HIV Antiretroviral Medication Neuropenetrance and Neurocognitive Outcomes in HIV+ Adults: A Review of the Literature Examining the Central Nervous System Penetration Effectiveness Score
Abstract
:1. Introduction
2. Materials and Methods
Search Strategy and Selection Criteria
3. Results and Discussion
3.1. CPE and Viral Load in Plasma and CSF
3.2. CPE and Neurocognitive Functioning
3.2.1. Global Functioning
3.2.2. Attention/Concentration and Working Memory
3.2.3. Processing Speed
3.2.4. Learning/Memory
3.2.5. Executive Functioning
3.2.6. Motor Functioning
3.2.7. Language/Verbal Functioning
3.3. Summary of Confounding Factors to Consider
- History of ARV experience (e.g., ARV naïve prior to study enrollment or not; duration of ARV treatment; number of past ARV regimens, neuropenetrance of past ARV regimens; adherence)
- ARV drug resistance, inter-individual and intra-individual variability in CNS ARV concentrations
- ARV neurotoxicity, pharmacokinetics
- HIV compartmentalization and distribution of medications in the CNS
- Study sample size and observed power
- CPE score selected (e.g., 2008 vs. 2010) and cut-offs used
- Cross-sectional vs. longitudinal design (including follow-up duration)
- Years conducted (e.g., cohort effects, changes in medication prescribing practives)
- Influence of demographic factors (e.g., age, gender, race/ethnicity) and existing comorbidities (e.g., vascular disease, hepatitis C, metabolic disorders)
- Influence of health and healthcare disparities
- Neurcognitive domains, measures, and normative data selected; methods of computing impairment and HAND diagnoses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moore, R.D.; Chaisson, R.E. Natural history of HIV infection in the_era of combination antiretroviral therapy. AIDS 1999, 13, 1933–1942. [Google Scholar] [CrossRef] [PubMed]
- Lambotte, O.; Deiva, K.; Tardieu, M. HIV-1 persistence, viral reservoir, and the central nervous system in the HAART era. Brain Pathol. 2003, 13, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Garvey, L.; Winston, A.; Walsh, J.; Post, F.; Porter, K.; Gazzard, B.; Fisher, M.; Leen, C.; Pillay, D.; Hill, T.; et al. Antiretroviral therapy CNS penetration and HIV-1–associated CNS disease. Neurology 2011, 76, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Teeraananchai, S.; Kerr, S.; Amin, J.; Ruxrungtham, K.; Law, M. Life expectancy of HIV-positive people after starting combination antiretroviral therapy: A meta-analysis. HIV Med. 2016, 18, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Hult, B.; Chana, G.; Masliah, E.; Everall, I. Neurobiology of HIV. Int. Rev. Psychiatry 2008, 20, 3–13. [Google Scholar] [CrossRef]
- Antinori, A.; Arendt, G.; Becker, J.T.; Brew, B.J.; Byrd, D.A.; Cherner, M.; Clifford, D.B.; Cinque, P.; Epstein, L.G.; Goodkin, K.; et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology 2007, 69, 1789–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, J. An update on the neuropathology of HIV in the HAART era. Histopathology 2004, 45, 549–559. [Google Scholar] [CrossRef]
- Boissé, L.; Gill, M.J.; Power, C. HIV infection of the central nervous system: Clinical features and neuropathogenesis. Neurol. Clin. 2008, 26, 799–819. [Google Scholar] [CrossRef]
- Grant, I.; Atkinson, J.; Hesselink, J.; Kennedy, C.; Richman, D.; Spector, S.; McCutchan, J. Evidence for early central nervous system involvement in the acquired immunodeficiency syndrome (AIDS) and other human immunodeficiency virus (HIV) infections. Studies with neuropsychologic testing and magnetic resonance imaging. Ann. Intern. Med. 1987, 107, 828–836. [Google Scholar] [CrossRef]
- Thames, A.D.; Arentoft, A.; Rivera-Mindt, M.; Hinkin, C.H. Functional disability in medication management and driving among individuals with HIV: A 1-year follow-up study. J. Clin. Exp. Neuropsychol. 2013, 35, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Thompson, P.M.; Dutton, R.A.; Hayashi, K.M.; Lu, A.; Lee, S.E.; Lee, J.Y.; Lopez, O.L.; Aizenstein, H.J.; Toga, A.W.; Becker, J.T. 3D mapping of ventricular and corpus callosum abnormalities in HIV/AIDS. NeuroImage 2006, 31, 12–23. [Google Scholar] [CrossRef]
- Dawes, S.; Suarez, P.; Casey, C.Y.; Cherner, M.; Marcotte, T.D.; Letendre, S.; Grant, I.; Heaton, R.K.; HNRC Group. Variable patterns of neuropsychological performance in HIV-1 infection. J. Clin. Exp. Neuropsychol. 2008, 30, 613–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, I. Neurocognitive disturbances in HIV. Int. Rev. Psychiatry 2008, 20, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Heaton, R.K.; Grant, I.; Butters, N.; White, D.A.; Kirson, D.; Atkinson, J.H.; McCutchan, J.A.; Taylor, M.J.; Kelly, M.D.; Ellis, R.J.; et al. The HNRC 500-Neuropsychology of HIV infection at different disease stages. J. Int. Neuropsychol. Soc. 1995, 1, 231–251. [Google Scholar] [CrossRef]
- Odiase, F.E.; Ogunrin, O.A.; Ogunniyi, A.A. Memory Performance in HIV/AIDS—A Prospective Case Control Study. Can. J. Neurol. Sci. 2007, 34, 154–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reger, M.; Welsh, R.; Razani, J.; Martin, D.J.; Boone, K.B. A meta-analysis of the neuropsychological sequelae of HIV infection. J. Int. Neuropsychol. Soc. 2002, 8, 410–424. [Google Scholar] [CrossRef]
- Simioni, S.; Cavassini, M.; Annoni, J.-M.; Rimbault Abraham, A.; Bourquin, I.; Schiffer, V.; Calmy, A.; Chave, J.-P.; Giacobini, E.; Hirschel, B.; et al. Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS 2010, 24, 1243–1250. [Google Scholar] [CrossRef]
- Cysique, L.A.; Brew, B.J. Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. J. Neurovirol. 2011, 17, 176–183. [Google Scholar] [CrossRef]
- Foley, J.; Ettenhofer, M.; Wright, M.; Hinkin, C.H. Emerging issues in the neuropsychology of HIV infection. Curr. HIV/AIDS Rep. 2008, 5, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Heaton, R.K.; Clifford, D.B.; Franklin, D.R.; Woods, S.P., Jr.; Ake, C.; Vaida, F.; Ellis, R.J.; Letendre, S.L.; Marcotte, T.D.; Atkinson, J.H.; et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 2010, 75, 2087–2096. [Google Scholar] [CrossRef] [Green Version]
- Woods, S.P.; Moore, D.J.; Weber, E.; Grant, I. Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol. Rev. 2009, 19, 152–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letendre, S. Central nervous system complications in HIV disease: HIV-associated neurocognitive disorder. Top. Antivir. Med. 2011, 19, 137. [Google Scholar] [PubMed]
- Letendre, S.; Marquie-Beck, J.; Capparelli, E.; Best, B.; Clifford, D.; Collier, A.C.; Gelman, B.B.; McArthur, J.C.; McCutchan, J.A.; Morgello, S.; et al. Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch. Neurol. 2008, 65, 65–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letendre, S.L.; Ellis, R.J.; Ances, B.M.; McCutchan, J.A. Neurologic complications of HIV disease and their treatment. Top. HIV Med. 2010, 18, 45–55. [Google Scholar]
- Ellis, R.J.; Gamst, A.C.; Capparelli, E.; Spector, S.A.; Hsia, K.; Wolfson, T.; Abramson, I.; Grant, I.; McCutchan, J.A. Cerebrospinal fluid HIV RNA originates from both local CNS and systemic sources. Neurology 2000, 54, 927–936. [Google Scholar] [CrossRef]
- Varatharajan, L.; Thomas, S.A. The transport of anti-HIV drugs across blood–CNS interfaces: Summary of current knowledge and recommendations for further research. Antivir. Res. 2009, 82, A99–A109. [Google Scholar] [CrossRef] [Green Version]
- Ragin, A.B.; Storey, P.; Cohen, B.A.; Epstein, L.G.; Edelman, R.R. Whole brain diffusion tensor imaging in HIV-associated cognitive impairment. Am. J. Neuroradiol. 2004, 25, 195–200. [Google Scholar]
- Ciccarelli, N.; Fabbiani, M.; Colafigli, M.; Trecarichi, E.M.; Silveri, M.C.; Cauda, R.; Murri, R.; De Luca, A.; Di Giambenedetto, S. Revised central nervous system neuropenetration-effectiveness score is associated with cognitive disorders in HIV-infected patients with controlled plasma viraemia. Antivir. Ther. 2013, 18, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Novakovic, M.; Turkulov, V.; Maric, D.; Kozic, D.; Rajkovic, U.; Bjelan, M.; Lucic, M.; Brkic, S. Prediction of brain atrophy using three drug scores in neuroasymptomatic HIV-infected patients with controlled viremia. Braz. J. Infect. Dis. 2015, 19, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Sacktor, N.; Tarwater, P.M.; Skolasky, R.L.; McArthur, J.C.; Selnes, O.A.; Becker, J.; Cohen, B.; Miller, E.N.; Multicenter for AIDS Cohort Study (MACS). CSF antiretroviral drug penetrance and the treatment of HIV-associated psychomotor slowing. Neurology 2001, 57, 542–544. [Google Scholar] [CrossRef]
- Curley, P.; Rajoli, R.K.; Moss, D.M.; Liptrott, N.J.; Letendre, S.; Owen, A.; Siccardi, M. Efavirenz is predicted to accumulate in brain tissue: An in silico, in vitro, and in vivo investigation. Antimicrob. Agents Chemother. 2017, 61, e01841-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrara, M.; Bumpus, N.N.; Ma, Q.; Ellis, R.J.; Soontornniyomkij, V.; Fields, J.A.; Bharti, A.; Achim, C.L.; Moore, D.J.; Letendre, S.L. Antiretroviral drug concentrations in brain tissue of adult decedents. AIDS 2020, 34, 1907–1914. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, N.; Rosen, E.P.; Gilliland, W.M., Jr.; Kovarova, M.; Remling-Mulder, L.; De La Cruz, G.; White, N.; Adamson, L.; Schauer, A.P.; Sykes, C. Antiretroviral concentrations and surrogate measures of efficacy in the brain tissue and CSF of preclinical species. Xenobiotica 2019, 49, 1192–1201. [Google Scholar] [CrossRef] [PubMed]
- Tozzi, V.; Balestra, P.; Salvatori, M.F.; Vlassi, C.; Liuzzi, G.; Giancola, M.L.; Giulianelli, M.; Narciso, P.; Antinori, A. Changes in cognition during antiretroviral therapy: Comparison of 2 different ranking systems to measure antiretroviral drug efficacy on HIV-associated neurocognitive disorders. J. Acquir. Immune Defic. Syndr. 2009, 52, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Marra, C.M.; Zhao, Y.; Clifford, D.B.; Letendre, S.; Evans, S.; Henry, K.; Ellis, R.J.; Rodriguez, B.; Coombs, R.W.; Schifitto, G.; et al. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS 2009, 23, 1359–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giancola, M.L.; Lorenzini, P.; Cingolani, A.; Baldini, F.; Bossolasco, S.; Bini, T.; Monno, L.; Picchi, G.; d’Arminio Monforte, A.; Cinque, P.; et al. Virological response in cerebrospinal fluid to antiretroviral therapy in a large Italian cohort of HIV-infected patients with neurological disorders. AIDS Res. Treat. 2012, 2012, 708456. [Google Scholar] [CrossRef] [Green Version]
- Cusini, A.; Vernazza, P.L.; Yerly, S.; Decosterd, L.A.; Ledergerber, B.; Fux, C.A.; Rohrbach, J.; Widmer, N.; Hirschel, B.; Gaudenz, R.; et al. Higher CNS penetration-effectiveness of long-term combination antiretroviral therapy is associated with better HIV-1 viral suppression in cerebrospinal fluid. J. Acquir. Immune Defic. Syndr. 2013, 62, 28–35. [Google Scholar] [CrossRef]
- Mukerji, S.S.; Misra, V.; Lorenz, D.R.; Uno, H.; Morgello, S.; Franklin, D.; Ellis, R.J.; Letendre, S.; Gabuzda, D. Impact of antiretroviral regimens on cerebrospinal fluid viral escape in a prospective multicohort study of antiretroviral therapy-experienced human immunodeficiency virus-1-infected adults in the United States. Clin. Infect. Dis. 2018, 67, 1182–1190. [Google Scholar] [CrossRef]
- Canestri, A.; Lescure, F.X.; Jaureguiberry, S.; Moulignier, A.; Amiel, C.; Marcelin, A.G.; Peytavin, G.; Tubiana, R.; Pialoux, G.; Katlama, C. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin. Infect. Dis. AnOfficial Publ. Infect. Dis. Soc. Am. 2010, 50, 773–778. [Google Scholar] [CrossRef]
- Soulie, C.; Fourati, S.; Lambert-Niclot, S.; Tubiana, R.; Canestri, A.; Girard, P.M.; Katlama, C.; Morand-Joubert, L.; Calvez, V.; Marcelin, A.G. HIV genetic diversity between plasma and cerebrospinal fluid in patients with HIV encephalitis. AIDS 2010, 24, 2412–2414. [Google Scholar] [CrossRef]
- Fletcher, C.V.; McCarthy, C.; Bosch, R.; Spudich, S.S.; Podany, A.; Avedissian, S.N.; Winchester, L.; Mykris, T.; Weinhold, J.; Macatangay, B.J.; et al. A cross-sectional analysis of antiretroviral regimen activity in cerebrospinal fluid. In Proceedings of the Conference on Retroviruses and Opportunistic Infections, Online, 8–11 March 2020. [Google Scholar]
- Letendre, S.; Ellis, R.J.; Best, B.; Bhatt, A.; Marquie-Beck, J.; LeBlanc, S.; Rossi, S.; Capparelli, E.; McCutchan, J.A. Penetration and effectiveness of antiretroviral therapy in the central nervous system. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2009, 8, 169–183. [Google Scholar] [CrossRef]
- Nightingale, S.; Winston, A.; Letendre, S.; Michael, B.D.; McArthur, J.C.; Khoo, S.; Solomon, T. Controversies in HIV-associated neurocognitive disorders. Lancet Neurol. 2014, 13, 1139–1151. [Google Scholar] [CrossRef] [Green Version]
- Matchanova, A.; Woods, S.P.; Kordovski, V.M. Operationalizing and evaluating the Frascati criteria for functional decline in diagnosing HIV-associated neurocognitive disorders in adults. J. Neurovirol. 2020, 26, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Carvalhal, A.; Gill, M.J.; Letendre, S.L.; Rachlis, A.; Bekele, T.; Raboud, J.; Rourke, S.B. Central nervous system penetration effectiveness of antiretroviral drugs and neuropsychological impairment in the Ontario HIV Treatment Network Cohort Study. J. Neurovirol. 2016, 22, 349–357. [Google Scholar] [CrossRef]
- Casado, J.L.; Marín, A.; Moreno, A.; Iglesias, V.; Perez-Elías, M.J.; Moreno, S.; Corral, I. Central nervous system antiretroviral penetration and cognitive functioning in largely pretreated HIV-infected patients. J. Neurovirol. 2014, 20, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Fabbiani, M.; Grima, P.; Milanini, B.; Mondi, A.; Baldonero, E.; Ciccarelli, N.; Cauda, R.; Silveri, M.C.; De Luca, A.; Di Giambenedetto, S. Antiretroviral neuropenetration scores better correlate with cognitive performance of HIV-infected patients after accounting for drug susceptibility. Antivir. Ther. 2015, 20, 441–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, E.J.; Grund, B.; Robertson, K.; Brew, B.J.; Roediger, M.; Bain, M.P.; Drummond, F.; Vjecha, M.J.; Hoy, J.; Miller, C.; et al. Cardiovascular risk factors associated with lower baseline cognitive performance in HIV-positive persons. Neurology 2010, 75, 864–873. [Google Scholar] [CrossRef] [Green Version]
- Baker, L.M.; Paul, R.H.; Heaps-Woodruff, J.M.; Chang, J.Y.; Ortega, M.; Margolin, Z.; Usher, C.; Basco, B.; Cooley, S.; Ances, B.M. The effect of central nervous system penetration effectiveness of highly active antiretroviral therapy on neuropsychological performance and neuroimaging in HIV infected individuals. J. Neuroimmune Pharmacol. 2015, 10, 487–492. [Google Scholar] [CrossRef] [Green Version]
- Shikuma, C.M.; Nakamoto, B.; Shiramizu, B.; Liang, C.Y.; DeGruttola, V.; Bennett, K.; Paul, R.; Kallianpur, K.; Chow, D.; Gavegnano, C.; et al. Antiretroviral monocyte efficacy score linked to cognitive impairment in HIV. Antivir. Ther. 2012, 17, 1233–1242. [Google Scholar] [CrossRef] [Green Version]
- Calcagno, A.; Trunfio, M.; D’Avolio, A.; Di Perri, G.; Bonora, S. The impact of age on antiretroviral drug pharmacokinetics in the treatment of adults living with HIV. Expert Opin. Drug Metab. Toxicol. 2021, 17, 665–676. [Google Scholar] [CrossRef]
- Cysique, L.A.; Vaida, F.; Letendre, S.; Gibson, S.; Cherner, M.; Woods, S.P.; McCutchan, J.A.; Heaton, R.K.; Ellis, R.J. Dynamics of cognitive change in impaired HIV-positive patients initiating antiretroviral therapy. Neurology 2009, 73, 342–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassallo, M.; Durant, J.; Biscay, V.; Lebrun-Frenay, C.; Dunais, B.; Laffon, M.; Harvey-Langton, A.; Cottalorda, J.; Ticchioni, M.; Carsenti, H.; et al. Can high central nervous system penetrating antiretroviral regimens protect against the onset of HIV-associated neurocognitive disorders? AIDS 2014, 28, 493–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smurzynski, M.; Wu, K.; Letendre, S.; Robertson, K.; Bosch, R.J.; Clifford, D.B.; Evans, S.; Collier, A.C.; Taylor, M.; Ellis, R. Effects of central nervous system antiretroviral penetration on cognitive functioning in the ALLRT cohort. AIDS 2011, 25, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Force, G.; Ghout, I.; Ropers, J.; Carcelain, G.; Marigot-Outtandy, D.; Hahn, V.; Darchy, N.; Defferriere, H.; Bouaziz-Amar, E.; Carlier, R.; et al. Improvement of HIV-associated neurocognitive disorders after antiretroviral therapy intensification: The Neuro+ 3 study. J. Antimicrob. Chemother. 2021, 76, 743–752. [Google Scholar] [CrossRef]
- Ellis, R.J.; Letendre, S.; Vaida, F.; Haubrich, R.; Heaton, R.K.; Sacktor, N.; Clifford, D.B.; Best, B.M.; May, S.; Umlauf, A.; et al. Randomized trial of central nervous system–targeted antiretrovirals for HIV-associated neurocognitive disorder. Clin. Infect. Dis. 2014, 58, 1015–1022. [Google Scholar] [CrossRef] [Green Version]
- Heaton, R.K.; Franklin, D.R., Jr.; Deutsch, R.; Letendre, S.; Ellis, R.J.; Casaletto, K.; Marquine, M.J.; Woods, S.P.; Vaida, F.; Atkinson, J.H.; et al. Neurocognitive change in the era of HIV combination antiretroviral therapy: The longitudinal CHARTER study. Clin. Infect. Dis. 2015, 60, 473–480. [Google Scholar] [CrossRef]
- Cross, H.M.; Combrinck, M.I.; Joska, J.A. HIV-associated neurocognitive disorders: Antiretroviral regimen, central nerous system penetration effectiveness, and cognitive outcomes. South Afr. Med. J. 2013, 103, 758–762. [Google Scholar] [CrossRef] [Green Version]
- Sanford, R.; Fellows, L.K.; Ances, B.M.; Collins, D.L. Association of brain structure changes and cognitive function with combination antiretroviral therapy in HIV-positive individuals. JAMA Neurol. 2018, 75, 72–79. [Google Scholar] [CrossRef]
- Lawler, K.; Jeremiah, K.; Mosepele, M.; Ratcliffe, S.J.; Cherry, C.; Seloilwe, E.; Steenhoff, A.P. Neurobehavioral effects in HIV-positive individuals receiving highly active antiretroviral therapy (HAART) in Gaborone, Botswana. PLoS ONE 2011, 6, e17233. [Google Scholar] [CrossRef] [Green Version]
- Keutmann, M.K.; Gonzalez, R.; Maki, P.M.; Rubin, L.H.; Vassileva, J.; Martin, E.M. Sex differences in HIV effects on visual memory among substance-dependent individuals. J. Clin. Exp. Neuropsychol. 2017, 39, 574–586. [Google Scholar] [CrossRef] [Green Version]
- Kahouadji, Y.; Dumurgier, J.; Sellier, P.; Lapalus, P.; Delcey, V.; Bergmann, J.; Hugon, J.; Paquet, C. Cognitive function after several years of antiretroviral therapy with stable central nervous system penetration score. HIV Med. 2013, 14, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.J.; Martin-Engel, L.; Vassileva, J.; Gonzalez, R.; Martin, E.M. An investigation of the effects of antiretroviral central nervous system penetration effectiveness on procedural learning in HIV+ drug users. J. Clin. Exp. Neuropsychol. 2013, 35, 915–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.P.; Calcagno, A.; Letendre, S.L.; Ma, Q. Clinical Treatment Options and Randomized Clinical Trials for Neurocognitive Complications of HIV Infection: Combination Antiretroviral Therapy, Central Nervous System Penetration Effectiveness, and Adjuvants. Neurocognitive Complicat. HIV-Infect. 2020, 50, 517–545. [Google Scholar]
- Hanna, D.B.; Hessol, N.A.; Golub, E.T.; Cocohoba, J.M.; Cohen, M.H.; Levine, A.M.; Wilson, T.E.; Young, M.; Anastos, K.; Kaplan, R.C. Increase in single-tablet regimen use and associated improvements in adherence-related outcomes in HIV-infected women. J. Acquir. Immune Defic. Syndr. 2014, 65, 587. [Google Scholar] [CrossRef] [Green Version]
- Rizzardini, G.; Overton, E.T.; Orkin, C.; Swindells, S.; Arasteh, K.; Hernández-Mora, M.G.; Pokrovsky, V.; Girard, P.M.; Oka, S.; Andrade-Villanueva, J.F.; et al. Long-acting injectable cabotegravir+ rilpivirine for HIV maintenance therapy: Week 48 pooled analysis of phase 3 ATLAS and FLAIR trials. J. Acquir. Immune Defic. Syndr. 2020, 85, 498. [Google Scholar] [CrossRef]
- Smith, S.J.; Zhao, X.Z.; Passos, D.O.; Lyumkis, D.; Burke, T.R.; Hughes, S.H. Integrase strand transfer inhibitors are effective anti-HIV drugs. Viruses 2021, 13, 205. [Google Scholar] [CrossRef]
- Ryan, E.L.; Baird, R.; Mindt, M.R.; Byrd, D.; Monzones, J.; Morgello, S. Neuropsychological impairment in racial/ethnic minorities with HIV infection and low literacy levels: Effects of education and reading level in participant characterization. J. Int. Neuropsychol. Soc. 2005, 11, 889–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.L.; Beltran-Najera, I.; Johnson, B.; Morales, Y.; Woods, S.P. Evidence for neuropsychological health disparities in Black Americans with HIV disease. Clin. Neuropsychol. 2022, 36, 388–413. [Google Scholar] [CrossRef]
- Burroughs, V.J.; Maxey, R.W.; Levy, R.A. Racial and ethnic differences in response to medicines: Towards individualized pharmaceutical treatment. J. Natl. Med. Assoc. 2002, 94 (Suppl. 10), 1. [Google Scholar]
- Whiteside, Y.O.; Cohen, S.M.; Bradley, H.; Skarbinski, J.; Hall, H.I.; Lansky, A. Progress along the continuum of HIV care among blacks with diagnosed HIV—United States, 2010. MMWR. Morb. Mortal. Wkly. Rep. 2014, 63, 85. [Google Scholar]
- Gebo, K.A.; Fleishman, J.A.; Conviser, R.; Reilly, E.D.; Korthuis, P.T.; Moore, R.D.; Hellinger, J.; Keiser, P.; Rubin, H.R.; Crane, L.; et al. Racial and gender disparities in receipt of highly active antiretroviral therapy persist in a multistate sample of HIV patients in 2001. JAIDS J. Acquir. Immune Defic. Syndr. 2005, 38, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Keruly, J.C.; Conviser, R.; Moore, R.D. Association of medical insurance and other factors with receipt of antiretroviral therapy. Am. J. Public Health 2002, 92, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. HIV surveillance report: Diagnoses of HIV infection in the United States and dependent areas, 2015. Atlanta GA 2015, 500, 25. [Google Scholar]
- Miller, E.N.; Seines, O.A.; McArthur, J.C.; Satz, P.; Becker, J.T.; Cohen, B.A.; Sheridan, K.; Machado, A.M.; Van Gorp, W.G.; Visscher, B. Neuropsychological performance in HIV-1-infected homosexual men: The Multicenter AIDS Cohort Study (MACS). Neurology 1990, 40, 197. [Google Scholar] [CrossRef]
- Sherman, E.; Tan, J.; Hrabok, M. A Compendium of Neuropsychological Tests: Fundamentals of Neuropsychological Assessment and Test Reviews for Clinical Practice; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Lezak, M.D.; Howieson, D.; Bigler, E.; Tranel, D. Neuropsychological Assessment, 5th ed.; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Mind Exchange Working Group; Antinori, A.; Arendt, G.; Grant, I.; Letendre, S.; Muñoz-Moreno, J.A.; Eggers, C.; Brew, B.; Brouillette, M.J.; Bernal-Cano, F.; et al. Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: A consensus report of the mind exchange program. Clin. Infect. Dis. 2013, 56, 1004–1017. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arentoft, A.; Troxell, K.; Alvarez, K.; Aghvinian, M.; Rivera Mindt, M.; Cherner, M.; Van Dyk, K.; Razani, J.; Roxas, M.; Gavilanes, M. HIV Antiretroviral Medication Neuropenetrance and Neurocognitive Outcomes in HIV+ Adults: A Review of the Literature Examining the Central Nervous System Penetration Effectiveness Score. Viruses 2022, 14, 1151. https://doi.org/10.3390/v14061151
Arentoft A, Troxell K, Alvarez K, Aghvinian M, Rivera Mindt M, Cherner M, Van Dyk K, Razani J, Roxas M, Gavilanes M. HIV Antiretroviral Medication Neuropenetrance and Neurocognitive Outcomes in HIV+ Adults: A Review of the Literature Examining the Central Nervous System Penetration Effectiveness Score. Viruses. 2022; 14(6):1151. https://doi.org/10.3390/v14061151
Chicago/Turabian StyleArentoft, Alyssa, Katie Troxell, Karen Alvarez, Maral Aghvinian, Monica Rivera Mindt, Mariana Cherner, Kathleen Van Dyk, Jill Razani, Michaela Roxas, and Melissa Gavilanes. 2022. "HIV Antiretroviral Medication Neuropenetrance and Neurocognitive Outcomes in HIV+ Adults: A Review of the Literature Examining the Central Nervous System Penetration Effectiveness Score" Viruses 14, no. 6: 1151. https://doi.org/10.3390/v14061151
APA StyleArentoft, A., Troxell, K., Alvarez, K., Aghvinian, M., Rivera Mindt, M., Cherner, M., Van Dyk, K., Razani, J., Roxas, M., & Gavilanes, M. (2022). HIV Antiretroviral Medication Neuropenetrance and Neurocognitive Outcomes in HIV+ Adults: A Review of the Literature Examining the Central Nervous System Penetration Effectiveness Score. Viruses, 14(6), 1151. https://doi.org/10.3390/v14061151