Influenza and Universal Vaccine Research in China
Abstract
:1. Introduction
2. Epidemiology of Influenza in China
2.1. Analysis of Influenza Infection and Death Cases in China in Recent Years
2.2. Influenza Virus Subtypes and Seasonal and Regional Characteristics in China
2.3. Influenza Epidemic Causes Disease and Economic Burden
3. Vaccines and Vaccination Status in China
4. Development of Universal Influenza Vaccine
4.1. Hemagglutinin (HA) as an Immunogen for Universal Vaccine Design
4.1.1. Headless HA Vaccine
4.1.2. Chimeric HA Vaccine
4.1.3. Mosaic HA Vaccine
4.1.4. COBRA HA Vaccine
4.2. Neuraminidase (NA) as a Candidate Immunogen for Broad Protection
4.3. Membrane Protein (M2) Extracellular Region (M2e) as a Candidate Universal Immunogen for Vaccine Design
4.4. Nucleoprotein (NP) as a Conserved Immunogen for Universal Vaccines
5. Design of Broad-Spectrum Influenza Vaccines
5.1. Tandem Protein Immunization
5.2. Nanoparticle Presentation
5.3. Virus-like Particles (VLPs) Combination Vaccine
5.4. DNA Vaccine
5.5. mRNA Vaccine
5.6. Subunit Vaccine
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchinson, E.C. Influenza Virus. Trends Microbiol. 2018, 26, 809–810. [Google Scholar] [CrossRef] [PubMed]
- Martini, M.; Gazzaniga, V.; Bragazzi, N.; Barberis, I. The Spanish Influenza Pandemic: A lesson from history 100 years after 1918. J. Prev. Med. Hyg. 2019, 60, E64–E67. [Google Scholar] [CrossRef] [PubMed]
- Akin, L.; Gözel, M.G. Understanding dynamics of pandemics. Turk. J. Med. Sci. 2020, 50, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-T.; Linster, M.; Mendenhall, I.H.; Su, Y.C.F.; Smith, G.J.D. Avian influenza viruses in humans: Lessons from past outbreaks. Br. Med. Bull. 2019, 132, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Eladl, A.H.; Farag, V.M.; El-Shafei, R.A.; Aziza, A.E.; Awadin, W.F.; Arafat, N. Immunological, biochemical and pathological effects of vitamin C and Arabic gum co-administration on H9N2 avian influenza virus vaccinated and challenged laying Japanese quails. BMC Veter Res. 2022, 18, 408. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Eladl, A.H.; Sultan, H.A.; Arafa, A.S.; Razik, A.G.A.; El Rahman, S.A.; El-Azm, K.I.A.; Saif, Y.M.; Lee, C.-W. Antigenic analysis of H5N1 highly pathogenic avian influenza viruses circulating in Egypt (2006–2012). Vet. Microbiol. 2013, 167, 651–661. [Google Scholar] [CrossRef]
- Ali, A.; Ibrahim, M.; Eladl, A.H.; Saif, Y.M.; Lee, C.-W. Enhanced replication of swine influenza viruses in dexamethasone-treated juvenile and layer turkeys. Vet. Microbiol. 2013, 162, 353–359. [Google Scholar] [CrossRef]
- Nachbagauer, R.; Palese, P. Is a Universal Influenza Virus Vaccine Possible? Annu. Rev. Med. 2020, 71, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Nian, X.; Li, X.; Huang, S.; Duan, K.; Li, X.; Yang, X. The Epidemiology of Influenza and the Associated Vaccines Development in China: A Review. Vaccines 2022, 10, 1873. [Google Scholar] [CrossRef]
- Diamond, C.; Gong, H.; Sun, F.Y.; Liu, Y.; Quilty, B.J.; Jit, M.; Yang, J.; Yu, H.; Edmunds, W.J.; Baguelin, M. Regional-based within-year seasonal variations in influenza-related health outcomes across mainland China: A systematic review and spatio-temporal analysis. BMC Med. 2022, 20, 58. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Feng, S.; Chen, T.; Yang, J.; Lau, Y.C.; Peng, Z.; Li, L.; Wang, X.; Wong, J.Y.T.; Qin, Y.; et al. Burden of influenza-associated outpatient influenza-like illness consultations in China, 2006-2015: A population-based study. Influenza Other Respir. Viruses 2020, 14, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Gong, H.; Shen, X.; Yan, H.; Lu, W.Y.; Zhong, G.J.; Dong, K.G.; Yang, J.; Yu, H.J. Estimating the disease burden of seasonal influenza in China, 2006–2019. Zhonghua Yi Xue Za Zhi 2021, 101, 560–567. [Google Scholar] [PubMed]
- Li, L.; Liu, Y.; Wu, P.; Peng, Z.; Wang, X.; Chen, T.; Wong, J.Y.T.; Yang, J.; Bond, H.S.; Wang, L.; et al. Influenza-associated excess respiratory mortality in China, 2010–2015: A population-based study. Lancet Public Health 2019, 4, e473–e481. [Google Scholar] [CrossRef] [Green Version]
- Putri, W.C.; Muscatello, D.J.; Stockwell, M.S.; Newall, A.T. Economic burden of seasonal influenza in the United States. Vaccine 2018, 36, 3960–3966. [Google Scholar] [CrossRef]
- Mo, P.K.H.; Wong, C.H.W.; Lam, E.H.K. Can the Health Belief Model and moral responsibility explain influenza vaccination uptake among nurses? J. Adv. Nurs. 2019, 75, 1188–1206. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Feng, S.; Wang, D. Technical guidelines for seasonal influenza vaccination in China (2022–2023). Zhonghua Yu Fang Yi Xue Za Zhi Chin. J. Prev. Med. 2022, 56, 1356–1386. [Google Scholar]
- Fan, J.; Cong, S.; Wang, N.; Bao, H.; Wang, B.; Feng, Y.; Lv, X.; Zhang, Y.; Zha, Z.; Yu, L.; et al. Influenza vaccination rate and its association with chronic diseases in China: Results of a national cross-sectional study. Vaccine 2020, 38, 2503–2511. [Google Scholar] [CrossRef]
- Ma, Y.; Li, T.; Chen, W.; Chen, J.; Li, M.; Yang, Z. Knowledge, Attitudes and Practices (KAP) toward seasonal influenza vaccine among young workers in South China. Hum. Vaccines Immunother. 2018, 14, 1283–1293. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Chen, J.; Fang, T.; Cui, J.; Li, H.; Ma, R.; Sun, Y.; Li, P.; Dong, H.; Xu, G. Determinants of healthcare workers’ willingness to recommend the seasonal influenza vaccine to diabetic patients: A cross-sectional survey in Ningbo, China. Hum. Vaccines Immunother. 2018, 14, 2979–2986. [Google Scholar] [CrossRef]
- Wang, Q.; Yue, N.; Zheng, M.; Wang, D.; Duan, C.; Yu, X.; Zhang, X.; Bao, C.; Jin, H. Influenza vaccination coverage of population and the factors influencing influenza vaccination in mainland China: A meta-analysis. Vaccine 2018, 36, 7262–7269. [Google Scholar] [CrossRef]
- Li, R.; Xie, R.; Yang, C.; Rainey, J.; Song, Y.; Greene, C. Identifying ways to increase seasonal influenza vaccine uptake among pregnant women in China: A qualitative investigation of pregnant women and their obstetricians. Vaccine 2018, 36, 3315–3322. [Google Scholar] [CrossRef]
- Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; et al. Influenza. Nature reviews. Dis. Prim. 2018, 4, 3. [Google Scholar]
- Nuwarda, R.F.; Alharbi, A.A.; Kayser, V. An Overview of Influenza Viruses and Vaccines. Vaccines 2021, 9, 1032. [Google Scholar] [CrossRef] [PubMed]
- De, A. Molecular evolution of hemagglutinin gene of Influenza A virus. Front. Biosci. 2018, 10, 101–118. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.C.; Wilson, I.A. Influenza Hemagglutinin Structures and Antibody Recognition. Cold Spring Harb. Perspect. Med. 2019, 10, a038778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostolanský, F.; Tomčíková, K.; Briestenská, K.; Mikušová, M.; Varečková, E. Universal anti-influenza vaccines based on viral HA2 and M2e antigens. Acta Virol. 2020, 64, 417–426. [Google Scholar] [CrossRef]
- Angeletti, D.; Yewdell, J.W. Is It Possible to Develop a “Universal” Influenza Virus Vaccine? Outflanking Antibody Immunodominance on the Road to Universal Influenza Vaccination. Cold Spring Harb. Perspect. Biol. 2018, 10, a028852. [Google Scholar] [CrossRef]
- De Vries, R.D.; Herfst, S.; Richard, M. Avian Influenza A Virus Pandemic Preparedness and Vaccine Development. Vaccines 2018, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Gou, X.; Wu, X.; Shi, Y.; Zhang, K.; Huang, J. A systematic review and meta-analysis of cross-reactivity of antibodies induced by H7 influenza vaccine. Hum. Vaccines Immunother. 2019, 16, 286–294. [Google Scholar] [CrossRef]
- Kim, H.; Webster, R.G.; Webby, R.J. Influenza Virus: Dealing with a Drifting and Shifting Pathogen. Viral Immunol. 2018, 31, 174–183. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Zhang, J.; Ly, H. Advances in Development and Application of Influenza Vaccines. Front. Immunol. 2021, 12, 711997. [Google Scholar] [CrossRef]
- Flórido, M.; Chiu, J.; Hogg, P.J. Influenza A Virus Hemagglutinin Is Produced in Different Disulfide-Bonded States. Antioxid. Redox Signal. 2021, 35, 1081–1092. [Google Scholar] [CrossRef] [PubMed]
- Fulvini, A.A.; Tuteja, A.; Le, J.; Pokorny, B.A.; Silverman, J.; Bucher, D. HA1 (Hemagglutinin) quantitation for influenza A H1N1 and H3N2 high yield reassortant vaccine candidate seed viruses by RP-UPLC. Vaccine 2020, 39, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Gamblin, S.J.; Vachieri, S.G.; Xiong, X.; Zhang, J.; Martin, S.R.; Skehel, J.J. Hemagglutinin Structure and Activities. Cold Spring Harb. Perspect. Med. 2021, 11, a038638. [Google Scholar] [CrossRef] [PubMed]
- Sautto, G.A.; Ross, T.M. Hemagglutinin consensus-based prophylactic approaches to overcome influenza virus diversity. Vet. Ital. 2019, 55, 195–201. [Google Scholar]
- Zhang, Q.; Liang, T.; Nandakumar, K.S.; Liu, S. Emerging and state of the art hemagglutinin-targeted influenza virus inhibitors. Expert Opin. Pharmacother. 2020, 22, 715–728. [Google Scholar] [CrossRef]
- Neerukonda, S.N.; Vassell, R.; Weiss, C.D. Neutralizing Antibodies Targeting the Conserved Stem Region of Influenza Hemagglutinin. Vaccines 2020, 8, 382. [Google Scholar] [CrossRef]
- Nachbagauer, R.; Feser, J.; Naficy, A.; Bernstein, D.I.; Guptill, J.; Walter, E.B.; Berlanda-Scorza, F.; Stadlbauer, D.; Wilson, P.C.; Aydillo, T.; et al. A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nat. Med. 2020, 27, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Vogel, O.A.; Manicassamy, B. Broadly Protective Strategies Against Influenza Viruses: Universal Vaccines and Therapeutics. Front. Microbiol. 2020, 11, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nachbagauer, R.; Palese, P. Development of next generation hemagglutinin-based broadly protective influenza virus vaccines. Curr. Opin. Immunol. 2018, 53, 51–57. [Google Scholar] [CrossRef]
- Sun, W.; Kirkpatrick, E.; Ermler, M.; Nachbagauer, R.; Broecker, F.; Krammer, F.; Palese, P. Development of Influenza B Universal Vaccine Candidates Using the “Mosaic” Hemagglutinin Approach. J. Virol. 2019, 93, e00333-19. [Google Scholar] [CrossRef] [Green Version]
- De Jong, N.M.; Aartse, A.; Van Gils, M.J.; Eggink, D. Development of broadly reactive influenza vaccines by targeting the conserved regions of the hemagglutinin stem and head domains. Expert Rev. Vaccines 2020, 19, 563–577. [Google Scholar] [CrossRef]
- Wohlbold, T.J.; Nachbagauer, R.; Margine, I.; Tan, G.S.; Hirsh, A.; Krammer, F. Vaccination with soluble headless hemagglutinin protects mice from challenge with divergent influenza viruses. Vaccine 2015, 33, 3314–3321. [Google Scholar] [CrossRef]
- Corbett, K.S.; Moin, S.M.; Yassine, H.M.; Cagigi, A.; Kanekiyo, M.; Boyoglu-Barnum, S.; Myers, S.I.; Tsybovsky, Y.; Wheatley, A.K.; Schramm, C.A.; et al. Design of Nanoparticulate Group 2 Influenza Virus Hemagglutinin Stem Antigens That Activate Unmutated Ancestor B Cell Receptors of Broadly Neutralizing Antibody Lineages. mBio 2019, 10, e02810-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darricarrère, N.; Qiu, Y.; Kanekiyo, M.; Creanga, A.; Gillespie, R.A.; Moin, S.M.; Saleh, J.; Sancho, J.; Chou, T.-H.; Zhou, Y.; et al. Broad neutralization of H1 and H3 viruses by adjuvanted influenza HA stem vaccines in nonhuman primates. Sci. Transl. Med. 2021, 13, eabe5449. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.-Y.; Wang, S.-C.; Ko, Y.-A.; Lin, K.-I.; Ma, C.; Cheng, T.-J.R.; Wong, C.-H. Chimeric hemagglutinin vaccine elicits broadly protective CD4 and CD8 T cell responses against multiple influenza strains and subtypes. Proc. Natl. Acad. Sci. USA 2020, 117, 17757–17763. [Google Scholar] [CrossRef] [PubMed]
- Kotey, E.N.; Ampofo, W.K.; Daines, R.; Sadeyen, J.-R.; Iqbal, M.; Quaye, O. Immune Response in Mice Immunized with Chimeric H1 Antigens. Vaccines 2021, 9, 1182. [Google Scholar] [CrossRef]
- Corder, B.N.; Bullard, B.L.; DeBeauchamp, J.L.; Ilyushina, N.A.; Webby, R.J.; Weaver, E.A. Influenza H1 Mosaic Hemagglutinin Vaccine Induces Broad Immunity and Protection in Mice. Vaccines 2019, 7, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Strohmeier, S.; González-Domínguez, I.; Tan, J.; Simon, V.; Krammer, F.; García-Sastre, A.; Palese, P.; Sun, W. Mosaic Hemagglutinin-Based Whole Inactivated Virus Vaccines Induce Broad Protection Against Influenza B Virus Challenge in Mice. Front. Immunol. 2021, 12, 746447. [Google Scholar] [CrossRef] [PubMed]
- Reneer, Z.B.; Skarlupka, A.L.; Jamieson, P.J.; Ross, T.M. Broadly Reactive H2 Hemagglutinin Vaccines Elicit Cross-Reactive Antibodies in Ferrets Preimmune to Seasonal Influenza A Viruses. Msphere 2021, 6, e00052-21. [Google Scholar] [CrossRef]
- Huang, Y.; França, M.; Allen, J.; Shi, H.; Ross, T. Next Generation of Computationally Optimized Broadly Reactive HA Vaccines Elicited Cross-Reactive Immune Responses and Provided Protection against H1N1 Virus Infection. Vaccines 2021, 9, 793. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.D.; Ross, T.M. Evaluation of Next-Generation H3 Influenza Vaccines in Ferrets Pre-Immune to Historical H3N2 Viruses. Front. Immunol. 2021, 12, 707339. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Dai, M.; Li, Z.; Boons, G.-J.; Peeters, B.; van Kuppeveld, F.J.M.; de Vries, E.; de Haan, C.A.M. Substrate Binding by the Second Sialic Acid-Binding Site of Influenza A Virus N1 Neuraminidase Contributes to Enzymatic Activity. J. Virol. 2018, 92, e01243-18. [Google Scholar] [CrossRef] [PubMed]
- Kožíšek, M.; Navrátil, V.; Rojíková, K.; Pokorná, J.; Berenguer Albiñana, C.; Pachl, P.; Zemanová, J.; Machara, A.; Šácha, P.; Hudlický, J.; et al. DNA-linked inhibitor antibody assay (DIANA) as a new method for screening influenza neuraminidase inhibitors. Biochem. J. 2018, 475, 3847–3860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, R.; Cui, Q.; Rong, L. Competitive Cooperation of Hemagglutinin and Neuraminidase during Influenza A Virus Entry. Viruses 2019, 11, 458. [Google Scholar] [CrossRef] [Green Version]
- Broecker, F.; Zheng, A.; Suntronwong, N.; Sun, W.; Bailey, M.J.; Krammer, F.; Palese, P. Extending the Stalk Enhances Immunogenicity of the Influenza Virus Neuraminidase. J. Virol. 2019, 93, e00840-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evteev, S.; Nilov, D.; Polenova, A.; Švedas, V. Bifunctional Inhibitors of Influenza Virus Neuraminidase: Molecular Design of a Sulfonamide Linker. Int. J. Mol. Sci. 2021, 22, 13112. [Google Scholar] [CrossRef]
- Liu, X.; Luo, W.; Zhang, B.; Lee, Y.G.; Shahriar, I.; Srinivasarao, M.; Low, P.S. Design of Neuraminidase-Targeted Imaging and Therapeutic Agents for the Diagnosis and Treatment of Influenza Virus Infections. Bioconjugate Chem. 2021, 32, 1548–1553. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Si, H.; Yu, Z.; Tian, S.; Xiang, R.; Deng, X.; Liang, R.; Jiang, S.; Yu, F. Influenza virus glycoprotein-reactive human monoclonal antibodies. Microbes Infect. 2020, 22, 263–271. [Google Scholar] [CrossRef]
- Kim, K.-H.; Lee, Y.-T.; Park, S.; Jung, Y.-J.; Lee, Y.; Ko, E.-J.; Kim, Y.-J.; Li, X.; Kang, S.-M. Neuraminidase expressing virus-like particle vaccine provides effective cross protection against influenza virus. Virology 2019, 535, 179–188. [Google Scholar] [CrossRef]
- Strohmeier, S.; Amanat, F.; Zhu, X.; McMahon, M.; Deming, M.E.; Pasetti, M.F.; Neuzil, K.M.; Wilson, I.A.; Krammer, F. A Novel Recombinant Influenza Virus Neuraminidase Vaccine Candidate Stabilized by a Measles Virus Phosphoprotein Tetramerization Domain Provides Robust Protection from Virus Challenge in the Mouse Model. mBio 2021, 12, e02241-21. [Google Scholar] [CrossRef] [PubMed]
- Skarlupka, A.L.; Bebin-Blackwell, A.-G.; Sumner, S.F.; Ross, T.M. Universal Influenza Virus Neuraminidase Vaccine Elicits Protective Immune Responses against Human Seasonal and Pre-pandemic Strains. J. Virol. 2021, 95, JVI0075921. [Google Scholar] [CrossRef]
- Mezhenskaya, D.; Isakova-Sivak, I.; Rudenko, L. M2e-based universal influenza vaccines: A historical overview and new approaches to development. J. Biomed. Sci. 2019, 26, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnavajhala, H.R.; Williams, J.; Heidner, H. An influenza A virus vaccine based on an M2e-modified alphavirus. Arch. Virol. 2017, 163, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Gomes, K.B.; D’Sa, S.; Allotey-Babington, G.L.; Kang, S.-M.; D’Souza, M.J. Transdermal Vaccination with the Matrix-2 Protein Virus-like Particle (M2e VLP) Induces Immunity in Mice against Influenza A Virus. Vaccines 2021, 9, 1324. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, C.; Zhang, J.; Yu, R.; Su, Z. Design, Synthesis and Primary Immunologic Evaluation of M2e-CRM197 Conjugate as a Universal Influenza Vaccine Candidate. Curr. Pharm. Biotechnol. 2021, 22, 1910–1918. [Google Scholar] [CrossRef] [PubMed]
- Ingrole, R.S.; Tao, W.; Joshi, G.; Gill, H.S. M2e conjugated gold nanoparticle influenza vaccine displays thermal stability at elevated temperatures and confers protection to ferrets. Vaccine 2021, 39, 4800–4809. [Google Scholar] [CrossRef] [PubMed]
- Knight, M.L.; Fan, H.; Bauer, D.L.V.; Grimes, J.M.; Fodor, E.; Keown, J.R. Structure of an H3N2 influenza virus nucleoprotein. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2021, 77, 208–214. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Kang, J.-O.; Chang, J. Nucleoprotein vaccine induces cross-protective cytotoxic T lymphocytes against both lineages of influenza B virus. Clin. Exp. Vaccine Res. 2019, 8, 54–63. [Google Scholar] [CrossRef]
- Del Campo, J.; Bouley, J.; Chevandier, M.; Rousset, C.; Haller, M.; Indalecio, A.; Guyon-Gellin, D.; Le Vert, A.; Hill, F.; Djebali, S.; et al. OVX836 Heptameric Nucleoprotein Vaccine Generates Lung Tissue-Resident Memory CD8+ T-Cells for Cross-Protection Against Influenza. Frontiers in immunology 2021, 12, 678483. [Google Scholar] [CrossRef]
- Withanage, K.; De Coster, I.; Cools, N.; Viviani, S.; Tourneur, J.; Chevandier, M.; Lambiel, M.; Willems, P.; Le Vert, A.; Nicolas, F.; et al. Phase 1 Randomized, Placebo-Controlled, Dose-Escalating Study to Evaluate OVX836, a Nucleoprotein-Based Influenza Vaccine: Intramuscular Results. J. Infect. Dis. 2021, 226, 119–127. [Google Scholar] [CrossRef]
- Erbelding, E.J.; Post, D.J.; Stemmy, E.J.; Roberts, P.C.; Augustine, A.D.; Ferguson, S.; Paules, C.I.; Graham, B.S.; Fauci, A.S. A Universal Influenza Vaccine: The Strategic Plan for the National Institute of Allergy and Infectious Diseases. J. Infect. Dis. 2018, 218, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Golchin, M.; Moghadaszadeh, M.; Tavakkoli, H.; Ghanbarpour, R.; Dastmalchi, S. Recombinant M2e-HA2 fusion protein induced immunity responses against intranasally administered H9N2 influenza virus. Microb. Pathog. 2018, 115, 183–188. [Google Scholar] [CrossRef]
- Farahmand, B.; Taheri, N.; Shokouhi, H.; Soleimanjahi, H.; Fotouhi, F. Chimeric protein consisting of 3M2e and HSP as a universal influenza vaccine candidate: From in silico analysis to preliminary evaluation. Virus Genes 2018, 55, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Kwak, C.; Nguyen, Q.T.; Kim, J.; Kim, T.-H.; Poo, T.-H.K.A.H. Influenza Chimeric Protein (3M2e-3HA2-NP) Adjuvanted with PGA/Alum Confers Cross-Protection against Heterologous Influenza A Viruses. J. Microbiol. Biotechnol. 2021, 31, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Dunkle, L.M.; Izikson, R.; Patriarca, P.A.; Goldenthal, K.L.; Cox, M.; Treanor, J.J. Safety and Immunogenicity of a Recombinant Influenza Vaccine: A Randomized Trial. Pediatrics 2018, 141, e20173021. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Li, Z.; Yang, Y.; Ma, G.; Su, Z.; Zhang, S. An Apoferritin–Hemagglutinin Conjugate Vaccine with Encapsulated Nucleoprotein Antigen Peptide from Influenza Virus Confers Enhanced Cross Protection. Bioconjugate Chem. 2020, 31, 1948–1959. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Dong, C.; Gonzalez, G.X.; Song, Y.; Zhu, W.; Kim, J.; Wei, L.; Wang, B.-Z. Influenza NP core and HA or M2e shell double-layered protein nanoparticles induce broad protection against divergent influenza A viruses. Nanomed. Nanotechnol. Biol. Med. 2021, 40, 102479. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, S.; Jin, S.; Pan, Y.; Shi, Y.; Kong, W.; Shan, Y. A self-assembling nanoparticle vaccine targeting the conserved epitope of influenza virus hemagglutinin stem elicits a cross-protective immune response. Nanoscale 2022, 14, 3250–3260. [Google Scholar] [CrossRef]
- Boyoglu-Barnum, S.; Ellis, D.; Gillespie, R.A.; Hutchinson, G.B.; Park, Y.-J.; Moin, S.M.; Acton, O.J.; Ravichandran, R.; Murphy, M.; Pettie, D.; et al. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature 2021, 592, 623–628. [Google Scholar] [CrossRef]
- Bailey-Hytholt, C.M.; Ghosh, P.; Dugas, J.; Zarraga, I.E.; Bandekar, A. Formulating and Characterizing Lipid Nanoparticles for Gene Delivery using a Microfluidic Mixing Platform. J. Vis. Exp. 2021, 168, e62226. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2020, 20, 101–124. [Google Scholar] [CrossRef]
- Mukherjee, A.; Waters, A.K.; Kalyan, P.; Achrol, A.S.; Kesari, S.; Yenugonda, V.M. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives. Int. J. Nanomed. 2019, 14, 1937–1952. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, Y.; Tan, C.; Ling, M.; Li, X.; Wang, W.; Cong, Y. Preparation and evaluation of virus-like particle vaccine against H3N8 subtype equine influenza. Microb. Pathog. 2021, 157, 104885. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, Q.; Peng, P.; Li, R.; Li, J.; Wang, X.; Gu, M.; Hu, Z.; Hu, S.; Liu, X.; et al. Baculovirus-derived influenza virus-like particle confers complete protection against lethal H7N9 avian influenza virus challenge in chickens and mice. Vet. Microbiol. 2021, 264, 109306. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, R.; Zhang, Q.; Peng, P.; Wang, X.; Gu, M.; Hu, Z.; Jiao, X.; Peng, D.; Hu, J.; et al. H7N9 influenza virus-like particle based on BEVS protects chickens from lethal challenge with highly pathogenic H7N9 avian influenza virus. Vet. Microbiol. 2021, 258, 109106. [Google Scholar] [CrossRef]
- Keshavarz, M.; Namdari, H.; Arjeini, Y.; Mirzaei, H.; Salimi, V.; Sadeghi, A.; Mokhtari-Azad, T.; Rezaei, F. Induction of protective immune response to intranasal administration of influenza virus-like particles in a mouse model. J. Cell. Physiol. 2019, 234, 16643–16652. [Google Scholar] [CrossRef] [PubMed]
- Reiter, K.; Aguilar, P.P.; Grammelhofer, D.; Joseph, J.; Steppert, P.; Jungbauer, A. Separation of influenza virus-like particles from baculovirus by polymer-grafted anion exchanger. J. Sep. Sci. 2020, 43, 2270–2278. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Li, Z.; Yang, Y.; Ma, X.; An, W.; Ma, G.; Su, Z.; Zhang, S. A biomimetic VLP influenza vaccine with interior NP/exterior M2e antigens constructed through a temperature shift-based encapsulation strategy. Vaccine 2020, 38, 5987–5996. [Google Scholar] [CrossRef]
- Pushko, P.; Tretyakova, I. Influenza Virus Like Particles (VLPs): Opportunities for H7N9 Vaccine Development. Viruses 2020, 12, 518. [Google Scholar] [CrossRef]
- Durous, L.; Rosa-Calatrava, M.; Petiot, E. Advances in influenza virus-like particles bioprocesses. Expert Rev. Vaccines 2019, 18, 1285–1300. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, T.; Tanijima, T.; Hirose, A.; Masumi-Koizumi, K.; Katsuda, T.; Yamaji, H. Production of influenza virus-like particles using recombinant insect cells. Biochem. Eng. J. 2020, 163, 107757. [Google Scholar] [CrossRef] [PubMed]
- Guilfoyle, K.; Major, D.; Skeldon, S.; James, H.; Tingstedt, J.L.; Polacek, C.; Lassauniére, R.; Engelhardt, O.G.; Fomsgaard, A. Protective efficacy of a polyvalent influenza A DNA vaccine against both homologous (H1N1pdm09) and heterologous (H5N1) challenge in the ferret model. Vaccine 2021, 39, 4903–4913. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, H.; Chen, J.; Shao, Z.; He, B.; Chen, J.; Lan, J.; Chen, Q.; Chen, Z. Protection against homo and hetero-subtypic influenza A virus by optimized M2e DNA vaccine. Emerg. Microbes Infect. 2019, 8, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Y.; Jin, S.; Nie, J.; Chang, Y.; Wang, B.; Guan, S.; Li, Q.; Shi, Y.; Kong, W.; Shan, Y. Hemagglutinin-based DNA vaccines containing trimeric self-assembling nanoparticles confer protection against influenza. J. Leukoc. Biol. 2022, 112, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Izzard, L.; Hurt, A.C. A Review of DNA Vaccines Against Influenza. Front. Immunol. 2018, 9, 1568. [Google Scholar] [CrossRef] [Green Version]
- Andersen, T.K.; Bodin, J.; Oftung, F.; Bogen, B.; Mjaaland, S.; Grødeland, G. Pandemic Preparedness Against Influenza: DNA Vaccine for Rapid Relief. Front. Immunol. 2021, 12, 747032. [Google Scholar] [CrossRef]
- Jackson, N.A.C.; Kester, K.E.; Casimiro, D.; Gurunathan, S.; DeRosa, F. The promise of mRNA vaccines: A biotech and industrial perspective. npj Vaccines 2020, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, X.; Qi, Y.; Wang, M.; Yu, N.; Nan, F.; Zhang, H.; Tian, M.; Li, C.; Lu, H.; Jin, N. mRNA Vaccines Encoding the HA Protein of Influenza A H1N1 Virus Delivered by Cationic Lipid Nanoparticles Induce Protective Immune Responses in Mice. Vaccines 2020, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Freyn, A.W.; da Silva, J.R.; Rosado, V.C.; Bliss, C.M.; Pine, M.; Mui, B.L.; Tam, Y.K.; Madden, T.D.; Ferreira, L.C.D.S.; Weissman, D.; et al. A Multi-Targeting, Nucleoside-Modified mRNA Influenza Virus Vaccine Provides Broad Protection in Mice. Mol. Ther. 2020, 28, 1569–1584. [Google Scholar] [CrossRef]
- Chivukula, S.; Plitnik, T.; Tibbitts, T.; Karve, S.; Dias, A.; Zhang, D.; Goldman, R.; Gopani, H.; Khanmohammed, A.; Sarode, A.; et al. Development of multivalent mRNA vaccine candidates for seasonal or pandemic influenza. npj Vaccines 2021, 6, 153. [Google Scholar] [CrossRef] [PubMed]
- Shartouny, J.R.; Lowen, A.C. Message in a bottle: mRNA vaccination for influenza. J. Gen. Virol. 2022, 103, 001765. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Srivastava, V.; Baindara, P.; Ahmad, A. Thermostable vaccines: An innovative concept in vaccine development. Expert Rev. Vaccines 2022, 21, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Rosa, S.S.; Prazeres, D.M.F.; Azevedo, A.M.; Marques, M.P.C. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine 2021, 39, 2190–2200. [Google Scholar] [CrossRef]
- Kon, E.; Elia, U.; Peer, D. Principles for designing an optimal mRNA lipid nanoparticle vaccine. Curr. Opin. Biotechnol. 2021, 73, 329–336. [Google Scholar] [CrossRef]
- Saleh, M.; Nowroozi, J.; Farahmand, B.; Fotouhi, F. An approach to the influenza chimeric subunit vaccine (3M2e-HA2-NP) provides efficient protection against lethal virus challenge. Biotechnol. Lett. 2020, 42, 1147–1159. [Google Scholar] [CrossRef]
- Jafari, D.; Malih, S.; Gomari, M.M.; Safari, M.; Jafari, R.; Farajollahi, M.M. Designing a chimeric subunit vaccine for influenza virus, based on HA2, M2e and CTxB: A bioinformatics study. BMC Cell Biol. 2020, 21, 89. [Google Scholar] [CrossRef]
- Sharma, S.; Kumari, V.; Kumbhar, B.V.; Mukherjee, A.; Pandey, R.; Kondabagil, K. Immunoinformatics approach for a novel multi-epitope subunit vaccine design against various subtypes of Influenza A virus. Immunobiology 2021, 226, 152053. [Google Scholar] [CrossRef]
- Pilkington, E.H.; Suys, E.J.; Trevaskis, N.L.; Wheatley, A.K.; Zukancic, D.; Algarni, A.; Al-Wassiti, H.; Davis, T.P.; Pouton, C.W.; Kent, S.J.; et al. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater. 2021, 131, 16–40. [Google Scholar] [CrossRef]
- Linares-Fernández, S.; Lacroix, C.; Exposito, J.-Y.; Verrier, B. Tailoring mRNA Vaccine to Balance Innate/Adaptive Immune Response. Trends Mol. Med. 2019, 26, 311–323. [Google Scholar] [CrossRef]
Manufacture | Type of Vaccine | Inoculation Method | Specifications | Doses of Vaccination | Applicable People | |
---|---|---|---|---|---|---|
Trivalent influenza vaccine | SINOVAC BIOTECH CO., LTD. | Inactivated split | Intramuscular | 0.25 mL | 2 | 6~35 months |
0.5 mL | 1 | ≥3 years old | ||||
Changchun Institute Of Biological Products Co., Ltd | Inactivated split | Intramuscular | 0.25 ml | 2 | 6~35 months | |
Aleph Biomedical Company Limited | Inactivated split | Intramuscular | 0.25 mL | 2 | 6~35 months | |
0.5 mL | 1 | ≥3 years old | ||||
HUALAN BIOLOGICAL ENGINEERING, INC. | Inactivated split | Intramuscular | 0.5 mL | 1 | ≥3 years old | |
Shenzhen Sanofi Pasteur Biological Products Co., Ltd. | Inactivated split | Intramuscular | 0.25 mL | 2 | 6~35 months | |
0.5 mL | 1 | ≥3 years old | ||||
Zhongyianke Biotech.Co., Ltd. | Subunit | Intramuscular | 0.5 mL | 1 | ≥3 years old | |
Changchun Bcht Biotechnology Co. | Live attenuated | Nasal spray | 0.2 mL | 1 | 3~17 years old | |
Quadrivalent influenza vaccine | SINOVAC BIOTECH CO., LTD. | Inactivated split | Intramuscular | 0.5 mL | 1 | ≥3 years old |
Changchun Institute Of Biological Products Co., Ltd. | Inactivated split | Intramuscular | 0.5 mL | 1 | ≥3 years old | |
ADIMMUNE Corporation | Inactivated split | Intramuscular | 0.5 mL | 1 | ≥3 years old | |
HUALAN BIOLOGICAL ENGINEERING, INC. | Inactivated split | Intramuscular | 0.25 mL | 2 | 6~35 months | |
0.5 mL | 1 | ≥3 years old | ||||
Jiangsu GDK Biotechnology Co., LTD. | Inactivated split | Intramuscular | 0.5 mL | 1 | ≥3 years old | |
Shanghai Institute of Biological Products Co., Ltd. | Inactivated split | Intramuscular | 0.5 mL | 1 | ≥3 years old | |
WUHAN INSTITUTE OF BIOLOGICAL PRODUCTS CO., LTD. | Inactivated split | Intramuscular | 0.5 mL | 1 | ≥3 years old |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, Y.; Zhang, X.; Liu, L. Influenza and Universal Vaccine Research in China. Viruses 2023, 15, 116. https://doi.org/10.3390/v15010116
Li J, Zhang Y, Zhang X, Liu L. Influenza and Universal Vaccine Research in China. Viruses. 2023; 15(1):116. https://doi.org/10.3390/v15010116
Chicago/Turabian StyleLi, Jiali, Yifan Zhang, Xinglong Zhang, and Longding Liu. 2023. "Influenza and Universal Vaccine Research in China" Viruses 15, no. 1: 116. https://doi.org/10.3390/v15010116
APA StyleLi, J., Zhang, Y., Zhang, X., & Liu, L. (2023). Influenza and Universal Vaccine Research in China. Viruses, 15(1), 116. https://doi.org/10.3390/v15010116