Amyloid and Tau Protein Concentrations in Children with Meningitis and Encephalitis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greenberg, S.M.; Bacskai, B.J.; Hernandez-Guillamon, M.; Pruzin, J.; Sperling, R.; van Veluw, S.J. Cerebral Amyloid Angiopathy and Alzheimer Disease—One Peptide, Two Pathways. Nat. Rev. Neurol. 2020, 16, 30–42. [Google Scholar] [CrossRef]
- Xin, S.-H.; Tan, L.; Cao, X.; Yu, J.-T.; Tan, L. Clearance of Amyloid Beta and Tau in Alzheimer’s Disease: From Mechanisms to Therapy. Neurotox. Res. 2018, 34, 733–748. [Google Scholar] [CrossRef] [PubMed]
- Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene Dose of Apolipoprotein E Type 4 Allele and the Risk of Alzheimer’s Disease in Late Onset Families. Science 1993, 261, 921–923. [Google Scholar] [CrossRef]
- Da Mesquita, S.; Fu, Z.; Kipnis, J. The Meningeal Lymphatic System: A New Player in Neurophysiology. Neuron 2018, 100, 375–388. [Google Scholar] [CrossRef] [Green Version]
- Carbone, I.; Lazzarotto, T.; Ianni, M.; Porcellini, E.; Forti, P.; Masliah, E.; Gabrielli, L.; Licastro, F. Herpes Virus in Alzheimer’s Disease: Relation to Progression of the Disease. Neurobiol. Aging 2014, 35, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Kramer, T.; Enquist, L.W. Directional Spread of Alphaherpesviruses in the Nervous System. Viruses 2013, 5, 678–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawtell, N.M.; Thompson, R.L. Herpes Simplex Virus and the Lexicon of Latency and Reactivation: A Call for Defining Terms and Building an Integrated Collective Framework. F1000Research 2016, 5, 2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wozniak, M.A.; Frost, A.L.; Preston, C.M.; Itzhaki, R.F. Antivirals Reduce the Formation of Key Alzheimer’s Disease Molecules in Cell Cultures Acutely Infected with Herpes Simplex Virus Type 1. PLoS ONE 2011, 6, e25152. [Google Scholar] [CrossRef] [Green Version]
- Readhead, B.; Haure-Mirande, J.-V.; Funk, C.C.; Richards, M.A.; Shannon, P.; Haroutunian, V.; Sano, M.; Liang, W.S.; Beckmann, N.D.; Price, N.D.; et al. Multiscale Analysis of Independent Alzheimer’s Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus. Neuron 2018, 99, 64–82.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulop, T.; Witkowski, J.M.; Larbi, A.; Khalil, A.; Herbein, G.; Frost, E.H. Does HIV Infection Contribute to Increased Beta-Amyloid Synthesis and Plaque Formation Leading to Neurodegeneration and Alzheimer’s Disease? J. Neurovirol. 2019, 25, 634–647. [Google Scholar] [CrossRef] [PubMed]
- Hammond, C.J.; Hallock, L.R.; Howanski, R.J.; Appelt, D.M.; Little, C.S.; Balin, B.J. Immunohistological Detection of Chlamydia Pneumoniae in the Alzheimer’s Disease Brain. BMC Neurosci. 2010, 11, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Little, C.S.; Hammond, C.J.; MacIntyre, A.; Balin, B.J.; Appelt, D.M. Chlamydia Pneumoniae Induces Alzheimer-like Amyloid Plaques in Brains of BALB/c Mice. Neurobiol. Aging 2004, 25, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Miklossy, J.; Kis, A.; Radenovic, A.; Miller, L.; Forro, L.; Martins, R.; Reiss, K.; Darbinian, N.; Darekar, P.; Mihaly, L.; et al. Beta-Amyloid Deposition and Alzheimer’s Type Changes Induced by Borrelia Spirochetes. Neurobiol. Aging 2006, 27, 228–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R.; Kaye, J.; Montine, T.J.; et al. Toward Defining the Preclinical Stages of Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s Dement. 2011, 7, 280–292. [Google Scholar] [CrossRef] [Green Version]
- Bachmann, M.F.; Jennings, G.T.; Vogel, M. A Vaccine against Alzheimer’s Disease: Anything Left but Faith? Expert Opin. Biol. Ther. 2019, 19, 73–78. [Google Scholar] [CrossRef]
- Riccardi, N.; Antonello, R.M.; Luzzati, R.; Zajkowska, J.; Di Bella, S.; Giacobbe, D.R. Tick-Borne Encephalitis in Europe: A Brief Update on Epidemiology, Diagnosis, Prevention, and Treatment. Eur. J. Intern. Med. 2019, 62, 1–6. [Google Scholar] [CrossRef]
- Sulik, M.; Toczyłowski, K.; Grygorczuk, S. Epidemiology of Tick-Borne Encephalitis in Poland (2010–2019) and the Impact of the COVID-19 Pandemic on the Notified Incidence of the Disease. Prz. Epidemiol. 2021, 75, 76–85. [Google Scholar] [CrossRef]
- Zbrzeźniak, J.; Rosolak, A.; Paradowska-Stankiewicz, I. Lyme Disease in Poland in 2019. Prz. Epidemiol. 2021, 75, 210–214. [Google Scholar] [CrossRef]
- Fagan, A.M.; Perrin, R.J. Upcoming Candidate Cerebrospinal Fluid Biomarkers of Alzheimer’s Disease. Biomark. Med. 2012, 6, 455–476. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid Beta: Structure, Biology and Structure-Based Therapeutic Development. Acta Pharmacol. Sin. 2017, 38, 1205–1235. [Google Scholar] [CrossRef]
- Reitz, C.; Mayeux, R. Alzheimer Disease: Epidemiology, Diagnostic Criteria, Risk Factors and Biomarkers. Biochem. Pharmacol. 2014, 88, 640–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krut, J.J.; Zetterberg, H.; Blennow, K.; Cinque, P.; Hagberg, L.; Price, R.W.; Studahl, M.; Gisslén, M. Cerebrospinal Fluid Alzheimer’s Biomarker Profiles in CNS Infections. J. Neurol. 2013, 260, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Brew, B.J.; Pemberton, L.; Blennow, K.; Wallin, A.; Hagberg, L. CSF Amyloid Beta42 and Tau Levels Correlate with AIDS Dementia Complex. Neurology 2005, 65, 1490–1492. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, P.; Lang, R.; Oberstein, T.J.; Lewczuk, P.; Ermann, N.; Huttner, H.B.; Masouris, I.; Kornhuber, J.; Ködel, U.; Maler, J.M. A Specific Reduction in Aβ1-42 vs. a Universal Loss of Aβ Peptides in CSF Differentiates Alzheimer’s Disease From Meningitis and Multiple Sclerosis. Front. Aging Neurosci. 2018, 10, 152. [Google Scholar] [CrossRef]
- Toczylowski, K.; Wojtkowska, M.; Sulik, A. Enteroviral Meningitis Reduces CSF Concentration of Aβ42, but Does Not Affect Markers of Parenchymal Damage. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1443–1447. [Google Scholar] [CrossRef] [Green Version]
- Sjögren, M.; Gisslén, M.; Vanmechelen, E.; Blennow, K. Low Cerebrospinal Fluid Beta-Amyloid 42 in Patients with Acute Bacterial Meningitis and Normalization after Treatment. Neurosci. Lett. 2001, 314, 33–36. [Google Scholar] [CrossRef]
- Di Stefano, A.; Alcantarini, C.; Atzori, C.; Lipani, F.; Imperiale, D.; Burdino, E.; Audagnotto, S.; Mighetto, L.; Milia, M.G.; Di Perri, G.; et al. Cerebrospinal Fluid Biomarkers in Patients with Central Nervous System Infections: A Retrospective Study. CNS Spectr. 2020, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Pehlivanoglu, F.; Yasar, K.K.; Sengoz, G. Tuberculous Meningitis in Adults: A Review of 160 Cases. Sci. World J. 2012, 2012, 169028. [Google Scholar] [CrossRef]
- Mattsson, N.; Bremell, D.; Anckarsäter, R.; Blennow, K.; Anckarsäter, H.; Zetterberg, H.; Hagberg, L. Neuroinflammation in Lyme Neuroborreliosis Affects Amyloid Metabolism. BMC Neurol. 2010, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Hansson, O.; Lehmann, S.; Otto, M.; Zetterberg, H.; Lewczuk, P. Advantages and Disadvantages of the Use of the CSF Amyloid β (Aβ) 42/40 Ratio in the Diagnosis of Alzheimer’s Disease. Alzheimer’s Res. Ther. 2019, 11, 34. [Google Scholar] [CrossRef]
- Lewczuk, P.; Wiltfang, J.; Kornhuber, J.; Verhasselt, A. Distributions of Aβ42 and Aβ42/40 in the Cerebrospinal Fluid in View of the Probability Theory. Diagnostics 2021, 11, 2372. [Google Scholar] [CrossRef] [PubMed]
- Lewczuk, P.; Matzen, A.; Blennow, K.; Parnetti, L.; Molinuevo, J.L.; Eusebi, P.; Kornhuber, J.; Morris, J.C.; Fagan, A.M. Cerebrospinal Fluid Aβ42/40 Corresponds Better than Aβ42 to Amyloid PET in Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 55, 813–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, S.; Dumurgier, J.; Ayrignac, X.; Marelli, C.; Alcolea, D.; Ormaechea, J.F.; Thouvenot, E.; Delaby, C.; Hirtz, C.; Vialaret, J.; et al. Cerebrospinal Fluid A Beta 1–40 Peptides Increase in Alzheimer’s Disease and Are Highly Correlated with Phospho-Tau in Control Individuals. Alzheimer’s Res. Ther. 2020, 12, 123. [Google Scholar] [CrossRef]
- Hampel, H.; Blennow, K.; Shaw, L.M.; Hoessler, Y.C.; Zetterberg, H.; Trojanowski, J.Q. Total and Phosphorylated Tau Protein as Biological Markers of Alzheimer’s Disease. Exp. Gerontol. 2010, 45, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Busche, M.A.; Hyman, B.T. Synergy between Amyloid-β and Tau in Alzheimer’s Disease. Nat. Neurosci. 2020, 23, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Michalicova, A.; Majerova, P.; Kovac, A. Tau Protein and Its Role in Blood–Brain Barrier Dysfunction. Front. Mol. Neurosci. 2020, 13, 570045. [Google Scholar] [CrossRef]
- Czupryna, P.; Mroczko, B.; Pancewicz, S.; Muszynski, P.; Grygorczuk, S.; Dunaj, J.; Borawski, K.; Róg-Makal, M.; Świerzbińska, R.; Zajkowska, J.; et al. Assessment of the Tau Protein Concentration in Patients with Tick-Borne Encephalitis. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 479–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bojkiewicz, E.; Toczyłowski, K.; Sulik, A. Tick-Borne Encephalitis-a Review of Current Epidemiology, Clinical Symptoms, Management and Prevention. Prz. Epidemiol. 2020, 74, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Stock, A.J.; Kasus-Jacobi, A.; Pereira, H.A. The Role of Neutrophil Granule Proteins in Neuroinflammation and Alzheimer’s Disease. J. Neuroinflammation 2018, 15, 240. [Google Scholar] [CrossRef]
- Zenaro, E.; Pietronigro, E.; Della Bianca, V.; Piacentino, G.; Marongiu, L.; Budui, S.; Turano, E.; Rossi, B.; Angiari, S.; Dusi, S.; et al. Neutrophils Promote Alzheimer’s Disease-like Pathology and Cognitive Decline via LFA-1 Integrin. Nat. Med. 2015, 21, 880–886. [Google Scholar] [CrossRef]
Enteroviruses (n = 12) | Varicella Zoster Virus (n = 5) | Tick-Borne Encephalitis Virus (n = 9) | Bacterial–Purulent (n = 8) | Bacterial–Aseptic (n = 11) | Controls (n = 8) | |
---|---|---|---|---|---|---|
Female | 50% | 60% | 44% | 25% | 27% | 50% |
Age (years) | 7.3 (4.7–11.1) 4 | 13.5 (9.8–16.5) 4 | 10.6 (9.8–15.2) 4 | 2.4 (0.3–7.1) 1,2,3,5,6 | 14.9 (13.2–15.6) 4 | 8.5 (5.4–12.6) 4 |
Encephalitis | 17% | 40% | 67% | 25% | 0% | - |
CSF (cells/mcL) | 65 (34–120) 4 | 660 (522–811) 4 | 57 (48–91) 4 | 357 (288–4011) 1,2,3,5,6 | 110 (68–250) 4 | 1 (1–2) 4 |
CSF protein (mg/dL) | 26 (23.5–30) 2,4,5 | 119 (95–170) 1,3,6 | 47 (35.6–66) 2 | 59 (44–128.5) 1,6 | 80 (51–125) 1,6 | 19 (16–29) 2,4,5 |
CSF lymphocytes (%) | 31 (18–40) 2,3,5 | 98 (93–98) 1,3,4 | 55 (33–88) 1,2,4,5 | 21 (17–28) 2,3,5 | 92 (86–94) 1,3,4 | - |
CSF ALC (cells/µL) | 22 (10–60) 2 | 647 (485–795) 1,3,4,5 | 26 (22–63) 2,4 | 100 (63–401) 2,3 | 86 (58–243) 2 | - |
CSF neutrophils (%) | 47 (26–68) 2,3,5 | 0 (0–1) 1,4 | 9 (3–35) 1,4 | 67 (45–79) 2,3,5 | 1.5 (0–5) 1,4 | - |
CSF ANC (cells/µL) | 33 (24–43) 4 | 0 (0–5) 4 | 5 (1–20) 4 | 253 (157–3490) 1,2,3,5 | 2 (0–6) 4 | - |
CSF monocytes (%) | 13 (3–21) | 2 (2–2) | 14 (6–32) | 11 (3–15) | 6 (3–12) | - |
CSF AMC (cells/µL) | 10 (1–40) | 16 (7–19) | 8 (3–20) | 115 (39–232) | 9 (2–13) | - |
Serum C-reactive protein (mg/L) | 11.3 (1.4–24.3) 4 | 0.2 (0.2–1) 4 | 5.7 (1.6–12.8) 4 | 204.5 (177.1–272.5) 1,2,3,5,6 | 0.6 (0.2–1.3) 4 | 4.5 (0.3–29.5) 4 |
Blood WBC (×103 cells/µL) | 9.7 (6.9–10.7) 4 | 6.7 (6.1–8.6) 4 | 12.4 (8.4–14.1) 4 | 22.7 (17.7–29.4) 1,2,3,5,6 | 6.8 (5.8–10.4) 4 | 7.7 (7.04–9.7) 4 |
Enteroviruses (n = 12) | Varicella Zoster Virus (n = 5) | Tick-Borne Encephalitis Virus (n = 9) | Bacterial–Purulent (n = 8) | Bacterial–Aseptic (n = 11) | Controls (n = 8) | |
---|---|---|---|---|---|---|
Amyloid β1–40 (pg/mL) | 11,362.2 (8286.4–13,087.1) | 9864.8 (7081–13,506.6) | 8591.3 (5477.6–9354.9) | 7776.8 (5749.2–9145.9) | 5905.8 (5156–11,316.1) | 13,208.8 (8868.5–15,717.4) |
Amyloid β1–42 (pg/mL) | 918 (554.8–1152.7) | 679.2 (506–757.3) | 543.5 (317.6–955.2) | 558.7 (470.1–756.6) | 448.8 (375.3–755.7) | 833.2 (546.6–1370.1) |
Aβ42/40 ratio | 0.089 (0.058–0.099) | 0.056 (0.051–0.086) | 0.068 (0.053–0.098) | 0.075 (0.054–0.095) | 0.064 (0.054–0.086) | 0.074 (0.053–0.091) |
Total tau (pg/mL) | 243.5 (183.4–314.4) 4 | 290.6 (220.4–415.7) | 243 (146.6–397.3) 4 | 562 (180.1–1331.3) 1,3,5,6 | 186.2 (99.1–243.8) 4 | 250.7 (217.7–340.3) 4 |
Phosphorylated tau (pg/mL) | 46.2 (35.5–54.3) | 36.6 (25.7–57.9) 4 | 36.9 (25.6–46.2) | 66.4 (41.3–109.2) 2,5 | 40.4 (24.4–52) 4 | 47.5 (35.2–58.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulik, A.; Toczylowski, K.; Kulczynska-Przybik, A.; Mroczko, B. Amyloid and Tau Protein Concentrations in Children with Meningitis and Encephalitis. Viruses 2022, 14, 725. https://doi.org/10.3390/v14040725
Sulik A, Toczylowski K, Kulczynska-Przybik A, Mroczko B. Amyloid and Tau Protein Concentrations in Children with Meningitis and Encephalitis. Viruses. 2022; 14(4):725. https://doi.org/10.3390/v14040725
Chicago/Turabian StyleSulik, Artur, Kacper Toczylowski, Agnieszka Kulczynska-Przybik, and Barbara Mroczko. 2022. "Amyloid and Tau Protein Concentrations in Children with Meningitis and Encephalitis" Viruses 14, no. 4: 725. https://doi.org/10.3390/v14040725
APA StyleSulik, A., Toczylowski, K., Kulczynska-Przybik, A., & Mroczko, B. (2022). Amyloid and Tau Protein Concentrations in Children with Meningitis and Encephalitis. Viruses, 14(4), 725. https://doi.org/10.3390/v14040725