Adapting an Atmospheric Dispersion Model to Assess the Risk of Windborne Transmission of Porcine Reproductive and Respiratory Syndrome Virus between Swine Farms
Abstract
:1. Background
2. Data and Methods
2.1. ADM Modelling Platform
2.2. HYSPLIT-TAPPAS ADM Applicable Parameter Values for PRRSv
- The type of aerosolized particles released from barns, which are used to determine the particle size.
- Time of the day, which was used to determine the release time of particles in the model runs.
- Barn architecture and ventilator heights, which were used to determine the release heights.
- Environmental conditions that are known to shape wind around farms
- The incubation period, time to detection of clinical signs, and general practices of conducting diagnostic tests.
- Biosecurity measures specific to PRRSv prevention including air filtration.
- Known scenarios of re-infection with the same virus variant.
- Any changes in on-farm activities once a herd is detected with an outbreak.
- Observed or known seasonal and geographical characteristics of PRRSv transmission.
- Any comments on the windborne between farm transmission of PRRSv.
2.3. Case Study
2.3.1. Disease Data
2.3.2. Wind Data
2.3.3. Sensitivity Analysis
3. Results
3.1. Parameter Values and Rationale
Parameters | Search Terms | Values | References |
---|---|---|---|
Time lag for between farm transmission | incubation period | 14 days (Assumption) | [52,53] |
Particle diameter (aerosolized particle diameter) | diameter | 5 μm (0.4–10 μm) | [61] |
Particle density | density | 0.7 g/cc | [61] |
Minimum temperature deg C | temperature | −70 | [63] |
Maximum temperature deg C | 30 | [14] | |
Minimum relative humidity % | humidity | 50% (25–79%) | [14,16] |
Maximum relative humidity % | 100% (≥80%) | [16] | |
Minimum wind speed m/s | speed, velocity | 0.76 m/s (In-door experimental settings) | [68] |
Maximum wind speed m/s | 0.01 m/s (dry deposition velocity) | FMDv: [33] | |
Maximum UV radiation MJ m−2 | radiation, UV | 5210 MJ/m2 (In-door experimental settings) | [67] |
Exponential decay constant | decay | 1.0 × 10−4/ second (Decay constant λ = 6.4 × 10−4) | FMDv: [32] |
half life | 4.1 min (At 30 deg C and 50% relative humidity) | [14] | |
120 min virus half-life | FMDv: [71] | ||
Lifespan | lifespan | 3 days (Varies with temperature and humidity) | |
Maximum time in air (Alive & infective) | survival time | 1 h–4 weeks (Varies with temperature and humidity) | [5,8,69] |
TAPPAS Web API Input | HYSPLIT READY * Web Application Equivalent Variable Name | Parameter Value Setting for the PRRSv TAPPAS Runs | Justification or Explanatory Note |
---|---|---|---|
Location | Source location: latitude, longitude | Coordinates of outbreak farms (latitude, longitude) | |
Species | Release type | New Species: PRRS | Maximum of 4 characters for HYSPLIT input names |
Meteorology | Meteorology | NAM 12 km (hybrid sigma-pressure) | |
Vertical Motion: Default setting | Model vertical velocity | 0 | Using the vertical velocity fields within the meteorological data. |
Output: Concentration, deposition | Output | Deposition (mass/m2) | |
Source Term Parameters | |||
Direction: Forward, backward | Dispersion direction | Forward | |
Date of run | Release start time: year month day hour minute | Everyday | User defined |
Take off/release start time | 12 am | User defined | |
Release height(s) | Release top | 0 and 4 m-AGL | User defined: Sensitivity analysis— |
Release bottom | - | Feature not implemented in TAPPAS | |
Release quantity (mass/hr) | Numpar—Limit of the number of computing particles released per time period | −100, −1000, −10,000 mass | User defined: Sensitivity analysis Note: Specifying a negative value ensures a constant particle release per hour for each source location. |
Maximum time in air | Khmax—Release duration: hours minutes | 72 h | Presumed maximum hours of infectivity of PPRSv |
Maximum release quantity | Maxpar—Limit of the total number of computing particles tracked at a time | Varies with each run based on the number of emitting particles | |
Runtime Parameters | |||
Model run time (From 1st release) | Total run time (hours) | 12 h, 24 h, 36 h | User defined: Sensitivity analysis |
Release duration | Averaging period/output interval | 24 h | |
Run type (single day or multiple days specified by user) | Single runs only | Single day | |
Top of averaged layer—default setting | Top of averaged layer | 100 | |
Deposition Parameters | |||
Particle characteristic | Pollutant characteristics: particle, gas | Integral: particle | |
Particle diameter, Density, Shape | Particle diameter (μm), Density (g/cc), Shape | 5, 0.7, 1 | |
Dry Deposition: Velocity (m/s), Molecular Weight (g), A-Ratio, D-Ratio, Effective Henry’s Constant | Velocity (m/s), Molecular Weight (g), Surface Reactivity Ratio, Diffusivity Ratio, Effective Henry’s Constant | 0, 0, 0, 0, 0 | |
Wet Deposition: Actual Henry’s constant, In-cloud (L/L), Below-cloud (1/s) | Actual Henry’s constant, In-cloud (L/L), Below-cloud (1/s) | 0, 8.0 × 10−5 L/L, 8.0 × 10−5 L/L | Default of HYSPLIT; |
Exponential decay constant (λ) | Radioactive decay, i.e., virus half-life (days) | 0 | Default value of 0 set within TAPPAS |
Sampling | |||
Sampling type | Sampling interval: type hour minute (0 = Average, 1 = snapshot, 2 = maximum) | Average concentrations | User defined |
Sampling period/interval | Sampling interval: type hour minute | 12 h, 24 h, 36 h | User defined: Sensitivity analysis |
Height of model (m-AGL) | Height of each level (m) | 0 m-AGL | Level of output—User defined: 0 = deposition (mass/m2) and >1 = plume concentration (mass/m3) |
Top of model (m-AGL) | Top of model domain (internal coordinates m-agl) | 10,000 m-AGL | User defined |
Display Options | |||
Model sampling/output grid cell resolution | Grid spacing (deg) Latitude, Longitude | 0.012 | User defined |
Window size N/S location centroid | Grid span (deg) Latitude, Longitude | 25 degrees | User defined |
Window size E/W location centroid | 25 degrees | User defined | |
Output | GIS output of contours | Google Earth (Kmz) | Default of TAPPAS |
3.2. Deposition Thresholds
- The cumulative 14-day deposition resulted in two natural breaks at 3.13 × 10−5 and 1.4 × 10−4 mass/m2. At 1.4 × 10−4 mass/m2 there were n = 50 PIFs for all the 18 scenarios, representing n = 13 unique farms (Figure 1: Panel A).
- The median daily deposition resulted in two natural breaks at 1.0 × 10−6 and 5.50 × 10−6 mass/m2. At 5.5 × 10−6 mass/m2 there were n = 119 PIFs representing n = 41 unique farms (Figure 1: Panel B). The farms classified as PIFs under the cumulative 14-day were also included within the median daily deposition categorizations.
- The maximum daily deposition the susceptible farms received belonged to three maximum daily deposition categories. The two natural breaks were at 1.0 × 10−6 and 1.0 × 10−5 mass/m2. At 1.0 × 10−5 mass/m2 there were n = 596 PIFs for all scenarios representing n = 105 unique farms (Figure 1: Panel C).
3.3. Six New Cases on 12 April 2017
3.4. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Holtkamp, D.J.; Kliebenstein, J.B.; Neumann, E.J.; Zimmerman, J.J.; Rotto, H.F.; Yoder, T.K. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J. Swine Health Prod. 2013, 21, 72–84. [Google Scholar]
- Neumann, E.J.; Kliebenstein, J.B.; Johnson, C.D.; Mabry, J.W.; Bush, E.J.; Seitzinger, A.H.; Green, A.L.; Zimmerman, J.J. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J. Am. Vet. Med. Assoc. 2015, 227, 385–392. [Google Scholar]
- VanderWaal, K.; Paploski, I.A.D.; Makau, D.N.; Corzo, C.A. Contrasting animal movement and spatial connectivity networks in shaping transmission pathways of a genetically diverse virus. Prev. Vet. Med. 2020, 178, 104977. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, S.; Stryhn, H.; Søgaard, R.; Boklund, A.; Stärk, K.D.; Christensen, J.; Willeberg, P. Risk factors for infection of sow herds with porcine reproductive and respiratory syndrome (PRRS) virus. Prev. Vet. Med. 2002, 53, 83–101. [Google Scholar] [CrossRef]
- Dee, S.; Torremorell, M.; Thompson, B.; Deen, J.; Pijoan, C. An evaluation of thermo-assisted drying and decontamination for the elimination of porcine reproductive and respiratory syndrome virus from contaminated livestock transport vehicles. Can. J. Vet. Res.-Rev. Can. De Rech. Vet. 2005, 69, 58–63. [Google Scholar]
- Otake, S.; Dee, S.A.; Moon, R.D.; Rossow, K.D.; Trincado, C.; Farnham, M.; Pijoan, C. Survival of porcine reproductive and respiratory syndrome virus in houseflies. Can. J. Vet. Res. 2003, 67, 198–203. [Google Scholar]
- Schurrer, J.A.; Dee, S.A.; Moon, R.D.; Rossow, K.D.; Mahlum, C.; Mondaca, E.; Otake, S.; Fano, E.; Collins, J.E.; Pijoan, C. Spatial dispersal of porcine reproductive and respiratory syndrome virus-contaminated flies after contact with experimentally infected pigs. Am. J. Vet. Res. 2004, 65, 1284–1292. [Google Scholar] [CrossRef]
- Dee, S.; Otake, S.; Oliveira, S.; Deen, J. Evidence of long distance airborne transport of porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. Vet. Res. 2009, 40, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otake, S.; Dee, S.; Corzo, C.; Oliveira, S.; Deen, J. Long-distance airborne transport of infectious PRRSV and Mycoplasma hyopneumoniae from a swine population infected with multiple viral variants. Vet. Microbiol. 2010, 145, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Arruda, A.G.; Tousignant, S.; Sanhueza, J.; Vilalta, C.; Poljak, Z.; Torremorell, M.; Alonso, C.; Corzo, C.A. Aerosol Detection and Transmission of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): What Is the Evidence, and What Are the Knowledge Gaps? Viruses 2019, 11, 712. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.G.; Dee, S.A. Porcine reproductive and respiratory syndrome virus. Theriogenology 2006, 66, 655–662. [Google Scholar] [CrossRef]
- Zhao, Y.; Aarnink, A.J.A.; De Jong, M.C.M.; Koerkamp, P. Airborne microorganisms from livestock production systems and their relation to dust. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1071–1128. [Google Scholar] [CrossRef] [PubMed]
- Fernstrom, A.; Goldblatt, M. Aerobiology and Its Role in the Transmission of Infectious Diseases. J. Pathog. 2013, 2013, 493960. [Google Scholar] [CrossRef] [Green Version]
- Hermann, J.; Hoff, S.; Munoz-Zanzi, C.; Yoon, K.-J.; Roof, M.; Burkhardt, A.; Zimmerman, J. Effect of temperature and relative humidity on the stability of infectious porcine reproductive and respiratory syndrome virus in aerosols. Vet. Res. 2007, 38, 81–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dee, S.; Otake, S.; Deen, J. Use of a production region model to assess the efficacy of various air filtration systems for preventing airborne transmission of porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae: Results from a 2-year study. Virus Res. 2010, 154, 177–184. [Google Scholar] [CrossRef]
- Cutler, T.D.; Wang, C.; Hoff, S.J.; Kittawornrat, A.; Zimmerman, J.J. Median infectious dose (ID50) of porcine reproductive and respiratory syndrome virus isolate MN-184 via aerosol exposure. Vet. Microbiol. 2011, 151, 229–237. [Google Scholar] [CrossRef]
- Arruda, A.G.; Sanhueza, J.; Corzo, C.; Vilalta, C. Assessment of area spread of porcine reproductive and respiratory syndrome (PRRS) virus in three clusters of swine farms. Transbound. Emerg. Dis. 2018, 65, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Torremorell, M.; Pijoan, C.; Janni, K.; Walker, R.; Joo, H.S. Airborne transmission of Actinobacillus pleuropneumoniae and porcine reproductive and respiratory syndrome virus in nursery pigs. Am. J. Vet. Res. 1997, 58, 828–832. [Google Scholar] [PubMed]
- Brockmeier, S.L.; Lager, K.M. Experimental airborne transmission of porcine reproductive and respiratory syndrome virus and Bordetella bronchiseptica. Vet. Microbiol. 2002, 89, 267–275. [Google Scholar] [CrossRef]
- Trincado, C.; Dee, S.; Jacobson, L.; Otake, S.; Rossow, K.; Pijoan, C. Attempts to transmit porcine reproductive and respiratory syndrome virus by aerosols under controlled field conditions. Vet. Rec. 2004, 154, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Dee, S.; Batista, L.; Deen, J.; Pijoan, C. Evaluation of an air-filtration system for preventing aerosol transmission of Porcine reproductive and respiratory syndrome virus. Can. J. Vet. Res.-Rev. Can. De Rech. Vet. 2005, 69, 293–298. [Google Scholar]
- Kristensen, C.S.; Bower, A.; Takai, H.; Nielsen, J.P.; Jorsal, S.E. Experimental airborne transmission of PRRS virus. Vet. Microbiol. 2004, 99, 197–202. [Google Scholar] [CrossRef]
- Pitkin, A.; Deen, J.; Dee, S. Use of a production region model to assess the airborne spread of porcine reproductive and respiratory syndrome virus. Vet. Microbiol. 2009, 136, 1–7. [Google Scholar] [CrossRef]
- Brito, B.; Dee, S.; Wayne, S.; Alvarez, J.; Perez, A. Genetic Diversity of PRRS Virus Collected from Air Samples in Four Different Regions of Concentrated Swine Production during a High Incidence Season. Viruses 2014, 6, 4424–4436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otake, S.; Dee, S.A.; Jacobson, L.; Torremorell, M.; Pijoan, C. Evaluation of aerosol transmission of porcine reproductive and respiratory syndrome virus under controlled field conditions. Vet. Rec. 2002, 150, 804–808. [Google Scholar] [CrossRef]
- Arruda, A.G.; Vilalta, C.; Perez, A.; Morrison, R. Land altitude, slope, and coverage as risk factors for Porcine Reproductive and Respiratory Syndrome (PRRS) outbreaks in the United States. PLoS ONE 2017, 12, e0172638. [Google Scholar] [CrossRef] [Green Version]
- Haredasht, S.A.; Polson, D.; Main, R.; Lee, K.; Holtkamp, D.; Martinez-Lopez, B. Modeling the spatio-temporal dynamics of porcine reproductive & respiratory syndrome cases at farm level using geographical distance and pig trade network matrices. BMC Vet. Res. 2017, 13, 163. [Google Scholar] [CrossRef] [Green Version]
- Tousignant, S.J.P.; Perez, A.M.; Lowe, J.F.; Yeske, P.E.; Morrison, R.B. Temporal and spatial dynamics of porcine reproductive and respiratory syndrome virus infection in the United States. Am. J. Vet. Res. 2015, 76, 70–76. [Google Scholar] [CrossRef]
- Perez, A.M.; Davies, P.R.; Goodell, C.K.; Holtkamp, D.J.; Mondaca-Fernández, E.; Poljak, Z.; Tousignant, S.J.; Valdes-Donoso, P.; Zimmerman, J.J.; Morrison, R.B. Lessons learned and knowledge gaps about the epidemiology and control of porcine reproductive and respiratory syndrome virus in North America. J. Am. Vet. Med. Assoc. 2015, 246, 1304–1317. [Google Scholar] [CrossRef]
- Holmes, N.S.; Morawska, L. A Review of Dispersion Modeling and Its Application to the Dispersion of Particles: An Overview of Different Dispersion Models Available. Atmos. Environ. 2006, 40, 5902–5928. [Google Scholar] [CrossRef] [Green Version]
- Van Leuken, J.P.G.; Swart, A.N.; Havelaar, A.H.; Van Pul, A.; Van der Hoek, W.; Heederik, D. Atmospheric dispersion modelling of bioaerosols that are pathogenic to humans and livestock—A review to inform risk assessment studies. Microb. Risk Anal. 2016, 1, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, J.H.; Jensen, C.O.; Mikkelsen, T.; Mackay, D.K.J.; Donaldson, A.I. Modelling the Atmospheric Dispersion of Foot and Mouth Virus for Emergency Preparedness. Phys. Chem. Earth B 2001, 26, 93–97. [Google Scholar] [CrossRef]
- Garner, M.G.; Hess, G.D.; Yang, X. An integrated modelling approach to access the risk of wind borne spread of foot-and mouth disease virus from infected premises. Environ. Model. Assess. 2006, 11, 195–207. [Google Scholar] [CrossRef]
- Eagles, D.; Melville, L.; Weir, R.; Davis, S.; Bellis, G.; Zalucki, M.P.; Walker, P.J.; Durr, P.A. Long-distance aerial dispersal modelling of Culicoides biting midges: Case studies of incursions into Australia. BMC Vet. Res. 2014, 10, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Richardson, B.; Takle, E.; Chai, L.L.; Schmitt, D.; Xin, H.W. Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States. Sci. Rep. 2019, 9, 11755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gloster, J.; Burgin, L.; Jones, A.; Sanson, R. Atmospheric dispersion models and their use in the assessment of disease transmission. Rev. Sci. Tech. 2011, 30, 457–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draxler, R.R.; Hess, G.D. Description of the HYSPLIT_4 Modeling System; NOAA Technical Memorandum ERL ARL-224; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 1997; 24p. [Google Scholar]
- Draxler, R.R.; Hess, G.D. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteor. Mag. 1998, 47, 295–308. [Google Scholar]
- Draxler, R.R. HYSPLIT4 User’s Guide; NOAA Technical Memorandum ERL ARL-230; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 1999. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Draxler, R.R.; Rolph, G.D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory); NOAA Air Resources Laboratory: Silver Spring, MD, USA, 2015. Available online: http://ready.arl.noaa.gov/HYSPLIT.php (accessed on 20 January 2020).
- Durr, P.; Graham, K.; Freeman, J.; Beckett, D.; van Klinken, R.D. TAPPAS: Tool for Assessing Pest. and Pathogen Aerial Spread, Version 1.0. 2015. Available online: https://tappas.csiro.au (accessed on 20 January 2020).
- Durr, P.A.; Graham, K.; van Klinken, R.D. Sellers’ Revisited: A Big Data Reassessment of Historical Outbreaks of Bluetongue and African Horse Sickness due to the Long-Distance Wind Dispersion of Culicoides Midges. Front. Vet. Sci. 2017, 4, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, B.D.; Lednicky, J.A.; Torremorell, M.; Gray, G.C. The Use of Bioaerosol Sampling for Airborne virus Surveillance in Swine Production Facilities: A Mini Review. Front. Vet. Sci. 2017, 4, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, G.D.; Garner, M.G.; Yang, X. A sensitivity analysis of an integrated modelling approach to assess the risk of wind-borne spread of foot-and-mouth disease virus from infected premises. Environ. Modeling Assess. 2008, 13, 209–220. [Google Scholar] [CrossRef]
- Alonso, C.; Olson, B.A.; Goyal, S.; Raynor, P.C.; Davies, P.R.; Torremorell, M. Comparison of two size-differentiating air samplers for detecting airborne swine viruses under experimental conditions. Aerosol Sci. Technol. 2017, 51, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Archer, C.L. An Introduction to Meteorology for Airborne Wind Energy. In Airborne Wind Energy. Green Energy and Technology; Ahrens, U., Diehl, M., Schmehl, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 81–94. [Google Scholar]
- Reche, I.; D’Orta, G.; Mladenov, N.; Winget, D.M.; Suttle, C.A. Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 2018, 12, 1154–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Hermann, J.R.; Muñoz-Zanzi, C.A.; Zimmerman, J.J. A method to provide improved dose-response estimates for airborne pathogens in animals: An example using porcine reproductive and respiratory syndrome virus. Vet. Microbiol. 2009, 133, 297–302. [Google Scholar] [CrossRef]
- Charpin, C.; Mahé, S.; Keranflec’h, A.; Belloc, C.; Cariolet, R.; Le Potier, M.F.; Rose, N. Infectiousness of pigs infected by the Porcine Reproductive and Respiratory Syndrome virus (PRRSV) is time-dependent. Vet. Res. 2012, 43, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OIE Terrestrial Animal Health Standards Commission. Chapter 15.3: Infection with Porcine Reproductive and Respiratory Syndrome virus. Article 15.3.1. July 2021 Report. Available online: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahc/current/chapitre_prrs.pdf (accessed on 1 December 2021).
- Paploski, I.A.D.; Corzo, C.; Rovira, A.; Murtaugh, M.P.; Sanhueza, J.M.; Vilalta, C.; Schroeder, D.C.; VanderWaal, K. Temporal Dynamics of Co-circulating Lineages of Porcine Reproductive and Respiratory Syndrome Virus. Front. Microbiol. 2019, 10, 2486. [Google Scholar] [CrossRef] [Green Version]
- Wells, W.F. On air-borne infection. Study II. Droplets and droplet nuclei. Am. J. Hyg. 1934, 20, 611–618. [Google Scholar]
- Wells, W.F. Airborne Contagion and Air Hygiene; Harvard University Press: Cambridge, MA, USA, 1955. [Google Scholar]
- Stetzenbach, L.D.; Buttner, M.P.; Cruz, P. Detection and enumeration of airborne biocontaminants. Curr. Opin. Biotechnol. 2004, 15, 170–174. [Google Scholar] [CrossRef]
- Xie, X.; Li, Y.; Chwang, A.T.; Ho, P.L.; Seto, W.H. How far droplets can move in indoor environments—Revisiting the Wells evaporation-falling curve. Indoor Air 2007, 17, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Stilianakis, N.I.; Drossinos, Y. Dynamics of infectious disease transmission by inhalable respiratory droplets. J. R. Soc. Interface 2010, 7, 1355–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.W.; Li, Y.; Eames, I.; Chan, P.K.S.; Ridgway, G.L. Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. J. Hosp. Infect. 2006, 64, 100–114. [Google Scholar] [CrossRef]
- Alonso, C.; Raynor, P.C.; Davies, P.R.; Torremorell, M. Concentration, Size Distribution, and Infectivity of Airborne Particles Carrying Swine Viruses. PLoS ONE. 2015, 10, e0135675. [Google Scholar] [CrossRef] [PubMed]
- Benfield, D.A.; Nelson, E.; Collins, J.E.; Harris, L.; Goyal, S.M.; Robison, D.; Christianson, W.T.; Morrison, R.B.; Gorcyca, D.; Chladek, D. Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332). J. Vet. Diagn. Investig. 1992, 4, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, J.J.; Benfield, D.A.; Dee, S.A.; Murtaugh, M.P.; Stadejek, T.; Stevenson, G.W.; Torremorell, M. Chapter 31: Por-cine Reproductive and Respiratory Syndrome Virus (Porcine Arterivirus). In Diseases of Swine, 10th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Stevenson, G.W., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 461–486. [Google Scholar]
- Verreault, D.; Moineau, S.; Duchaine, C. Methods for sampling of airborne viruses. Microbiol. Mol. Biol. Rev. 2008, 72, 413–444. [Google Scholar] [CrossRef] [Green Version]
- Dee, S.A.; Batista, L.; Deen, J.; Pijoan, C. Evaluation of systems for reducing the transmission of Porcine reproductive and respiratory syndrome virus by aerosol. Can. J. Vet. Res.-Rev. Can. De Rech. Vet. 2006, 70, 28–33. [Google Scholar]
- Eisenloffel, L.; Reutter, T.; Horn, M.; Schlegel, S.; Truyen, U.; Speck, S. Impact of UVC-sustained recirculating air filtration on airborne bacteria and dust in a pig facility. PLoS ONE. 2019, 14, e0225047. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Koziel, J.A.; Zimmerman, J.J.; Zhang, J.; Cheng, T.-Y.; Yim-Im, W.; Jenks, W.S.; Lee, M.; Chen, B.; Hoff, S.J. Mitigation of Airborne PRRSV Transmission with UV Light Treatment: Proof-of-Concept. Agriculture 2021, 11, 259. [Google Scholar] [CrossRef]
- Alonso, C.; Otake, S.; Davies, P.; Dee, S. An evaluation of interventions for reducing the risk of PRRSV introduction to filtered farms via retrograde air movement through idle fans. Vet. Microbiol. 2012, 157, 304–310. [Google Scholar] [CrossRef]
- Spronk, G.; Otake, S.; Dee, S. Prevention of PRRSV infection in large breeding herds using air filtration. Vet. Rec. 2010, 166, 758–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, C.; Davies, P.R.; Polson, D.D.; Dee, S.A.; Lazarus, W.F. Financial implications of installing air filtration systems to prevent PRRSV infection in large sow herds. Prev. Vet. Med. 2013, 111, 268–277. [Google Scholar] [CrossRef]
- Lambkin, K.; Hamilton, J.; McGrath, G.; Dando, P.; Draxler, R. Foot and mouth disease atmospheric dispersion system. Adv. Sci. Res. 2019, 16, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Janni, K.A.; Torremorell, M.; Jacobson, L.D.; Alonso, C.; Hetchler, B.P. Modeling airborne virus concentration in filtered swine barns with negative-pressure ventilating systems. Trans. Asabe 2018, 61, 1089–1099. [Google Scholar] [CrossRef]
- La, A.; Zhang, Q.; Cicek, N.; Levin, D.B.; Coombs, K.M. Dose-response modelling of infectious animal diseases coupled with computational fluid dynamics: A simulation of airborne porcine reproductive and respiratory syndrome virus. Biosyst. Eng. 2021, 208, 58–78. [Google Scholar] [CrossRef]
- Colenutt, C.; Brown, E.; Nelson, N.; Paton, D.J.; Eblé, P.; Dekker, A.; Gonzales, J.L.; Gubbins, S. Quantifying the transmission of foot-and-mouth disease virus in cattle via a contaminated environment. mBio 2020, 11, e00381-20. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.J.; Zimmerman, J.J.; Chang, C.C.; Cancel-Tirado, S.; Harmon, K.M.; McGinley, M.J. Effect of challenge dose and route on porcine reproductive and respiratory syndrome virus (PRRSV) infection in young swine. Veter. Res. 1999, 30, 629–638. [Google Scholar]
- Cho, J.G.; Deen, J.; Dee, S.A. Influence of isolate pathogenicity on the aerosol transmission of Porcine reproductive and respiratory syndrome virus. Can. J. Vet. Res.-Rev. Can. De Rech. Vet. 2007, 71, 23–27. [Google Scholar]
- Pileri, E.; Mateu, E. Review on the transmission porcine reproductive and respiratory syndrome virus between pigs and farms and impact on vaccination. Vet. Res. 2016, 47, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, C.M.; Medley, G.F.; Green, L.E. Porcine reproductive and respiratory syndrome virus (PRRSV) in GB pig herds: Farm characteristics associated with heterogeneity in seroprevalence. BMC Vet. Res. 2008, 4, 78. [Google Scholar] [CrossRef] [Green Version]
- Linhares, D.C.L.; Cano, J.P.; Wetzell, T.; Nerem, J.; Torremorell, M.; Dee, S.A. Effect of modified-live porcine reproductive and respiratory syndrome virus (PRRSv) vaccine on the shedding of wild-type virus from an infected population of growing pigs. Vaccine 2012, 30, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Van der Linden, I.F.A.; Voermans, J.J.M.; Van der Linde-Bril, E.M.; Bianchi, A.T.; Steverink, P.J. Virological kinetics and immunological responses to a porcine reproductive and respiratory syndrome virus infection of pigs at different ages. Vaccine 2003, 21, 1952–1957. [Google Scholar] [CrossRef]
- Coffman, M.S.; Sanderson, M.W.; Dodd, C.C.; Arzt, J.; Renter, D.G. Estimation of foot-and-mouth disease windborne transmission risk from USA beef feedlots. Prev. Vet. Med. 2021, 195, 105453. [Google Scholar] [CrossRef] [PubMed]
Week | Week Start Date | Number of Participant Farms | No. Infected and Excreting Farms | No. Non-Infected Susceptible Farm Per Week | Newly Infected Excreting Farms | Notes |
---|---|---|---|---|---|---|
Week 1 | 29 March 2017 | 167 | 29 | 138 | 0 | |
Week 2 | 5 April 2017 | 167 | 29 | 138 | 1 | One excreting after Week 1 removed from emitting status given they change outbreak status after Week 1. Another site became infected in Week 2 and started emitting |
Week 3 | 12 April 2017 | 166 * | 35 | 131 | 6 | Six new sites became infected in Week 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanankege, K.S.T.; Graham, K.; Corzo, C.A.; VanderWaal, K.; Perez, A.M.; Durr, P.A. Adapting an Atmospheric Dispersion Model to Assess the Risk of Windborne Transmission of Porcine Reproductive and Respiratory Syndrome Virus between Swine Farms. Viruses 2022, 14, 1658. https://doi.org/10.3390/v14081658
Kanankege KST, Graham K, Corzo CA, VanderWaal K, Perez AM, Durr PA. Adapting an Atmospheric Dispersion Model to Assess the Risk of Windborne Transmission of Porcine Reproductive and Respiratory Syndrome Virus between Swine Farms. Viruses. 2022; 14(8):1658. https://doi.org/10.3390/v14081658
Chicago/Turabian StyleKanankege, Kaushi S. T., Kerryne Graham, Cesar A. Corzo, Kimberly VanderWaal, Andres M. Perez, and Peter A. Durr. 2022. "Adapting an Atmospheric Dispersion Model to Assess the Risk of Windborne Transmission of Porcine Reproductive and Respiratory Syndrome Virus between Swine Farms" Viruses 14, no. 8: 1658. https://doi.org/10.3390/v14081658
APA StyleKanankege, K. S. T., Graham, K., Corzo, C. A., VanderWaal, K., Perez, A. M., & Durr, P. A. (2022). Adapting an Atmospheric Dispersion Model to Assess the Risk of Windborne Transmission of Porcine Reproductive and Respiratory Syndrome Virus between Swine Farms. Viruses, 14(8), 1658. https://doi.org/10.3390/v14081658