Immunometabolic Reprogramming in Response to HIV Infection Is Not Fully Normalized by Suppressive Antiretroviral Therapy
Abstract
:1. Author Summary
2. Introduction
3. Materials and Methods
3.1. Human Subjects and Approvals
3.2. Study Design
3.3. Chemicals and Solvents
3.4. Metabolite Extraction
3.5. UFLC-QTOF-HRMS/MS Analysis
3.6. Targeted Metabolites List
3.7. Data Processing and Normalization
3.8. Statistical Analysis
4. Results
4.1. Clinical and Demographic Characteristics
4.2. Glycolysis, Pentose Phosphate Pathway, and Lactate Metabolism
4.3. TCA Cycle
4.4. Fatty Acid Metabolism and β-Oxidation
4.5. Amino Acid Metabolism
4.6. Carnitine Metabolism
4.7. Relationships of Bioenergetic Substrates with Demographic and Clinical Features
4.8. Metabolic Adaptations Associated with Complete vs. Incomplete Suppression of HIV with ART
4.9. Associations of Clinical Measures with Metabolites in PWH on ART with Complete vs. Incomplete Viral Suppression
5. Discussion
5.1. Glucose Metabolism and the Pentose Phosphate Pathway
5.2. TCA Cycle Impairment
5.3. Impairments in β-Oxidation
5.4. Amino Acid Catabolism
5.5. Association of Serum Bioenergetics with Clinical Markers
5.6. Implications of Bioenergetic Shifts in PWH
5.7. Strengths and Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saez-Cirion, A.; Sereti, I. Immunometabolism and HIV-1 pathogenesis: Food for thought. Nat. Rev. Immunol. 2021, 21, 5–19. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, L.A.J.; Kishton, R.J.; Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 2016, 16, 553–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, N.M.; Boothby, M.R.; Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 2020, 20, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Herbel, C.; Patsoukis, N.; Bardhan, K.; Seth, P.; Weaver, J.D.; Boussiotis, V.A. Clinical significance of T cell metabolic reprogramming in cancer. Clin. Transl. Med. 2016, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Valle-Casuso, J.C.; Angin, M.; Volant, S.; Passaes, C.; Monceaux, V.; Mikhailova, A.; Bourdic, K.; Avettand-Fenoel, V.; Boufassa, F.; Sitbon, M.; et al. Cellular Metabolism Is a Major Determinant of HIV-1 Reservoir Seeding in CD4(+) T Cells and Offers an Opportunity to Tackle Infection. Cell Metab. 2019, 29, 611–626.e5. [Google Scholar] [CrossRef] [Green Version]
- Hegedus, A.; Kavanagh Williamson, M.; Huthoff, H. HIV-1 pathogenicity and virion production are dependent on the metabolic phenotype of activated CD4+ T cells. Retrovirology 2014, 11, 98. [Google Scholar] [CrossRef] [Green Version]
- Hollenbaugh, J.A.; Munger, J.; Kim, B. Metabolite profiles of human immunodeficiency virus infected CD4+ T cells and macrophages using LC-MS/MS analysis. Virology 2011, 415, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Hegedus, A.; Kavanagh Williamson, M.; Khan, M.B.; Dias Zeidler, J.; Da Poian, A.T.; El-Bacha, T.; Struys, E.A.; Huthoff, H. Evidence for Altered Glutamine Metabolism in Human Immunodeficiency Virus Type 1 Infected Primary Human CD4(+) T Cells. AIDS Res. Hum. Retrovir. 2017, 33, 1236–1247. [Google Scholar] [CrossRef] [Green Version]
- Datta, P.K.; Kaminski, R.; Hu, W.; Pirrone, V.; Sullivan, N.T.; Nonnemacher, M.R.; Dampier, W.; Wigdahl, B.; Khalili, K. HIV-1 Latency and Eradication: Past, Present and Future. Curr. HIV Res. 2016, 14, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, E.L.; Lagunoff, M. Viral activation of cellular metabolism. Virology 2015, 479–480, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Amie, S.M.; Noble, E.; Kim, B. Intracellular nucleotide levels and the control of retroviral infections. Virology 2013, 436, 247–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahouassa, H.; Daddacha, W.; Hofmann, H.; Ayinde, D.; Logue, E.C.; Dragin, L.; Bloch, N.; Maudet, C.; Bertrand, M.; Gramberg, T.; et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat. Immunol. 2012, 13, 223–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shytaj, I.L.; Procopio, F.A.; Tarek, M.; Carlon-Andres, I.; Tang, H.Y.; Goldman, A.R.; Munshi, M.; Kumar Pal, V.; Forcato, M.; Sreeram, S.; et al. Glycolysis downregulation is a hallmark of HIV-1 latency and sensitizes infected cells to oxidative stress. EMBO Mol. Med. 2021, 13, e13901. [Google Scholar] [CrossRef] [PubMed]
- Li Vecchi, V.; Maggi, P.; Rizzo, M.; Montalto, G. The metabolic syndrome and HIV infection. Curr. Pharm. Des. 2014, 20, 4975–5003. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, M.; Umlauf, A.; Sanders, C.; Meyer, J.M.; Allen McCutchan, J.; Duarte, N.; Hampton Atkinson, J.; Grant, I.; Ellis, R.J.; Group, C. The concomitant use of second-generation antipsychotics and long-term antiretroviral therapy may be associated with increased cardiovascular risk. Psychiatry Res. 2014, 218, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peltenburg, N.C.; Schoeman, J.C.; Hou, J.; Mora, F.; Harms, A.C.; Lowe, S.H.; Bierau, J.; Bakker, J.A.; Verbon, A.; Hankemeier, T.; et al. Persistent metabolic changes in HIV-infected patients during the first year of combination antiretroviral therapy. Sci. Rep. 2018, 8, 16947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassol, E.; Misra, V.; Holman, A.; Kamat, A.; Morgello, S.; Gabuzda, D. Plasma metabolomics identifies lipid abnormalities linked to markers of inflammation, microbial translocation, and hepatic function in HIV patients receiving protease inhibitors. BMC Infect. Dis. 2013, 13, 203. [Google Scholar] [CrossRef] [Green Version]
- Haughey, N.J.; Cutler, R.G.; Tamara, A.; McArthur, J.C.; Vargas, D.L.; Pardo, C.A.; Turchan, J.; Nath, A.; Mattson, M.P. Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Ann. Neurol. 2004, 55, 257–267. [Google Scholar] [CrossRef]
- Woods, M.N.; Wanke, C.A.; Ling, P.-R.; Hendricks, K.M.; Tang, A.M.; Andersson, C.E.; Dong, K.R.; Sheehan, H.M.B.; Bistrian, B.R. Metabolic syndrome and serum fatty acid patterns in serum phospholipids in hypertriglyceridemic persons with human immunodeficiency virus. Am. J. Clin. Nutr. 2009, 89, 1180–1187. [Google Scholar] [CrossRef]
- Cassol, E.; Malfeld, S.; Mahasha, P.; van der Merwe, S.; Cassol, S.; Seebregts, C.; Alfano, M.; Poli, G.; Rossouw, T. Persistent microbial translocation and immune activation in HIV-1-infected South Africans receiving combination antiretroviral therapy. J. Infect. Dis. 2010, 202, 723–733. [Google Scholar] [CrossRef] [Green Version]
- Tantisiriwat, W.; Tebas, P.; Polish, L.B.; Casabar, E.; Powderly, W.G.; Fichtenbaum, C.J. Elevated Lactate Levels in Hospitalized Persons with HIV Infection. AIDS Res. Hum. Retrovir. 2001, 17, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Cassol, E.; Misra, V.; Dutta, A.; Morgello, S.; Gabuzda, D. Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment. AIDS 2014, 28, 1579–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babu, H.; Sperk, M.; Ambikan, A.T.; Rachel, G.; Viswanathan, V.K.; Tripathy, S.P.; Nowak, P.; Hanna, L.E.; Neogi, U. Plasma Metabolic Signature and Abnormalities in HIV-Infected Individuals on Long-Term Successful Antiretroviral Therapy. Metabolites 2019, 9, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganeshan, K.; Chawla, A. Metabolic regulation of immune responses. Annu. Rev. Immunol. 2014, 32, 609–634. [Google Scholar] [CrossRef] [Green Version]
- Vecchio, A.; Robertson, K.; Saylor, D.; Nakigozi, G.; Nakasujja, N.; Kisakye, A.; Batte, J.; Mayanja, R.; Anok, A.; Reynolds, S.J.; et al. Neurocognitive Effects of Antiretroviral Initiation Among People Living With HIV in Rural Uganda. JAIDS J. Acquir. Immune Defic. Syndr. 2020, 84, 534–542. [Google Scholar] [CrossRef]
- Go, Y.-M.; Walker, D.I.; Liang, Y.; Uppal, K.; Soltow, Q.A.; Tran, V.; Strobel, F.; Quyyumi, A.A.; Ziegler, T.R.; Pennell, K.D.; et al. Reference Standardization for Mass Spectrometry and High-resolution Metabolomics Applications to Exposome Research. Toxicol. Sci. 2015, 148, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Grinspoon, S.; Corcoran, C.; Miller, K.; Wang, E.; Hubbard, J.; Schoenfeld, D.; Anderson, E.; Basgoz, N.; Klibanski, A. Determinants of increased energy expenditure in HIV-infected women. Am. J. Clin. Nutr. 1998, 68, 720–725. [Google Scholar] [CrossRef] [Green Version]
- Kosmiski, L.A.; Kuritzkes, D.R.; Sharp, T.A.; Hamilton, J.T.; Lichtenstein, K.A.; Mosca, C.L.; Grunwald, G.K.; Eckel, R.H.; Hill, J.O. Total energy expenditure and carbohydrate oxidation are increased in the human immunodeficiency virus lipodystrophy syndrome. Metabolism 2003, 52, 620–625. [Google Scholar] [CrossRef]
- Dusingize, J.C.; Hoover, D.R.; Shi, Q.; Mutimura, E.; Kiefer, E.; Anastos, K. Associations of HIV infection with insulin and glucose levels in antiretroviral-naive Rwandan women: A cross-sectional analysis. BMJ Open 2013, 3, e003879. [Google Scholar] [CrossRef] [Green Version]
- Barrero, C.A.; Datta, P.K.; Sen, S.; Deshmane, S.; Amini, S.; Khalili, K.; Merali, S. HIV-1 Vpr Modulates Macrophage Metabolic Pathways: A SILAC-Based Quantitative Analysis. PLoS ONE 2013, 8, e68376. [Google Scholar] [CrossRef] [PubMed]
- Shytaj, I.L.; Lucic, B.; Forcato, M.; Penzo, C.; Billingsley, J.; Laketa, V.; Bosinger, S.; Stanic, M.; Gregoretti, F.; Antonelli, L.; et al. Alterations of redox and iron metabolism accompany the development of HIV latency. EMBO J. 2020, 39, e102209. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.Y.; Qian, W.J.; Diamond, D.L.; Liu, T.; Gritsenko, M.A.; Monroe, M.E.; Camp, D.G., 2nd; Smith, R.D.; Katze, M.G. Quantitative analysis of human immunodeficiency virus type 1-infected CD4+ cell proteome: Dysregulated cell cycle progression and nuclear transport coincide with robust virus production. J. Virol. 2007, 81, 7571–7583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasheed, S.; Yan, J.S.; Lau, A.; Chan, A.S. HIV Replication Enhances Production of Free Fatty Acids, Low Density Lipoproteins and Many Key Proteins Involved in Lipid Metabolism: A Proteomics Study. PLoS ONE 2008, 3, e3003. [Google Scholar] [CrossRef] [Green Version]
- Claus, C.; Liebert, U.G. A renewed focus on the interplay between viruses and mitochondrial metabolism. Arch. Virol. 2014, 159, 1267–1277. [Google Scholar] [CrossRef]
- Kulkarni, M.M.; Ratcliff, A.N.; Bhat, M.; Alwarawrah, Y.; Hughes, P.; Arcos, J.; Loiselle, D.; Torrelles, J.B.; Funderburg, N.T.; Haystead, T.A.; et al. Cellular fatty acid synthase is required for late stages of HIV-1 replication. Retrovirology 2017, 14, 45. [Google Scholar] [CrossRef] [Green Version]
- Van ’t Wout, A.B.; Swain, J.V.; Schindler, M.; Rao, U.; Pathmajeyan, M.S.; Mullins, J.I.; Kirchhoff, F. Nef induces multiple genes involved in cholesterol synthesis and uptake in human immunodeficiency virus type 1-infected T cells. J. Virol. 2005, 79, 10053–10058. [Google Scholar] [CrossRef] [Green Version]
- Brügger, B.; Krautkrämer, E.; Tibroni, N.; Munte, C.E.; Rauch, S.; Leibrecht, I.; Glass, B.; Breuer, S.; Geyer, M.; Kräusslich, H.G.; et al. Human immunodeficiency virus type 1 Nef protein modulates the lipid composition of virions and host cell membrane microdomains. Retrovirology 2007, 4, 70. [Google Scholar] [CrossRef] [Green Version]
- Williams, N.C.; O’Neill, L.A.J. A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation. Front. Immunol. 2018, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, D.; Uehira, T.; Yonemoto, H.; Bando, H.; Ogawa, Y.; Yajima, K.; Taniguchi, T.; Kasai, D.; Nishida, Y.; Shirasaka, T. Sustained high levels of serum interferon-γ during HIV-1 infection: A specific trend different from other cytokines. Viral Immunol. 2010, 23, 619–625. [Google Scholar] [CrossRef]
- Guo, X.; Wu, S.; Li, N.; Lin, Q.; Liu, L.; Liang, H.; Niu, Y.; Huang, Z.; Fu, X. Accelerated Metabolite Levels of Aerobic Glycolysis and the Pentose Phosphate Pathway Are Required for Efficient Replication of Infectious Spleen and Kidney Necrosis Virus in Chinese Perch Brain Cells. Biomolecules 2019, 9, 440. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Wang, J.; Wang, Z.; Qi, T.; Song, W.; Tang, Y.; Liu, L.; Zhang, R.; Lu, H. Prevalence of Dyslipidemia Among Antiretroviral-Naive HIV-Infected Individuals in China. Medicine 2015, 94, e2201. [Google Scholar] [CrossRef] [PubMed]
- Guaraldi, G.; Stentarelli, C.; Zona, S.; Santoro, A. HIV-associated lipodystrophy: Impact of antiretroviral therapy. Drugs 2013, 73, 1431–1450. [Google Scholar] [CrossRef] [PubMed]
- Famularo, G.; Moretti, S.; Marcellini, S.; Trinchieri, V.; Tzantzoglou, S.; Santini, G.; Longo, A.; De Simone, C. Acetyl-carnitine deficiency in AIDS patients with neurotoxicity on treatment with antiretroviral nucleoside analogues. AIDS 1997, 11, 185–190. [Google Scholar] [CrossRef]
- Bailin, S.S.; Jenkins, C.A.; Petucci, C.; Culver, J.A.; Shepherd, B.E.; Fessel, J.P.; Hulgan, T.; Koethe, J.R. Lower Concentrations of Circulating Medium and Long-Chain Acylcarnitines Characterize Insulin Resistance in Persons with HIV. AIDS Res. Hum. Retrovir. 2018, 34, 536–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCann, M.R.; George De la Rosa, M.V.; Rosania, G.R.; Stringer, K.A. L-Carnitine and Acylcarnitines: Mitochondrial Biomarkers for Precision Medicine. Metabolites 2021, 11, 51. [Google Scholar] [CrossRef]
- Rezaee, H.; Khalili, H.; Salamzadeh, J.; Jafari, S.; Abdollahi, A. Potential benefits of carnitine in HIV-positive patients. Future Virol. 2011, 7, 73–83. [Google Scholar] [CrossRef]
- De Simone, C.; Tzantzoglou, S.; Jirillo, E.; Marzo, A.; Vullo, V.; Martelli, E.A. L-carnitine deficiency in AIDS patients. AIDS 1992, 6, 203–205. [Google Scholar] [CrossRef]
- De Simone, C.; Famularo, G.; Tzantzoglou, S.; Trinchieri, V.; Moretti, S.; Sorice, F. Carnitine depletion in peripheral blood mononuclear cells from patients with AIDS: Effect of oral L-carnitine. AIDS 1994, 8, 655–660. [Google Scholar] [CrossRef]
- Vilaseca, M.A.; Artuch, R.; Sierra, C.; Pineda, J.; López-Vilches, M.A.; Muñoz-Almagro, C.; Fortuny, C. Low serum carnitine in HIV-infected children on antiretroviral treatment. Eur. J. Clin. Nutr. 2003, 57, 1317–1322. [Google Scholar] [CrossRef] [Green Version]
- Benedini, S.; Perseghin, G.; Terruzzi, I.; Scifo, P.; Invernizzi, P.L.; Del Maschio, A.; Lazzarin, A.; Luzi, L. Effect of L-Acetylcarnitine on Body Composition in HIV-related Lipodystrophy. Horm. Metab. Res. 2009, 41, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Vaz, F.M.; Wanders, R.J.A. Carnitine biosynthesis in mammals. Biochem. J. 2002, 361, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Holeček, M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. 2018, 15, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogueira, A.d.C.; Vale, R.G.S.; Gomes, A.L.M.; Dantas, E.H.M. The Effect of Muscle Actions on the Level of Connective Tissue Damage. Res. Sports Med. 2011, 19, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Páez-Franco, J.C.; Torres-Ruiz, J.; Sosa-Hernández, V.A.; Cervantes-Díaz, R.; Romero-Ramírez, S.; Pérez-Fragoso, A.; Meza-Sánchez, D.E.; Germán-Acacio, J.M.; Maravillas-Montero, J.L.; Mejía-Domínguez, N.R.; et al. Metabolomics analysis reveals a modified amino acid metabolism that correlates with altered oxygen homeostasis in COVID-19 patients. Sci. Rep. 2021, 11, 6350. [Google Scholar] [CrossRef]
- Snell, K.; Duff, D.A. The hepato-muscular metabolic axis and gluconeogenesis. Prog. Clin. Biol. Res. 1982, 102 Pt C, 279–291. [Google Scholar]
- Petersen, K.F.; Dufour, S.; Cline, G.W.; Shulman, G.I. Regulation of hepatic mitochondrial oxidation by glucose-alanine cycling during starvation in humans. J. Clin. Investig. 2019, 129, 4671–4675. [Google Scholar] [CrossRef]
- Sarabhai, T.; Roden, M. Hungry for your alanine: When liver depends on muscle proteolysis. J. Clin. Investig. 2019, 129, 4563–4566. [Google Scholar] [CrossRef]
- Sears, S.; Buendia, J.R.; Odem, S.; Qobadi, M.; Wortley, P.; Mgbere, O.; Sanders, J.; Spencer, E.C.; Barnes, A. Metabolic Syndrome Among People Living with HIV Receiving Medical Care in Southern United States: Prevalence and Risk Factors. AIDS Behav. 2019, 23, 2916–2925. [Google Scholar] [CrossRef]
- Meininger, G.; Hadigan, C.; Laposata, M.; Brown, J.; Rabe, J.; Louca, J.; Aliabadi, N.; Grinspoon, S. Elevated concentrations of free fatty acids are associated with increased insulin response to standard glucose challenge in human immunodeficiency virus-infected subjects with fat redistribution. Metabolism 2002, 51, 260–266. [Google Scholar] [CrossRef]
- Muyanja, D.; Muzoora, C.; Muyingo, A.; Muyindike, W.; Siedner, M.J. High Prevalence of Metabolic Syndrome and Cardiovascular Disease Risk Among People with HIV on Stable ART in Southwestern Uganda. AIDS Patient Care STDs 2016, 30, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Reeds, D.N.; Cade, W.T.; Patterson, B.W.; Powderly, W.G.; Klein, S.; Yarasheski, K.E. Whole-body proteolysis rate is elevated in HIV-associated insulin resistance. Diabetes 2006, 55, 2849–2855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todowede, O.O.; Mianda, S.Z.; Sartorius, B. Prevalence of metabolic syndrome among HIV-positive and HIV-negative populations in sub-Saharan Africa—A systematic review and meta-analysis. Syst. Rev. 2019, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Arner, P.; Rydén, M. Fatty Acids, Obesity and Insulin Resistance. Obes. Facts 2015, 8, 147–155. [Google Scholar] [CrossRef]
- Djoussé, L.; Benkeser, D.; Arnold, A.; Kizer, J.R.; Zieman, S.J.; Lemaitre, R.N.; Tracy, R.P.; Gottdiener, J.S.; Mozaffarian, D.; Siscovick, D.S.; et al. Plasma Free Fatty Acids and Risk of Heart Failure. Circ. Heart Fail. 2013, 6, 964–969. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.-H.; Cao, Y.-X.; Wu, L.-G.; Guo, N.; Hou, B.-J.; Sun, L.-J.; Guo, Y.-L.; Wu, N.-Q.; Dong, Q.; Li, J.-J. Association of plasma free fatty acids levels with the presence and severity of coronary and carotid atherosclerotic plaque in patients with type 2 diabetes mellitus. BMC Endocr. Disord. 2020, 20, 156. [Google Scholar] [CrossRef]
- Ding, C.; Egli, L.; Bosco, N.; Sun, L.; Goh, H.J.; Yeo, K.K.; Yap, J.J.L.; Actis-Goretta, L.; Leow, M.K.-S.; Magkos, F. Plasma Branched-Chain Amino Acids Are Associated With Greater Fasting and Postprandial Insulin Secretion in Non-diabetic Chinese Adults. Front. Nutr. 2021, 8, 188. [Google Scholar] [CrossRef]
- Teer, E.; Essop, M.F. HIV and Cardiovascular Disease: Role of Immunometabolic Perturbations. Physiology 2017, 33, 74–82. [Google Scholar] [CrossRef]
- Vanweert, F.; de Ligt, M.; Hoeks, J.; Hesselink, M.K.C.; Schrauwen, P.; Phielix, E. Elevated Plasma Branched-Chain Amino Acid Levels Correlate With Type 2 Diabetes–Related Metabolic Disturbances. J. Clin. Endocrinol. Metab. 2021, 106, e1827–e1836. [Google Scholar] [CrossRef]
- Van Wijk, J.P.H.; Cabezas, M.C.; de Koning, E.J.P.; Rabelink, T.J.; van der Geest, R.; Hoepelman, I.M. In Vivo Evidence of Impaired Peripheral Fatty Acid Trapping in Patients with Human Immunodeficiency Virus-Associated Lipodystrophy. J. Clin. Endocrinol. Metab. 2005, 90, 3575–3582. [Google Scholar] [CrossRef] [Green Version]
- Sherman, K.E.; Peters, M.G.; Thomas, D. Human immunodeficiency virus and liver disease: A comprehensive update. Hepatol. Commun. 2017, 1, 987–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Matute, P.; Pérez-Martínez, L.; Blanco, J.R.; Oteo, J.A. Role of mitochondria in HIV infection and associated metabolic disorders: Focus on nonalcoholic fatty liver disease and lipodystrophy syndrome. Oxidative Med. Cell. Longev. 2013, 2013, 493413. [Google Scholar] [CrossRef] [PubMed]
- Phan, L.M.; Yeung, S.C.; Lee, M.H. Cancer metabolic reprogramming: Importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol. Med. 2014, 11, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Cho, Y.-r.; Kim, J.H.; Kim, J.; Nam, H.Y.; Kim, S.W.; Son, J. Branched-chain amino acids sustain pancreatic cancer growth by regulating lipid metabolism. Exp. Mol. Med. 2019, 51, 1–11. [Google Scholar] [CrossRef]
- Cotto, B.; Natarajanseenivasan, K.; Langford, D. HIV-1 infection alters energy metabolism in the brain: Contributions to HIV-associated neurocognitive disorders. Prog. Neurobiol. 2019, 181, 101616. [Google Scholar] [CrossRef] [PubMed]
- Deme, P.; Rojas, C.; Slusher, B.S.; Rais, R.; Afghah, Z.; Geiger, J.D.; Haughey, N.J. Bioenergetic adaptations to HIV infection. Could modulation of energy substrate utilization improve brain health in people living with HIV-1? Exp. Neurol. 2020, 327, 113181. [Google Scholar] [CrossRef]
- Tu, D.; Gao, Y.; Yang, R.; Guan, T.; Hong, J.-S.; Gao, H.-M. The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. J. Neuroinflamm. 2019, 16, 255. [Google Scholar] [CrossRef] [Green Version]
Characteristics | HIVSN | Pre-ART PWH | p-Value | Pre-ART PWH | Post-ART PWH | p-Value | HIVSN | post-ART HIV | p-Value |
---|---|---|---|---|---|---|---|---|---|
Gender | |||||||||
Female (F) | 143 | 142 | 142 | 142 | 143 | 142 | |||
Male (M) | 157 | 136 | 136 | 136 | 157 | 136 | |||
Age (years) [mean (SD)] | 35(8.1) | 35.7(8.8) | 0.89 | 35.7(8.8) | 37.6(8.8) | <0.01 | 35(8.1) | 37.6(8.8) | 0.022 |
Average BMI [mean (SD)] | 23.1(3.8) | 22.3(3.3) | 0.03 | 22.3(3.3) | 22.9(3.2) | 0.90 | 23.1(3.8) | 22.9(3.2) | 0.076 |
Obese [n (%)] | 17(5.7) | 9(3.2) | 9(3.2) | 12(4.3) | 17(5.7) | 12(4.3) | |||
Blood pressure | |||||||||
Systolic (mmHg) | 120(14) | 115.3(41.5) | <0.01 | 115.3(41.5) | 112.8(12.7) | <0.01 | 120(14) | 112.8(12.7) | <0.01 |
Diastolic (mmHg) | 71(10) | 69.9(25.1) | 0.47 | 69.9(25.1) | 70.7(25.4) | 0.98 | 71(10) | 70.7(25.4) | 0.604 |
Hypertension [n (%)] | 50(16.7) | 25(9.0) | 25(9.0) | 24(8.6) | 50(16.7) | 24(8.6) | |||
HDL (g/L) | 1.2(0.4) | 0.8(0.4) | <0.01 | 0.8(0.4) | 1.2(0.4) | 0.05 | 1.2(0.4) | 1.2(0.4) | <0.01 |
LDL (g/L) | 2.2(0.9) | 2(0.8) | 0.02 | 2(0.8) | 2.3(0.8) | 0.15 | 2.2(0.9) | 2.3(0.8) | <0.01 |
Triglycerides (g/L) | 1.1(0.5) | 1.2(0.5) | 0.38 | 1.2(0.5) | 1.2(0.7) | 0.30 | 1.1(0.5) | 1.2(0.7) | 0.934 |
Cholesterol (g/L) | 4.1(1.2) | 3.6(1.0) | <0.01 | 3.6(1.0) | 4.4(2.3) | 0.17 | 4.1(1.2) | 4.4(2.3) | <0.01 |
Dyslipidemia [n (%)] | 123(41) | 234(78) | 234(78) | 110(39.6) | 123(41) | 110(39.6) | |||
Fasting glucose (g/L) | 91.0(24.1) | 87.4(13.3) | 0.04 | 87.4(13.3) | 89.5(16) | 0.97 | 91.0(24.1) | 89.5(16) | <0.05 |
Diabetes [n (%)] | 6(2) | 5(1.8) | 5(1.8) | 3(1.1) | 6(2) | 3(1.1) | |||
CD4 T-cell count (advanced immunosuppression) (Median (IQR)) | NA | 111(112) | NA | 111(112) | 279(167.5) | <0.01 | NA | 279(167.5) | NA |
CD4 T-cell count (moderate immunosuppression) (Median (IQR)) | NA | 418(71) | NA | 418(71) | 512.5(214.7) | <0.01 | NA | 512.5(214.7) | NA |
log_serum_vl_copies (copies/mL) (Median (IQR)) | NA | 4.58(1.2) | NA | 4.58(1.2) | 0.00(0.0) | <0.01 | NA | 0.00(0.00) | NA |
Therapy regimen (months) | NA | NA | NA | 720(676–882) | NA | 720(676–882) | |||
TDF/3TC/EFV | NA | NA | NA | 256 | NA | 256 | |||
TDF/3TC/NVP | NA | NA | NA | 10 | NA | 10 | |||
AZT/3TC/EFV | NA | NA | NA | 3 | NA | 3 | |||
AZT/3TC/NVP | NA | NA | NA | 9 | NA | 9 | |||
Liver parameters | |||||||||
ALT (IU/mL) | 0.98(0.3) | 0.97(0.3) | 0.73 | 0.97(0.3) | 1.3(0.3) | <0.01 | 0.98(0.3) | 1.3(0.3) | <0.01 |
AST (IU/mL) | 1.3(0.2) | 1.4(0.2) | <0.01 | 1.4(0.2) | 1.5(0.2) | <0.01 | 1.3(0.2) | 1.5(0.2) | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deme, P.; Rubin, L.H.; Yu, D.; Xu, Y.; Nakigozi, G.; Nakasujja, N.; Anok, A.; Kisakye, A.; Quinn, T.C.; Reynolds, S.J.; et al. Immunometabolic Reprogramming in Response to HIV Infection Is Not Fully Normalized by Suppressive Antiretroviral Therapy. Viruses 2022, 14, 1313. https://doi.org/10.3390/v14061313
Deme P, Rubin LH, Yu D, Xu Y, Nakigozi G, Nakasujja N, Anok A, Kisakye A, Quinn TC, Reynolds SJ, et al. Immunometabolic Reprogramming in Response to HIV Infection Is Not Fully Normalized by Suppressive Antiretroviral Therapy. Viruses. 2022; 14(6):1313. https://doi.org/10.3390/v14061313
Chicago/Turabian StyleDeme, Pragney, Leah H. Rubin, Danyang Yu, Yanxun Xu, Gertrude Nakigozi, Noeline Nakasujja, Aggrey Anok, Alice Kisakye, Thomas C. Quinn, Steven J. Reynolds, and et al. 2022. "Immunometabolic Reprogramming in Response to HIV Infection Is Not Fully Normalized by Suppressive Antiretroviral Therapy" Viruses 14, no. 6: 1313. https://doi.org/10.3390/v14061313
APA StyleDeme, P., Rubin, L. H., Yu, D., Xu, Y., Nakigozi, G., Nakasujja, N., Anok, A., Kisakye, A., Quinn, T. C., Reynolds, S. J., Mayanja, R., Batte, J., Wawer, M. J., Sacktor, N. C., Saylor, D., & Haughey, N. J. (2022). Immunometabolic Reprogramming in Response to HIV Infection Is Not Fully Normalized by Suppressive Antiretroviral Therapy. Viruses, 14(6), 1313. https://doi.org/10.3390/v14061313