines, J.E.; At Thobari, J.; Satria, C.D.; Handley, A.; Watts, E.; Cowley, D.; Nirwati, H.; Ackland, J.; Standish, J.; Justice, F.; et al. Human Neonatal Rotavirus Vaccine (RV3-BB) to Target Rotavirus from Birth. N. Engl. J. Med. 2018, 378, 719–730. [Google Scholar] [CrossRef]
- Cunliffe, N.; Zaman, K.; Rodrigo, C.; Debrus, S.; Benninghoff, B.; Pemmaraju Venkata, S.; Han, H.-H. Early exposure of infants to natural rotavirus infection: A review of studies with human rotavirus vaccine RIX4414. BMC Pediatr. 2014, 14, 295. [Google Scholar] [CrossRef] [Green Version]
- Gentsch, J.R.; Laird, A.R.; Bielfelt, B.; Griffin, D.D.; Bányai, K.; Ramachandran, M.; Jain, V.; Cunliffe, N.A.; Nakagomi, O.; Kirkwood, C.D.; et al. Serotype Diversity and Reassortment between Human and Animal Rotavirus Strains: Implications for Rotavirus Vaccine Programs. J. Infect. Dis. 2005, 192, S146–S159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, A.D.; Neuzil, K.M.; Cunliffe, N.A.; Madhi, S.A.; Bos, P.; Ngwira, B.; Witte, D.; Todd, S.; Louw, C.; Kirsten, M.; et al. Human rotavirus vaccine Rotarix™ provides protection against diverse circulating rotavirus strains in African infants: A randomized controlled trial. BMC Infect. Dis. 2012, 12, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Lan, Z.; Liu, Y.; Liu, Y.; Yu, Q.; Li, Y.; Guo, T. Evaluation of oral Lanzhou lamb rotavirus vaccine via passive transfusion with CD4+/CD8+ T lymphocytes. Virus Res. 2016, 217, 101–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smiley, K.L.; McNeal, M.M.; Basu, M.; Choi, A.H.; Clements, J.D.; Ward, R.L. Association of gamma interferon and interleukin-17 production in intestinal CD4+ T cells with protection against rotavirus shedding in mice intranasally immunized with VP6 and the adjuvant LT(R192G). J. Virol. 2007, 81, 3740–3748. [Google Scholar] [CrossRef] [Green Version]
- Godefroy, E.; Alameddine, J.; Montassier, E.; Mathé, J.; Desfrançois-Noël, J.; Marec, N.; Bossard, C.; Jarry, A.; Bridonneau, C.; Le Roy, A.; et al. Expression of CCR6 and CXCR6 by Gut-Derived CD4+/CD8α+ T-Regulatory Cells, Which Are Decreased in Blood Samples From Patients With Inflammatory Bowel Diseases. Gastroenterology 2018, 155, 1205–1217. [Google Scholar] [CrossRef]
- Bennett, S.M.; Round, L.J.; Leung, T.D. Innate-like lymphocytes in intestinal infections. Curr. Opin. Infect. Dis. 2015, 28, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Hildreth, A.D.; O’sullivan, T.E. Tissue-resident innate and innate-like lymphocyte responses to viral infection. Viruses 2019, 11, 272. [Google Scholar] [CrossRef] [Green Version]
- Resch, T.K.; Wang, Y.; Moon, S.-S.; Joyce, J.; Li, S.; Prausnitz, M.; Jiang, B. Inactivated rotavirus vaccine by parenteral administration induces mucosal immunity in mice. Sci. Rep. 2018, 8, 561. [Google Scholar] [CrossRef] [Green Version]
- Groome, M.J.; Koen, A.; Fix, A.; Page, N.; Jose, L.; Madhi, S.A.; McNeal, M.; Dally, L.; Cho, I.; Power, M.; et al. Safety and immunogenicity of a parenteral P2-VP8-P[8] subunit rotavirus vaccine in toddlers and infants in South Africa: A randomised, double-blind, placebo-controlled trial. Lancet Infect. Dis. 2017, 17, 843–853. [Google Scholar] [CrossRef] [Green Version]
- Pichichero, M.E. Challenges in vaccination of neonates, infants and young children. Vaccine 2014, 32, 3886–3894. [Google Scholar] [CrossRef] [Green Version]
- Cox, M.; Adetifa, J.U.; Noho-Konteh, F.; Njie-Jobe, J.; Sanyang, L.C.; Drammeh, A.; Plebanski, M.; Whittle, H.C.; Rowland-Jones, S.L.; Robertson, I.; et al. Limited Impact of Human Cytomegalovirus Infection in African Infants on Vaccine-Specific Responses Following Diphtheria-Tetanus-Pertussis and Measles Vaccination. Front. Immunol. 2020, 11, 1083. [Google Scholar] [CrossRef]
- Miles, D.J.; van der Sande, M.; Jeffries, D.; Kaye, S.; Ismaili, J.; Ojuola, O.; Sanneh, M.; Touray, E.S.; Waight, P.; Rowland-Jones, S.; et al. Cytomegalovirus infection in Gambian infants leads to profound CD8 T-cell differentiation. J. Virol. 2007, 81, 5766–5776. [Google Scholar] [CrossRef] [Green Version]
Author Year [Ref] | Country | Design | Child Population, n | Age | Rotavirus Exposure | T-Cell Stimulant | T-Cell Detection Method | T-Cell Response Markers Evaluated |
---|---|---|---|---|---|---|---|---|
Dong et al., 2015 [21] | China | Observational | RV-AGE, n = 102; Healthy, n = 30 | 3 mos to 3 yrs; 2 mos to 3 yrs | Rotavirus infection | PMA Ionomycin | Flow Cytometry |
|
Elaraby et al., 1992 [22] | Egypt | Observational | RV-AGE, n = 6; Healthy, n = 50 | NR; Newborn, 1 to <12 mos, 12 to 24 mos, 24 to 60 mos | Rotavirus infection | Rotavirus antigen, PHA | Light microscopy, Indirect Fluorescent Microscopy |
|
Iwasa et al., 2008 [23] | Japan | Observational | RV-AGE, n = 1 | 6 mos | Rotavirus infection | Nil | Flow Cytometry |
|
Jaimes et al., 2002 [24] | Colombia | Observational | RV-AGE, n = 12 | 6 mos to 7 yrs | Rotavirus infection | RRV, SEB, CD28, CD49d | Flow Cytometry |
|
Makela et al., 2006 [25] | Finland | Observational | Healthy (T1D at risk), n = 183 | ≤15 yrs | N/A | HRV Wa, BRV NCD, CBV, PPD, TT, PHA, PCB | Proliferation assay, PCR |
|
Makela et al., 2004 [26] | Finland | Observational | Healthy children (T1D at risk), n = 20 | 3 mos to 5 yrs | N/A | HRV Wa, BRV NCD, PPD, TT, PHA | Proliferation assay |
|
Mesa et al., 2010 [27] | Colombia | Observational | RV-AGE, n = 17; Non-RV-AGE, n = 36 | Median 14 mos (range 4 to 22 mos) | Rotavirus infection | HRV Wa, Simian RRV, SEB, CD28, CD49d | Flow Cytometry |
|
Offit et al., 1992 [28] | USA | Observational | Healthy, n = 48 | Newborn to 18 yrs old | N/A | HRV Wa, HRV HCR3a strains, Simian RRV, concanavalin A | Proliferation assay |
|
Offit et al., 1993 [29] | USA | Observational | RV-AGE, n = 8 | <2 yrs old. | Rotavirus infection | HRV HCR3a, HRV W179 | Proliferation assay |
|
Parra et al., 2014 [30] | Colombia | Observational | Healthy, n = 5 | 2 to 8 yrs old | N/A | Simian RRV, Influenza vaccine, TT, SEB, CD28, CD49d | Flow Cytometry, Proliferation assay |
|
Parra et al., 2014 [31] | Colombia | Randomised Controlled Trial | Vaccine, n = 35 | 2 to 4 mos | Rotavirus vaccination | RRV, NSP2, VP3-4, VP6-7, SEB, CD28, CD49d | Flow Cytometry |
|
Placebo, n = 24 | ||||||||
Rojas et al., 2003 [32] | Colombia | Observational | RV-AGE, n= 15; Non-RV-AGE, n = 13 | 3 mos to 7 yrs | Rotavirus infection | RRV, SEB, CD28, CD49d | ELISpot |
|
Rott et al., 1997 [33] | USA | Observational | RV-AGE, n = 1 | NR | Rotavirus infection | RRV, concanavalin A | Flow Cytometry, Proliferation assay |
|
Wang et al., 2007 [34] | USA | Observational | RV-AGE, n = 10; Healthy, n= 8 | <3 yrs | Rotavirus infection | Nil | Flow Cytometry PCR |
|
Weinberg et al., 2018 [35] | Botswana, Tanzania, Zambia, Zimbabwe | Randomised Controlled Trial | Vaccine, n = 42; Placebo n = 47 | 2 to ≤15 wks | Rotavirus vaccination | Nil | Flow Cytometry |
|
Wood et al., 1988 [36] | England | Observational | RV-AGE, n = 2 | Newborn and 11 mos | Rotavirus infection | Simian RRV SA11strain, PHA | Proliferation assay |
|
Yasukawa et al., 1990 [37] | Japan | Observational | Healthy child, n = 1 | Newborn | N/A | HRV Wa strain, BRV NCD strain | Proliferation assay |
|
Author, Year [Ref] | Child Age | T-Cell Response | Key Findings | Interpretation |
---|---|---|---|---|
Elaraby et al., 1992 [22] | RV-AGE: (n = 6), age NR Healthy: birth (n = 14), 1 to <12 mos (n = 14), 12 to <24 mos (n = 10), and 24 to <60 mos (n = 12). | Lymphoproliferation against rotavirus antigen (strain NR) |
|
|
Makela et al., 2004 [26] | Healthy: (n = 20), 3 months to 60 months age: sampled 3 mos to 6 mos (n = 23), 9 mos to 12 mos (n = 26), 15 mos to 24 mos (n = 65), 27 mos to 36 mos (n = 38), 39 mos to 48 mos (n = 31), 51 mos to 60 mos (n = 11) | Lymphoproliferation against bovine NCD (P serotype 6, G serotype 6) and human purified and lysate Wa (P serotype 1, G serotype 1A) rotavirus strain |
|
|
Makela et al., 2006 [25] | Healthy: (n = 183), age range 3.5 yrs to 11.3 yrs | lymphoproliferation against human Wa (P serotype 1, G serotype 1A) and bovine NCD (P serotype 6, G serotype 6) rotavirus strains |
|
|
Offit et al., 1992 [28] | Healthy: age groups newborns (n = 11), 16 days to <6 mos (n = 11), 6 mos to <2 yrs (n = 8), 2 yrs to 5 yrs (n = 8), 5 yrs to 18 yrs (n = 10). | lymphoproliferation against human Wa (serotype 1) and HCR3a (serotype 3) and simian rhesus rotavirus strain 2 (serotype 3) antigens |
|
|
Offit et al., 1993 [29] | RV-AGE: n = 8, <2 yrs caused by serotype 1 (P type 1, G type 1, n = 2), serotype 3 (P type 1, G type 3, n = 3) and serotype 4 (P type 1, G type 4, n = 3) rotavirus strains and followed up in convalescence and late convalescence | Lymphoproliferation against human WI79 (P-type 1, G type 1) and HCR3a (P-type non-human, G type 3) rotavirus strain antigens |
|
|
Yasukawa et a., 1990 [37] | Healthy full-term newborn | Lymphoproliferation against human Wa (serotype 1) strain rotavirus antigen |
|
|
Author, Year [Ref] | Population and Antibody Response | T-Cell Response | Key Findings | Interpretation |
---|---|---|---|---|
Makela et al., 2006 [25] | Healthy: rotavirus IgA and/or IgG seropositive (n = 112) or rotavirus seronegative (n = 41) | Lymphoproliferation and IFN-γ producing PBMC against purified and lysate human and bovine rotavirus antigens |
|
|
Makela et al., 2004 [26] | Healthy: rotavirus IgA and/or IgG seropositive or seronegative at 3 mos to 12 mos of age with primary (n = 19) or secondary (n = 5) rotavirus infections | Lymphoproliferation against purified and lysate human rotavirus |
|
|
Offit et al., 1992 [28] | Healthy: age groups newborns (n = 11), 16 days to <6 mos (n = 11), 6 mos to <2 yrs (n = 8), 2 yrs to 5 yrs (n = 8), and 5 yrs to 18 yrs (n = 10) with rotavirus neutralising antibody | Lymphoproliferation against human and simian rotavirus |
|
|
Offit et al., 1993 [29] | RV-AGE: caused by P-type 1 and different G type strains followed up in convalescence and late convalescence with rotavirus IgA and neutralizing antibodies (n = 8) | lymphoproliferation against human rotavirus |
|
|
Parra et al., 2014 [31] | Rotavirus IgA seropositive vaccinated (n = 35) and seronegative placebo (n = 24) | Frequency of CD4 T-cells positive for rotavirus specific VP6-7 T-cell epitope |
|
|
Weinburg et al., 2018 [35] | PHEU and PHIV (n = 42) vaccinated with pentavalent live rotavirus vaccine: IgA and neutralizing IgG | Frequency of several CD4 and CD8 T-cell phenotypes |
|
|
Wood et al., 1988 [36] | CHH (n = 1) and CHARGE associated (n = 1) T-cell deficiency and rotavirus IgG | Lymphoproliferation against mitogens, rotavirus antigen, and proportions of T-cells |
|
|
Author, Year [Ref] | Population | T-Cell Response | Key Findings | Interpretation |
---|---|---|---|---|
Elaraby et al., 1992 [22] | Healthy: (n = 50); RV-AGE: (n = 6) | CD3 (OKT3 pan), CD4 (OKT4 helper), CD8 (OKT8 frequency, CD4:CD8 T-cell ratio |
|
|
Iwasa et al., 2008 [23] | RV-AGE: (n = 1) | CD4 and CD8 T-cell frequency, CD4:CD8 T-cell ratio |
|
|
Mesa et al., 2010 [27] | Non-RV-AGE seronegative (n = 15) or seropositive (n = 21) and RV-AGE (n = 17) children. Healthy (n = 21) and RV-AGE adults (n = 5) | Lymphopenia and Th1, Th2, Th17 CD4 and cytotoxic CD8 T-cells |
|
|
Parra et al., 2014 [31] | Seropositive vaccinated: (n = 35) and seronegative placebo: (n = 24) | Rotavirus (VP6-7 tetramer) antigen experienced CD4 T-cells |
|
|
Wang et al., 2007 [34] | RV-AGE: (n = 10); Healthy (n = 8) | Lymphopenia, frequencies of CD4, αβ+CD4, CD8 and αβ+CD8 T-cells |
|
|
Jaimes et al., 2002 [24] | RV-AGE children (n = 12), rotavirus exposed asympomatic and symptomatic adults (n = 19), healthy adults (n = 7) | Th1 and Th2 CD4 and cytotoxic CD8 T-cell frequencies |
|
|
Makela et al., 2004 [26] | Healthy (T1D at risk) children: (n = 20); Healthy rotavirus exposed adults (n = 16) | Lymphoproliferation |
|
|
Makela et al., 2006 [25] | Healthy children (T1D at risk, n = 183) | Lymphoproliferation |
|
|
Parra et al., 2014 [30] | Healthy children (n = 5) and healthy adults (n = 25) | Cytokine secreting PBMC. Th1 CD4 and cytotoxic CD8 T-cells. CD4 and CD8 proliferation. |
|
|
Rojas et al., 2003 [32] | RV-AGE children (n = 9); Healthy adults (n = 7) | Frequencies of Th1 and Th2 CD4 and cytotoxic CD8 T-cells |
|
|
Author, Year [Ref] | Child Population | T-Cell Response | Finding | Interpretation |
---|---|---|---|---|
Dong et al., 2015 [21] | RV-AGE (n = 102); Healthy (n = 30) | Th17 and Tregs frequency |
|
|
Iwasa et al., 2008 [23] | Infant with acute rotavirus gastroenteritis (n = 1) | Th1 CD4 and cytotoxic CD8 T-cell frequencies |
|
|
Makela et al., 2006 [25] | Healthy (T1D at risk), n = 183) | IFN-γ, IL-4, IL-10 and TGF-β mRNA expression and T-cell proliferation |
|
|
Wang et al., 2007 [34] | RV-AGE (n = 10); Healthy (n = 8) | Gene expression of T-cell immune markers |
|
|
Mesa et al., 2010 [27] | RV-AGE (n = 53) | CD4+CD25+, CD4+CD25+CD127low, CD4+CD25+CD127low TGF-β+ and CD45RA+ regulatory T-cells (Tregs) and IFN-γ producing CD4 T-cells |
|
|
Parra et al., 2014 [31] | Vaccine (n = 3) | CD62L−CD45RA+/− and CD26L+CD45RA− CD4 T-cells α4β7 and CCR9 |
|
|
Rojas et al., 2003 [32] | RV-AGE (n = 9) | Frequencies of CD4 and CD8 T-cells producing IL-4 and IFN-γ |
|
|
Rott et al., 1997 [33] | convalescing RV-AGE (n = 1) | T-cell proliferation |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laban, N.M.; Goodier, M.R.; Bosomprah, S.; Simuyandi, M.; Chisenga, C.; Chilyabanyama, O.N.; Chilengi, R. T-Cell Responses after Rotavirus Infection or Vaccination in Children: A Systematic Review. Viruses 2022, 14, 459. https://doi.org/10.3390/v14030459
Laban NM, Goodier MR, Bosomprah S, Simuyandi M, Chisenga C, Chilyabanyama ON, Chilengi R. T-Cell Responses after Rotavirus Infection or Vaccination in Children: A Systematic Review. Viruses. 2022; 14(3):459. https://doi.org/10.3390/v14030459
Chicago/Turabian StyleLaban, Natasha Makabilo, Martin Rhys Goodier, Samuel Bosomprah, Michelo Simuyandi, Caroline Chisenga, Obvious Nchimunya Chilyabanyama, and Roma Chilengi. 2022. "T-Cell Responses after Rotavirus Infection or Vaccination in Children: A Systematic Review" Viruses 14, no. 3: 459. https://doi.org/10.3390/v14030459
APA StyleLaban, N. M., Goodier, M. R., Bosomprah, S., Simuyandi, M., Chisenga, C., Chilyabanyama, O. N., & Chilengi, R. (2022). T-Cell Responses after Rotavirus Infection or Vaccination in Children: A Systematic Review. Viruses, 14(3), 459. https://doi.org/10.3390/v14030459