Surveillance of Viral Encephalitis in the Context of COVID-19: A One-Year Observational Study among Hospitalized Patients in Dakar, Senegal
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Biological Testing
2.3. Interpretation of Virological Results
- A viral encephalitis was defined as confirmed when a patient presented with clinical signs of encephalitis, and this was confirmed by viral detection in CSF.
- A viral encephalitis was defined as probable when a patient presented with clinical signs of encephalitis and this was confirmed by viral detection in specimens outside the CSF (i.e., NP swabs or blood).
2.4. Neurological Assessment of Patient at Discharge
2.5. Statistical Analyses
3. Results
3.1. Characteristics of Patients and Specimens
3.2. Characteristics of Infected Patients
3.3. Clinical Manifestations in Patients with a Viral Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethical Consideration
References
- Kennedy, P.G. Viral encephalitis. J. Neurol. 2005, 252, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, A.; Tunkel, A.R.; Bloch, K.C.; Lauring, A.S.; Sejvar, J.; Bitnun, A.; Stahl, J.P.; Mailles, A.; Drebot, M.; Rupprecht, C.E.; et al. Case definitions, diagnostic algorithms, and priorities in encephalitis: Consensus statement of the international encephalitis consortium. Clin. Infect. Dis. 2013, 57, 1114–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaser, C.A.; Gilliam, S.; Schnurr, D.; Forghani, B.; Honarmand, S.; Khetsuriani, N.; Fischer, M.; Cossen, C.K.; Anderson, L.J.; California Encephalitis, P. In search of encephalitis etiologies: Diagnostic challenges in the California Encephalitis Project, 1998–2000. Clin. Infect. Dis. 2003, 36, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Mailles, A.; Stahl, J.P.; Steering, C.; Investigators, G. Infectious encephalitis in france in 2007: A national prospective study. Clin. Infect. Dis. 2009, 49, 1838–1847. [Google Scholar] [CrossRef]
- Vora, N.M.; Holman, R.C.; Mehal, J.M.; Steiner, C.A.; Blanton, J.; Sejvar, J. Burden of encephalitis-associated hospitalizations in the United States, 1998–2010. Neurology 2014, 82, 443–451. [Google Scholar] [CrossRef]
- Dubey, D.; Pittock, S.J.; Kelly, C.R.; McKeon, A.; Lopez-Chiriboga, A.S.; Lennon, V.A.; Gadoth, A.; Smith, C.Y.; Bryant, S.C.; Klein, C.J.; et al. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann. Neurol. 2018, 83, 166–177. [Google Scholar] [CrossRef]
- Du Pasquier, R.; Meylan, P.; Kaiser, L.; Lalive, P.H. [Viral encephalitis: Update]. Rev. Med. Suisse 2009, 5, 968–970; discussion 972–973. [Google Scholar]
- George, B.P.; Schneider, E.B.; Venkatesan, A. Encephalitis hospitalization rates and inpatient mortality in the United States, 2000–2010. PLoS ONE 2014, 9, e104169. [Google Scholar] [CrossRef] [Green Version]
- Gnann, J.W., Jr.; Whitley, R.J. Herpes Simplex Encephalitis: An Update. Curr. Infect. Dis. Rep. 2017, 19, 13. [Google Scholar] [CrossRef]
- Silva, M.T. Viral encephalitis. Arq. Neuropsiquiatr. 2013, 71, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Tyler, K.L. Acute Viral Encephalitis. N. Engl. J. Med. 2018, 379, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.H.; Beghi, E.; Helbok, R.; Moro, E.; Sampson, J.; Altamirano, V.; Mainali, S.; Bassetti, C.; Suarez, J.I.; McNett, M.; et al. Global Incidence of Neurological Manifestations Among Patients Hospitalized With COVID-19-A Report for the GCS-NeuroCOVID Consortium and the ENERGY Consortium. JAMA Netw. Open 2021, 4, e2112131. [Google Scholar] [CrossRef] [PubMed]
- Ellul, M.A.; Benjamin, L.; Singh, B.; Lant, S.; Michael, B.D.; Easton, A.; Kneen, R.; Defres, S.; Sejvar, J.; Solomon, T. Neurological associations of COVID-19. Lancet Neurol. 2020, 19, 767–783. [Google Scholar] [CrossRef]
- Garg, R.K.; Paliwal, V.K.; Gupta, A. Encephalopathy in patients with COVID-19: A review. J. Med. Virol. 2021, 93, 206–222. [Google Scholar] [CrossRef]
- Maury, A.; Lyoubi, A.; Peiffer-Smadja, N.; de Broucker, T.; Meppiel, E. Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: A narrative review for clinicians. Rev. Neurol. 2021, 177, 51–64. [Google Scholar] [CrossRef]
- Taquet, M.; Geddes, J.R.; Husain, M.; Luciano, S.; Harrison, P.J. 6-month neurological and psychiatric outcomes in 236,379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry 2021, 8, 416–427. [Google Scholar] [CrossRef]
- Bridge, S.; Hullsiek, K.H.; Nerima, C.; Evans, E.E.; Nuwagira, E.; Stadelman, A.M.; Tran, T.; Kim, G.; Tadeo, K.K.; Kwizera, R.; et al. Evaluation of the BioFire(R) FilmArray(R) Meningitis/Encephalitis panel in an adult and pediatric Ugandan population. J. Mycol. Med. 2021, 31, 101170. [Google Scholar] [CrossRef]
- Debiasi, R.L.; Tyler, K.L. Molecular methods for diagnosis of viral encephalitis. Clin. Microbiol. Rev. 2004, 17, 903–925. [Google Scholar] [CrossRef] [Green Version]
- Steiner, I.; Budka, H.; Chaudhuri, A.; Koskiniemi, M.; Sainio, K.; Salonen, O.; Kennedy, P.G. Viral encephalitis: A review of diagnostic methods and guidelines for management. Eur. J. Neurol. 2005, 12, 331–343. [Google Scholar] [CrossRef]
- Rezaei, S.J.; Mateen, F.J. Encephalitis and meningitis in Western Africa: A scoping review of pathogens. Trop. Med. Int. Health 2021, 26, 388–396. [Google Scholar] [CrossRef]
- Dia, M.L.; Soumbounou, M.; Ndiaye, S.F.; Fall, A.; Kébé, O.; Ndiaye, K. Enteroviral meningitis at a pediatric hospital in Dakar (Senegal). J. Pediatr. Neonatal. Care 2020, 10, 29–30. [Google Scholar]
- Seck, N.; Basse, I.; Thiam, L.; Sow, N.F.; Boiro, D.; Diagne, I. [Human Parechovirus in Neonatal Meningitis Complicated by Septic Shock]. Méningite néonatale à paréchovirus humain compliquée de choc septique. Rev. Méd. Périnat. 2018, 10, 197–199. [Google Scholar] [CrossRef]
- Callahan, J.D.; Wu, S.J.; Dion-Schultz, A.; Mangold, B.E.; Peruski, L.F.; Watts, D.M.; Porter, K.R.; Murphy, G.R.; Suharyono, W.; King, C.C.; et al. Development and evaluation of serotype- and group-specific fluorogenic reverse transcriptase PCR (TaqMan) assays for dengue virus. J. Clin. Microbiol. 2001, 39, 4119–4124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fall, G.; Faye, M.; Weidmann, M.; Kaiser, M.; Dupressoir, A.; Ndiaye, E.H.; Ba, Y.; Diallo, M.; Faye, O.; Sall, A.A. Real-Time RT-PCR Assays for Detection and Genotyping of West Nile Virus Lineages Circulating in Africa. Vector Borne Zoonotic Dis. 2016, 16, 781–789. [Google Scholar] [CrossRef]
- Faye, O.; Faye, O.; Diallo, D.; Diallo, M.; Weidmann, M.; Sall, A.A. Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes. Virol. J. 2013, 10, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastorino, B.; Bessaud, M.; Grandadam, M.; Murri, S.; Tolou, H.J.; Peyrefitte, C.N. Development of a TaqMan RT-PCR assay without RNA extraction step for the detection and quantification of African Chikungunya viruses. J. Virol. Methods 2005, 124, 65–71. [Google Scholar] [CrossRef]
- Weidmann, M.; Faye, O.; Faye, O.; Abd El Wahed, A.; Patel, P.; Batejat, C.; Manugerra, J.C.; Adjami, A.; Niedrig, M.; Hufert, F.T.; et al. Development of Mobile Laboratory for Viral Hemorrhagic Fever Detection in Africa. J. Infect. Dis. 2018, 218, 1622–1630. [Google Scholar] [CrossRef] [Green Version]
- Weidmann, M.; Faye, O.; Faye, O.; Kranaster, R.; Marx, A.; Nunes, M.R.; Vasconcelos, P.F.; Hufert, F.T.; Sall, A.A. Improved LNA probe-based assay for the detection of African and South American yellow fever virus strains. J. Clin. Virol. 2010, 48, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Weidmann, M.; Sanchez-Seco, M.P.; Sall, A.A.; Ly, P.O.; Thiongane, Y.; Lo, M.M.; Schley, H.; Hufert, F.T. Rapid detection of important human pathogenic Phleboviruses. J. Clin. Virol. 2008, 41, 138–142. [Google Scholar] [CrossRef]
- Lewthwaite, P.; Begum, A.; Ooi, M.H.; Faragher, B.; Lai, B.F.; Sandaradura, I.; Mohan, A.; Mandhan, G.; Meharwade, P.; Subhashini, S.; et al. Disability after encephalitis: Development and validation of a new outcome score. Bull. World Health Organ. 2010, 88, 584–592. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 10 February 2022).
- U.S. Census Bureau/International Programs Center/International Database. Available online: https://www.census.gov/data-tools/demo/idb/#/country?COUNTRY_YEAR=2022&COUNTRY_YR_ANIM=2022 (accessed on 6 March 2022).
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Castelo-Branco, C.; Soveral, I. The immune system and aging: A review. Gynecol. Endocrinol. 2014, 30, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Hejblum, B.P.; Simon, N.; Jojic, V.; Dekker, C.L.; Thiebaut, R.; Tibshirani, R.J.; Davis, M.M. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc. Natl. Acad. Sci. USA 2014, 111, 869–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.P.; Yuan, Y.; Liu, Y.L.; Lu, Q.B.; Shi, L.S.; Ren, X.; Zhou, S.X.; Zhang, H.Y.; Zhang, X.A.; Wang, X.; et al. Etiological and epidemiological features of acute meningitis or encephalitis in China: A nationwide active surveillance study. Lancet Reg. Health West. Pac. 2022, 20, 100361. [Google Scholar] [CrossRef] [PubMed]
- Le, V.T.; Phan, T.Q.; Do, Q.H.; Nguyen, B.H.; Lam, Q.B.; Bach, V.; Truong, H.; Tran, T.H.; Nguyen, V.; Tran, T.; et al. Viral etiology of encephalitis in children in southern Vietnam: Results of a one-year prospective descriptive study. PLoS Negl. Trop. Dis. 2010, 4, e854. [Google Scholar]
- Tan, L.V.; Thai, L.H.; Phu, N.H.; Nghia, H.D.; Chuong, L.V.; Sinh, D.X.; Phong, N.D.; Mai, N.T.; Man, D.N.; Hien, V.M.; et al. Viral aetiology of central nervous system infections in adults admitted to a tertiary referral hospital in southern Vietnam over 12 years. PLoS Negl. Trop. Dis. 2014, 8, e3127. [Google Scholar] [CrossRef]
- Mallewa, M.; Vallely, P.; Faragher, B.; Banda, D.; Klapper, P.; Mukaka, M.; Khofi, H.; Pensulo, P.; Taylor, T.; Molyneux, M.; et al. Viral CNS infections in children from a malaria-endemic area of Malawi: A prospective cohort study. Lancet Glob. Health 2013, 1, e153–e160. [Google Scholar] [CrossRef]
- Soumare, M.; Seydi, M.; Ndour, C.T.; Fall, N.; Dieng, Y.; Sow, A.I.; Diop, B.M. [Epidemiological, clinical, etiological features of neuromeningeal diseases at the Fann Hospital Infectious Diseases Clinic, Dakar (Senegal)]. Med. Mal. Infect. 2005, 35, 383–389. [Google Scholar]
- Bodilsen, J.; Nielsen, H.; Whitley, R.J. Valaciclovir therapy for herpes encephalitis: Caution advised. J. Antimicrob. Chemother. 2019, 74, 1467–1468. [Google Scholar] [CrossRef]
- Pouplin, T.; Pouplin, J.N.; Van Toi, P.; Lindegardh, N.; Rogier van Doorn, H.; Hien, T.T.; Farrar, J.; Torok, M.E.; Chau, T.T. Valacyclovir for herpes simplex encephalitis. Antimicrob. Agents Chemother. 2011, 55, 3624–3626. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Male N (%) | Female N (%) | Total N (%) | p-Value 2 |
---|---|---|---|---|
Patient | 57 (46.7) | 65 (53.3) | 122 (100) | |
Age | ||||
Mean (95% CI) | 40.7 (36.8–44.7) | 42.7 (38.8–46.7) | 41.8 (39.0–44.8) | 0.45 |
Fever | ||||
Yes | 39 (46) | 45 (54) | 84 (100) | |
No | 18 (47) | 20 (53) | 38 (100) | |
Pleocytosis (nb/µL) | ||||
[0–4] | 32 (45) | 38 (55) | 71 (100) | |
[5–99] | 16 (53) | 14 (47) | 30 (100) | |
>99 | 6 (50) | 6 (50) | 12 (100) | |
missing | 3 (33) | 7 (67) | 9 (100) | |
% Lymphocytes 1 | ||||
[0–50] | 41 (48) | 44 (52) | 85 (100) | |
[50–100] | 13 (46) | 15 (54) | 28 (100) | |
missing | 3 (33) | 6 (67) | 9 (100) | |
Glycorrhachia (g/L) | ||||
[0–0.4] | 7 (47) | 8 (53) | 15 (100) | |
[0.4–0.8] | 40 (49) | 42 (51) | 82 (100) | |
>0.8 | 8 (47) | 9 (53) | 17 (100) | |
missing | 2 (25) | 6 (75) | 8 (100) | |
Proteinorrachia (g/L) | ||||
[0–1.0] | 38 (45) | 46 (55) | 84 (100) | |
>1.0 | 17 (57) | 13 (43) | 30 (100) | |
missing | 2 (25) | 6 (75) | 8 (100) |
Characteristic | Positive N (%) | Negative N (%) | Total N (%) | p-Value 2 | Adjusted OR (95% CI) |
---|---|---|---|---|---|
Total | 27 (22) | 95 (78) | 122 (100) | ||
Sex | |||||
Male | 11 (19) | 46 (81) | 57 (100) | ||
Female | 16 (25) | 49 (75) | 65 (100) | ||
Age (Year) | |||||
20–29 | 4 (12) | 29 (88) | 33 (100) | ||
30–39 | 5 (18) | 23 (82) | 28 (100) | ||
40–49 | 10 (45) | 12 (55) | 22 (100) | 0.01 | 7.7 [1.8–41.7] |
50–59 | 5 (28) | 13 (72) | 18 (100) | ||
>59 | 3 (14) | 18 (86) | 21 (100) | ||
Mean [95% CI] | 44.0 [38.5–49.4] | 41.3 [38.0–44.5] | 41.8 [39.0–44.6] | ||
Fever | |||||
Yes | 21 (25) | 63 (75) | 84 (100) | ||
No | 6 (16) | 32 (84) | 38 (100) | ||
Pleocytosis (nb/µL) | |||||
[0–4] | 9 (13) | 62 (87) | 71 (100) | ||
[5–99] | 7 (23) | 23 (77) | 30 (100) | ||
>99 | 9 (75) | 3 (25) | 12 (100) | <0.001 | 25.4 [5.5–153.4] |
missing | 2 (22) | 7 (78) | 9 (100) | ||
% Lymphocytes 1 | |||||
[0–50] | 12 (14) | 73 (86) | 85 (100) | ||
[50–100] | 13 (46) | 15 (54) | 28 (100) | ||
Missing | 2 (22) | 7 (78) | 9 (100) | ||
Glycorrhachia (g/L) | |||||
[0–0.4] | 6 (40) | 9 (60) | 15 (100) | ||
[0.4–0.8] | 16 (20) | 66 (80) | 82 (100) | ||
>0.8 | 3 (18) | 14 (82) | 17 (100) | ||
missing | 2 (25) | 6 (75) | 8 (100) | ||
Proteinorrachia (g/L) | |||||
[0–1.0] | 14 (17) | 70 (83) | 84 (100) | ||
>1.0 | 11 (37) | 19 (63) | 30 (100) | ||
missing | 2 (25) | 6 (75) | 8 (100) |
Pathogens | Male N (%) | Female N (%) | Total N (%) | Etiology |
---|---|---|---|---|
Viruses1 | ||||
SARS-CoV-2 | 2 (25) | 6 (75) | 8 (100) | Probable |
HSV-1 | 5 (71) | 2 (29) | 7 (100) | Confirmed |
HHV-7 | 3 (60) | 2 (40) | 5 (100) | Confirmed |
EBV | 1 (25) | 3 (75) | 4 (100) | Confirmed |
VZV | 1 (50) | 1 (50) | 2 (100) | Confirmed |
Rhinovirus | 0 (0) | 2 (100) | 2 (100) | Probable |
Fungus | ||||
Aspergillus spp. | 0 (0) | 1 (100) | 1 (100) | Confirmed |
Parasites | ||||
Cryptococcus spp. | 1 (100) | 0 (0) | 1 (100) | Confirmed |
Total2 | 13 (43) | 17 (57) | 30 (100) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kahwagi, J.; Seye, A.O.; Mbodji, A.B.; Diagne, R.; Mbengue, E.h.; Fall, M.; Andriamandimby, S.F.; Easton, A.; Faye, M.; Fall, G.; et al. Surveillance of Viral Encephalitis in the Context of COVID-19: A One-Year Observational Study among Hospitalized Patients in Dakar, Senegal. Viruses 2022, 14, 871. https://doi.org/10.3390/v14050871
Kahwagi J, Seye AO, Mbodji AB, Diagne R, Mbengue Eh, Fall M, Andriamandimby SF, Easton A, Faye M, Fall G, et al. Surveillance of Viral Encephalitis in the Context of COVID-19: A One-Year Observational Study among Hospitalized Patients in Dakar, Senegal. Viruses. 2022; 14(5):871. https://doi.org/10.3390/v14050871
Chicago/Turabian StyleKahwagi, Jamil, Al Ousseynou Seye, Ahmadou Bamba Mbodji, Rokhaya Diagne, El hadji Mbengue, Maouly Fall, Soa Fy Andriamandimby, Ava Easton, Martin Faye, Gamou Fall, and et al. 2022. "Surveillance of Viral Encephalitis in the Context of COVID-19: A One-Year Observational Study among Hospitalized Patients in Dakar, Senegal" Viruses 14, no. 5: 871. https://doi.org/10.3390/v14050871
APA StyleKahwagi, J., Seye, A. O., Mbodji, A. B., Diagne, R., Mbengue, E. h., Fall, M., Andriamandimby, S. F., Easton, A., Faye, M., Fall, G., Dia, N., Ndiaye, B., Ndiaye, M. B., Gueye, A., Mbacke, S. S., Kane, F., Ghouriechy, M. I. E., ENSENE Investigators, Seck, L. B., ... Heraud, J.-M. (2022). Surveillance of Viral Encephalitis in the Context of COVID-19: A One-Year Observational Study among Hospitalized Patients in Dakar, Senegal. Viruses, 14(5), 871. https://doi.org/10.3390/v14050871