Effectiveness of a Phage Cocktail as a Potential Biocontrol Agent against Saprophytic Bacteria in Ready-To-Eat Plant-Based Food
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material
2.2. Evaluation of the Microbiological Quality of the Tested Minimally Processed Plant-Based Food Products
2.3. Taxonomic Identification of the Isolated Bacterial Strains
2.4. Antimicrobial Sensitivity Testing
2.5. Screening for Phenotypic Detection of β–Lactamases-Producing Bacterial Strains
2.6. Bacteriophage Isolation, Purification, and Propagation
2.7. Evaluation of the Lytic Activity of Phages against Bacterial Hosts
2.8. Application of the Phage Cocktail to the Analyzed RTE Food Products
2.9. Statistical Analyses
3. Results and Discussion
3.1. Evaluation of the Microbiological Quality of the Tested Minimally Processed Plant-Based Food Products
3.2. Taxonomic Identification of the Isolated Bacterial Strains
3.3. Antimicrobial Sensitivity Testing and Screening for Phenotypic Detection of β–Lactamases-Producing Bacterial Strains
3.4. Evaluation of the Lytic Activity of Phages against Bacterial Hosts
3.5. Application of the Phage Cocktail to the Analyzed RTE Food Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miteluț, A.C.; Popa, E.E.; Drăghici, M.C.; Popescu, P.A.; Popa, V.I.; Bujor, O.-C.; Ion, V.A.; Popa, M.E. Latest Developments in Edible Coatings on Minimally Processed Fruits and Vegetables: A Review. Foods 2021, 10, 2821. [Google Scholar] [CrossRef]
- Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent advances on polysaccharides, lipids and protein-based edible films and coatings: A review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Sachadyn-Król, M.; Varzakas, T. Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects. Microorganisms 2020, 8, 952. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Esparza, L.M.; González-Aguilar, G.A.; Domínguez-Ávila, J.A.; Olmos-Cornejo, J.E.; Pérez-Larios, A.; Montalvo-González, E. Effects of minimal processing technologies on jackfruit (Artocarpus heterophyllus Lam.) quality parameters. Food Bioprocess Tech. 2018, 11, 1761–1774. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wang, L.H.; Zeng, X.A.; Han, Z.; Brennan, C.S. Non-thermal technologies and its current and future application in the food industry: A review. Int. J. Food Sci. Tech. 2019, 54, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.Z.; Mujumdar, A.S.; Zhang, Q.; Yang, X.H.; Wang, J.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes—A comprehensive review. Crit. Rev. Food Sci. 2019, 59, 1408–1432. [Google Scholar] [CrossRef]
- Nicolau-Lapeña, I.; Lafarga, T.; Viñas, I.; Abadias, M.; Bobo, G.; Aguiló-Aguayo, I. Ultrasound Processing Alone or in Combination with Other Chemical or Physical Treatments as a Safety and Quality Preservation Strategy of Fresh and Processed Fruits and Vegetables: A Review. Food Bioprocess Tech. 2019, 12, 1452–1471. [Google Scholar] [CrossRef]
- Bansal, V.; Jabeen, K.; Rao, P.S.; Prasad, P.; Yadav, S.K. Effect of high pressure processing (HPP) on microbial safety, physicochemical properties, and bioactive compounds of whey-based sweet lime (whey-lime) beverage. Food Measure 2019, 13, 454–465. [Google Scholar] [CrossRef]
- Soni, M.; Maurya, A.; Das, S.; Prasad, J.; Yadav, A.; Singh, V.K.; Singh, B.K.; Dubey, N.K.; Dwivedy, A.K. Nanoencapsulation strategies for improving nutritional functionality, safety and delivery of plant-based foods: Recent updates and future opportunities. Plant Nano Biol. 2022, 1, 100004. [Google Scholar] [CrossRef]
- De Corato, U. Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Crit. Rev. Food Sci. 2020, 60, 940–975. [Google Scholar] [CrossRef] [PubMed]
- Leneveu-Jenvrin, C.; Charles, F.; Barba, F.J.; Remize, F. Role of biological control agents and physical treatments in maintaining the quality of fresh and minimally-processed fruit and vegetables. Crit. Rev. Food Sci. 2020, 60, 2837–2855. [Google Scholar] [CrossRef]
- Ikbal, A.; Chowdhury, S.; Roy, S.; Mandal, R. Sous-vide: A Modern Cook-Chill Technique in Seafood Packaging. Biot. Res. Today 2021, 3, 566–569. [Google Scholar]
- Porębska, I.; Sokołowska, B.; Skąpska, S.; Rzoska, S.J. Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice. Food Control. 2017, 73, 24–30. [Google Scholar] [CrossRef]
- Sourri, P.; Argyri, A.A.; Nychas, G.-J.E.; Tassou, C.C.; Panagou, E.Z. The Effect of Temperature-Assisted High Hydrostatic Pressure on the Survival of Alicyclobacillus acidoterrestris Inoculated in Orange Juice throughout Storage at Different Isothermal Conditions. Fermentation 2022, 8, 308. [Google Scholar] [CrossRef]
- Sourri, P.; Tassou, C.C.; Nychas, G.-J.E.; Panagou, E.Z. Fruit Juice Spoilage by Alicyclobacillus: Detection and Control Methods—A Comprehensive Review. Foods 2022, 11, 747. [Google Scholar] [CrossRef] [PubMed]
- Sourri, P.; Argyri, A.A.; Panagou, E.Z.; Nychas, G.-J.E.; Tassou, C.C. Alicyclobacillus acidoterrestris Strain Variability in the Inactivation Kinetics of Spores in Orange Juice by Temperature-Assisted High Hydrostatic Pressure. Appl. Sci. 2020, 10, 7542. [Google Scholar] [CrossRef]
- Yamamoto, K.; Zhang, X.; Inaoka, T.; Morimatsu, K.; Kimura, K.; Nakaura, Y. Bacterial injury induced by high hydrostatic pressure. Food Eng. Rev. 2021, 13, 442–453. [Google Scholar] [CrossRef]
- Christie, G.; Setlow, P. Bacillus spore germination: Knowns, unknowns and what we need to learn. Cell. Signal. 2020, 74, 109729. [Google Scholar] [CrossRef]
- Tirpanalan, O.; Zunabovic, M.; Domig, K.J.; Kneifel, W. Mini review: Antimicrobial strategies in the production of fresh-cut lettuce products. Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 1, 176–188. [Google Scholar]
- Wójcicki, M.; Średnicka, P.; Błażejak, S.; Gientka, I.; Kowalczyk, M.; Emanowicz, P.; Świder, O.; Sokołowska, B.; Juszczuk-Kubiak, E. Characterization and Genome Study of Novel Lytic Bacteriophages against Prevailing Saprophytic Bacterial Microflora of Minimally Processed Plant-Based Food Products. Int. J. Mol. Sci. 2021, 22, 12460. [Google Scholar] [CrossRef]
- Gientka, I.; Wójcicki, M.; Żuwalski, A.W.; Błażejak, S. Use of phage cocktail for improving the overall microbiological quality of sprouts—Two methods of application. Appl. Microbiol. 2021, 1, 289–303. [Google Scholar] [CrossRef]
- Wójcicki, M.; Żuwalski, A.W.; Świder, O.; Gientka, I.; Shymialevich, D.; Błażejak, S. The use of bacteriophages against saprophytic mesophilic bacteria in minimally processed food. Acta Sci. Pol. Technol. Aliment. 2021, 20, 473–484. [Google Scholar]
- Ohshima, T.; Tanino, T.; Guionet, A.; Takahashi, K.; Takaki, K. Mechanism of pulsed electric field enzyme activity change and pulsed discharge permeabilization of agricultural products. Jpn. J. Appl. Phys. 2021, 60, 060501. [Google Scholar] [CrossRef]
- Soltanzadeh, M.; Peighambardoust, S.H.; Gullon, P.; Hesari, J.; Gullón, B.; Alirezalu, K.; Lorenzo, J. Quality aspects and safety of pulsed electric field (PEF) processing on dairy products: A comprehensive review. Food Rev. Int. 2020, 38, 96–117. [Google Scholar] [CrossRef]
- Takaki, K.; Takahashi, K.; Guionet, A.; Ohshima, T. Pulsed Power Applications for Protein Conformational Change and the Permeabilization of Agricultural Products. Molecules 2021, 26, 6288. [Google Scholar] [CrossRef]
- Koukounaras, A.; Siomos, A.S.; Gerasopoulos, D.; Papachristodoulou, M. Active modified atmosphere package induced a new physiological disorder of minimally processed romaine lettuce leaves. Food Packag. Shelf Life 2019, 22, 100411. [Google Scholar] [CrossRef]
- Haque, M.; Asaduzzaman, M.; Mahomud, M.; Alam, M.; Khaliduzzaman, A.; Pattadar, S.N.; Ahmmed, R. High carbon-di-oxide modified atmospheric packaging on quality of ready-to-eat minimally processed fresh-cut iceberg lettuce. Food Sci. Biotechnol. 2021, 30, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Firouz, M.S.; Alimardani, R.; Mobli, H.; Mohtasebi, S.S. Effect of modified atmosphere packaging on the mechanical properties of lettuce during shelf life in cold storage. Inf. Process. Agric. 2021, 8, 485–493. [Google Scholar]
- Wójcicki, M.; Błażejak, S.; Gientka, I.; Brzezicka, K. The concept of using bacteriophages to improve the microbiological quality of minimally processed foods. Acta Sci. Pol. Technol. Aliment. 2019, 18, 373–383. [Google Scholar] [PubMed] [Green Version]
- Asare, P.T.; Greppi, A.; Stettler, M.; Schwab, C.; Stevens, M.J.A.; Lacroix, C. Decontamination of minimally-processed fresh lettuce using reuterin produced by Lactobacillus reuteri. Front. Microbiol. 2018, 9, 1421. [Google Scholar] [CrossRef]
- Tumbarski, Y.; Nikolova, R.; Petkova, N.; Ivanov, I.; Lante, A. Biopreservation of fresh strawberries by carboxymethyl cellulose edible coatings enriched with a bacteriocin from Bacillus methylotrophicus BM47. Food Technol. Biotechnol. 2019, 57, 230–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cieślik, M.; Harhala, M.; Orwat, F.; Dąbrowska, K.; Górski, A.; Jończyk-Matysiak, E. Two Newly Isolated Enterobacter-Specific Bacteriophages: Biological Properties and Stability Studies. Viruses 2022, 14, 1518. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.; Hill, C. Overcoming barriers to phage application in food and feed. Curr. Opin. Biotechnol. 2020, 61, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Zinno, P.; Devirgiliis, C.; Ercolini, D.; Ongeng, D.; Mauriello, G. Bacteriophage P22 to challenge Salmonella in foods. Int. J. Food Microbiol. 2014, 191, 69–74. [Google Scholar] [CrossRef]
- Połaska, M.; Sokołowska, B. Bacteriophages—A new hope or huge problem in the food industry. AIMS Microbiol. 2019, 5, 324–346. [Google Scholar] [CrossRef]
- Fernández, L.; Gutiérrez, D.; Rodríguez, A.; García, P. Application of bacteriophages in the agro-food sector: A long way toward approval. Front. Cell. Infect. Microbiol. 2018, 8, 296. [Google Scholar] [CrossRef] [Green Version]
- Osei, E.K.; Mahony, J.; Kenny, J.G. From Farm to Fork: Streptococcus suis as a Model for the Development of Novel Phage-Based Biocontrol Agents. Viruses 2022, 14, 1996. [Google Scholar] [CrossRef]
- Moye, Z.D.; Woolston, J.; Sulakvelidze, A. Bacteriophage application for food production and processing. Viruses 2018, 10, 205. [Google Scholar] [CrossRef] [Green Version]
- Svircev, A.; Roach, D.; Castle, A. Framing the future with bacteriophages in agriculture. Viruses 2018, 10, 218. [Google Scholar] [CrossRef] [Green Version]
- Jakobsen, R.R.; Trinh, J.T.; Bomholtz, L.; Brok-Lauridsen, S.K.; Sulakvelidze, A.; Nielsen, D.S. A Bacteriophage Cocktail Significantly Reduces Listeria monocytogenes without Deleterious Impact on the Commensal Gut Microbiota under Simulated Gastrointestinal Conditions. Viruses 2022, 14, 190. [Google Scholar] [CrossRef]
- Kahn, L.H.; Bergeron, G.; Bourassa, M.W.; De Vegt, B.; Gill, J.; Gomes, F.; Malouin, F.; Opengart, K.; Ritter, G.D.; Singer, R.S.; et al. From farm management to bacteriophage therapy: Strategies to reduce antibiotic use in animal agriculture. Ann. N. Y. Acad. Sci. 2019, 1441, 31–39. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Evaluation of the safety and efficacy of ListexTM P100 for reduction of pathogens on different ready–to–eat (RTE) food products. EFSA Panel on Biological Hazards. EFSA J. 2016, 14, 1–94. [Google Scholar]
- Lewis, R.; Bolocan, A.S.; Draper, L.A.; Ross, R.P.; Hill, C. The effect of a commercially available bacteriophage and bacteriocin on Listeria monocytogenes in Coleslaw. Viruses 2019, 11, 977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guenther, S.; Huwyler, D.; Richard, S.; Loessner, M. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready–to–eat foods. Appl. Environ. Microbiol. 2009, 75, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Melcon, C.; Capita, R.; Garcia-Fernandez, C.; Alonso-Calleja, C. Effects of bacteriophage P100 at different concentrations on the structural parameters of Listeria monocytogenes biofilms. J. Food Protect. 2018, 81, 2040–2044. [Google Scholar] [CrossRef] [PubMed]
- Şanlıbaba, P.; Buzrul, S. Control of Listeria monocytogenes in milk by using phage cocktail. Sci. Agropecu. 2022, 13, 7–14. [Google Scholar] [CrossRef]
- Liao, N.; Borges, C.A.; Rubin, J.; Hu, Y.; Ramirez, H.A.; Chen, J.; Zhou, B.; Zhang, Y.; Zhang, R.; Jiang, J.; et al. Prevalence of β-lactam drug-resistance genes in Escherichia coli contaminating ready-to-eat lettuce. Foodborne Pathog. Dis. 2020, 17, 739–742. [Google Scholar] [CrossRef]
- Alexa, E.A.; Walsh, C.J.; Coughlan, L.M.; Awad, A.; Simon, C.A.; Ruiz, L.; Crispie, F.; Cotter, P.D.; Alvarez-Ordóñez, A. Dairy products and dairy-processing environments as a reservoir of antibiotic resistance and quorum-quenching determinants as revealed through functional metagenomics. MSystems 2020, 5, e00723-19. [Google Scholar]
- Lykov, I.N.; Kakharova, M.A.; Kureber, V.S.; Yurova, A.E. Research of antibiotic resistance of microorganisms isolated from fruits and vegetables. IOP Conf. Ser. Earth Environ. Sci. 2021, 839, 042003. [Google Scholar] [CrossRef]
- Oniciuc, E.A.; Likotrafiti, E.; Alvarez-Molina, A.; Prieto, M.; Santos, J.A.; Alvarez-Ordóñez, A. The Present and Future of Whole Genome Sequencing (WGS) and Whole Metagenome Sequencing (WMS) for Surveillance of Antimicrobial Resistant Microorganisms and Antimicrobial Resistance Genes across the Food Chain. Genes 2018, 9, 268. [Google Scholar] [CrossRef] [Green Version]
- PN-EN ISO 6888-1:2001; Mikrobiologia Żywności i Pasz—Horyzontalna Metoda Oznaczania Liczby Gronkowców Koagulazo-Dodatnich (Staphylococcus aureus i Innych Gatunków)—Część 1: Metoda z Zastosowaniem Pożywki Agarowej Baird-Parkera [Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species)—Part 1: Technique Using Baird-Parker Agar Medium]. ISS Facility Services: Warsaw, Poland, 2018.
- PN-EN ISO 6579-1:2017; Mikrobiologia Łańcucha Żywnościowego—Horyzontalna Metoda Wykrywania, Oznaczania Liczby i Serotypowania Salmonella—Część 1: Wykrywanie Salmonella spp. [Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp.]. ISS Facility Services: Warsaw, Poland, 2018.
- PN-EN ISO 11290-1:2017; Mikrobiologia Łańcucha Żywnościowego—Horyzontalna Metoda Wykrywania i Oznaczania Liczby Listeria monocytogenes i Innych Listeria spp.—Część 1: Metoda Wykrywania [Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method]. ISS Facility Services: Warsaw, Poland, 2018.
- ISO 22964:2017; Microbiology of the Food Chain—Horizontal Method for the Detection of Cronobacter spp. ISS Facility Services: Warsaw, Poland, 2018.
- Tang, H.; Wang, M.J.; Gan, X.F.; Li, Y.Q. Funneling lignin–derived compounds into polyhydroxyalkanoate by Halomonas sp. Y3. Bioresour. Technol. 2022, 362, 127837. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 12.0. 2022. Available online: http://www.eucast.org (accessed on 28 October 2022).
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests; CLSI Standard Mo2; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; Version 13.0; Available online: https://clsi.org/standards/products/microbiology/documents/m02/ (accessed on 28 October 2022).
- Akinola, S.A.; Mwanza, M.; Ateba, C.N. Occurrence, genetic diversities and antibiotic resistance profiles of Salmonella serovars isolated from chickens. Infect. Drug Resist. 2019, 12, 3327–3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziech, R.E.; Lampugnani, C.; Perin, A.P.; Sereno, M.J.; Sfaciotte, R.A.P.; Viana, C.; Soares, V.M.; Pinto, J.P.D.A.N.; Bersot, L.D.S. Multidrug resistance and ESBL–producing Salmonella spp. isolated from broiler processing plants. Braz. J. Microbiol. 2016, 47, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirzaei, K.; Nilsson, A.S. Isolation of phage for phage therapy: A comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 2015, 10, e0118557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamal, M.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Das, C.R. Isolation and characterization of a bacteriophage and its utilization against multi–drug resistant Pseudomonas aeruginosa-2995. Life Sci. 2017, 190, 21–28. [Google Scholar] [CrossRef]
- Michalczyk, M.; Macura, R. Wpływ warunków przechowywania na jakość wybranych, dostępnych w obrocie handlowym, mało przetworzonych produktów warzywnych [Effect of storage conditions on the quality of some selected low processed vegetable products available in the markets]. Zywn. Nauk. Technol. Ja. 2008, 3, 96–107. [Google Scholar]
- Maffei, D.F.; de Arnuda Solveira, N.F.; de Penha Longo Catonozi, M. Microbiological quality od organic and conventional vegetables sold in Brazil. Food Control. 2012, 29, 226–230. [Google Scholar] [CrossRef]
- Abadias, M.; Usall, J.; Anguera, M.; Solsona, C.; Vinas, J. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. Int. J. Food Microbiol. 2008, 123, 121–129. [Google Scholar] [CrossRef]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Yang, S.; An, Y.; Wang, Y.; Lei, Y.; Song, L. Antibiotics and antibiotic resistance genes in landfills: A review. Sci. Total Environ. 2022, 806, 150647. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Wang, T.; Xu, N.; Lu, T.; Hong, W.; Penuelas, J.; Gillings, M.; Wang, M.; Gao, W.; et al. Assessment of global health risk of antibiotic resistance genes. Nat. Commun. 2022, 13, 1553. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Richter, L.; Du Plessis, E.M.; Duvenage, S.; Korsten, L. Occurrence, identification, and antimicrobial resistance profiles of extended-spectrum and AmpC β-lactamase-producing Enterobacteriaceae from fresh vegetables retailed in Gauteng Province, South Africa. Foodborne Pathog. Dis. 2019, 16, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincenti, S.; Raponi, M.; Sezzatini, R.; Giubbini, G.; Laurenti, P. Enterobacteriaceae antibiotic resistance in ready-to-eat foods collected from hospital and community canteens: Analysis of Prevalence. J. Food Protect. 2018, 81, 424–429. [Google Scholar] [CrossRef]
- Shymialevich, D.; Wójcicki, M.; Wardaszka, A.; Świder, O.; Sokołowska, B.; Błażejak, S. Application of Lytic Bacteriophages and Their Enzymes to Reduce Saprophytic Bacteria Isolated from Minimally Processed Plant-Based Food Products—In Vitro Studies. Viruses 2023, 15, 9. [Google Scholar] [CrossRef]
- Zhao, J.; He, L.; Pan, L.; Liu, Y.; Yao, H.; Bao, G. Effect of a lytic bacteriophage on rabbits experimentally infected with pathogenic Escherichia coli. World Rabbit Sci. 2017, 25, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, M.; Askora, A.; Barakat, A.B.; Rabie, O.E.F.; Hassan, S.E. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. Int. J. Food Microbiol. 2018, 266, 8–13. [Google Scholar] [CrossRef]
- Yu, J.G.; Lim, J.A.; Song, Y.R.; Heu, S.; Kim, G.H.; Koh, Y.J.; Oh, C.S. Isolation and characterization of bacteriophages against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifriut. J. Microbiol. Biotechnol. 2016, 26, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Salem, M.; Pajunen, M.I.; Jun, J.W.; Skurnik, M. T4-like Bacteriophages Isolated from Pig Stools Infect Yersinia pseudotuberculosis and Yersinia pestis Using LPS and OmpF as Receptors. Viruses 2021, 13, 296. [Google Scholar] [CrossRef]
- Patpatia, S.; Schaedig, E.; Dirks, A.; Paasonen, L.; Skurnik, M.; Kiljunen, S. Rapid hydrogel-based phage susceptibility test for pathogenic bacteria. Front. Cell. Infect. Microbiol. 2022, 12, 1829. [Google Scholar] [CrossRef]
- Xu, Z.; Shao, S.; Ding, Z.; Zhang, Y.; Wang, Q.; Liu, X.; Liu, Q. Therapeutic Efficacies of Two Newly Isolated Edwardsiella Phages Against Edwardsiella piscicida Infection. Microbiol. Res. 2022, 263, 127043. [Google Scholar] [CrossRef]
- Berryhill, B.A.; Huseby, D.L.; McCall, I.C.; Hughes, D.; Levin, B.R. Evaluating the potential efficacy and limitations of a phage for joint antibiotic and phage therapy of Staphylococcus aureus infections. Proc. Natl. Acad. Sci. USA 2021, 118, e2008007118. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, Q.; Fan, J.; Yan, T.; Zhang, H.; Yang, J.; Deng, D.; Liu, C.; Wei, T.; Ma, Y. Characterization and genomic analysis of ValSw3-3, a new Siphoviridae bacteriophage infecting Vibrio alginolyticus. J. Virol. 2020, 94, e00066-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koskella, B.; Meaden, S. Understanding Bacteriophage Specificity in Natural Microbial Communities. Viruses 2013, 5, 806–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gayder, S.; Parcey, M.; Nesbitt, D.; Castle, A.J.; Svircev, A.M. Population Dynamics between Erwinia amylovora, Pantoea agglomerans and Bacteriophages: Exploiting Synergy and Competition to Improve Phage Cocktail Efficacy. Microorganisms 2020, 8, 1449. [Google Scholar] [CrossRef] [PubMed]
- Koskella, B.; Taylor, T.B. Multifaceted impacts of bacteriophages in the plant microbiome. Annu. Rev. Phytopathol. 2018, 56, 80. [Google Scholar] [CrossRef] [PubMed]
- Gouvea, D.M.; Mendonça, R.C.S.; Lopez, M.E.S.; Batalha, L.S. Absorbent food pads containing bacteriophages for potential antimicrobial use in refrigerated food products. Food Sci. Technol. 2016, 67, 159–166. [Google Scholar] [CrossRef]
- Spricigo, D.A.; Bardina, C.; Cortés, P.; Llagostera, M. Use of a bacteriophage cocktail to control Salmonella in food and the food industry. Int. J. Food Microbiol. 2013, 165, 169–174. [Google Scholar] [CrossRef]
- Islam, M.S.; Zhou, Y.; Liang, L.; Nime, I.; Liu, K.; Yan, T.; Wang, X.; Li, J. Application of a Phage Cocktail for Control of Salmonella in Foods and Reducing Biofilms. Viruses 2019, 11, 841. [Google Scholar] [CrossRef] [Green Version]
- Mangieri, N.; Picozzi, C.; Cocuzzi, R.; Foschino, R. Evaluation of a potential bacteriophage cocktail for the control of shiga-toxin producing Escherichia coli in food. Front. Microbiol. 2020, 11, 1801. [Google Scholar] [CrossRef]
- Chinivasagam, H.N.; Estella, W.; Maddock, L.; Mayer, D.G.; Weyand, C.; Connerton, P.L.; Connerton, I.F. Bacteriophages to control Campylobacter in commercially farmed broiler chickens, in Australia. Front. Microbiol. 2020, 11, 632. [Google Scholar] [CrossRef] [PubMed]
Microbiological Quality of Products x ± SD [log CFU g−1] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Microbiological Analysis | RUC | MLSC | MLSB | WSP | UWSP | |||||
BED | AED | BED | AED | BED | AED | BED | AED | BED | AED | |
Total Number of Psychrophilic and/or Psychrotrophic Microorganisms | 7.14 ± 0.37 b | 9.45 ± 0.45 a | 7.35 ± 0.39 b | 8.54 ± 0.27 a | 7.34 ± 0.05 b | 8.52 ± 0.11 a | 7.61 ± 0.52 b | 9.06 ± 0.40 a | 6.29 ± 0.05 b | 8.05 ± 0.11 a |
Total Number of Mesophilic Microorganisms | 7.59 ± 0.59 b | 9.84 ± 0.88 a | 7.38 ± 0.42 b | 8.58 ± 0.24 a | 7.29 ± 0.10 b | 8.58 ± 0.01 a | 7.56 ± 0.53 b | 9.07 ± 0.42 a | 10.10 ± 0.04 b | 10.41 ± 0.06 a |
Number of Acidifying Bacteria | 5.42 ± 0.61 b | 7.09 ± 0.02 a | 6.20 ± 1.21 a | 7.70 ± 0.36 a | 5.17 ± 0.89 b | 7.56 ± 0.35 a | 5.44 ± 0.23 a | 6.42 ± 0.59 a | 5.98 ± 0.15 b | 9.84 ± 0.05 a |
Number of Bacteria from the coli Group | 5.57 ± 0.37 b | 6.91 ± 0.31 a | 6.18 ± 0.57 a | 7.19 ± 0.35 a | 5.75 ± 0.10 b | 7.34 ± 0.18 a | 5.98 ± 0.51 a | 6.65 ± 0.54 a | 4.20 ± 0.19 b | 6.22 ± 0.07 a |
Number of Bacteria from the Enterobacteriaceae Family | 5.98 ± 0.20 b | 6.96 ± 0.37 a | 6.26 ± 0.51 b | 7.28 ± 0.34 a | 5.94 ± 0.17 b | 7.56 ± 0.11 a | 6.31 ± 0.08 a | 6.97 ± 0.70 a | 5.32 ± 0.09 b | 5.98 ± 0.06 a |
Bacterial Strain Code | Bacterial Strain Number | Source of Isolation | Bacteria Identification Acc. to MALDI–TOF MS | Bacteria Identification Acc. to 16S rRNA Sequencing | GenBank Accession Number |
---|---|---|---|---|---|
RUC-08 | KKP 3706 | RUC | Enterobacter sp. | Enterobacter cloacae | OM278533 |
RUC-09 | KKP 3655 | RUC | Citrobacter freundii | Citrobacter freundii | MZ827001 |
RUC-10 | KKP 3800 | RUC | Escherichia coli | Escherichia coli | OM250392 |
RUC-11 | KKP 3801 | RUC | Escherichia coli | Escherichia coli | OM250391 |
RUC-16 | KKP 3825 | RUC | Escherichia coli | Escherichia coli | ON303626 |
RUC-17 | KKP 3651 | RUC | Pantoea agglomerans | Pantoea agglomerans | OP978292 |
MLSC-01 | KKP 3889 | MLSC | Serratia liquefaciens | Serratia liquefaciens | OP999699 |
MLSC-02 | KKP 575 | MLSC | Enterobacter sp. | Enterobacter cloacae | OP935700 |
MLSC-10 | KKP 1384 | MLSC | Rahnella aquatilis | Rahnella aquatilis | OP935751 |
MLSC-11 | KKP 3082 | MLSC | Enterobacter sp. | Enterobacter cloacae | MZ827006 |
MLSC-13 | KKP 3687 | MLSC | Serratia marcescens | Serratia marcescens | OK103977 |
MLSC-16 | KKP 3824 | MLSC | Escherichia coli | Escherichia coli | ON303636 |
MLSC-17 | KKP 591 | MLSC | Serratia liquefaciens | Serratia liquefaciens | OP935744 |
MLSC-21 | KKP 3083 | MLSC | Klebsiella oxytoca | Enterobacter ludwigii | MZ827002 |
MLSC-22 | KKP 590 | MLSC | Pantoea agglomerans | Pantoea agglomerans | OP935743 |
MLSB-04 | KKP 3084 | MLSB | Serratia fonticola | Serratia fonticola | MZ827668 |
MLSB-07 | KKP 589 | MLSB | Pantoea agglomerans | Pantoea agglomerans | OP935741 |
MLSB-09 | KKP 1383 | MLSB | Rahnella aquatilis | Rahnella aquatilis | OP935750 |
MLSB-10 | KKP 3654 | MLSB | Serratia liquefaciens | Serratia liquefaciens | OP978313 |
MLSB-12 | KKP 357 | MLSB | Serratia marcescens | Serratia marcescens | OP935680 |
MLSB-14 | KKP 3688 | MLSB | Escherichia coli | Escherichia coli | OM281784 |
MLSB-16 | KKP 3705 | MLSB | Escherichia coli | Escherichia coli | OM212647 |
MLSB-18 | KKP 581 | MLSB | Citrobacter sp. | Citrobacter sp. | OP935699 |
MLSB-19 | KKP 585 | MLSB | Serratia marcescens | Serratia marcescens | OP935711 |
MLSB-21 | KKP 3650 | MLSB | Escherichia coli | Escherichia coli | OM287487 |
MLSB-22 | KKP 3689 | MLSB | Raoultella terrigena | Raoultella terrigena | OK085529 |
MLSB-23 | KKP 584 | MLSB | Pantoea agglomerans | Pantoea agglomerans | OP935688 |
MLSB-25 | KKP 3684 | MLSB | Enterobacter sp. | Enterobacter cloacae | OM281790 |
WSP-05 | KKP 3685 | WSP | Serratia fonticola | Serratia fonticola | OM281802 |
WSP-06 | KKP 3652 | WSP | Serratia fonticola | Serratia fonticola | OM287486 |
WSP-07 | KKP 3686 | WSP | Enterobacter sp. | Enterobacter cloacae | OM281778 |
WSP-09 | KKP 3802 | WSP | Escherichia coli | Escherichia coli | OM250393 |
WSP-19 | KKP 3707 | WSP | Escherichia coli | Escherichia coli | OM281777 |
WSP-25 | KKP 3691 | WSP | Escherichia coli | Escherichia coli | OM281773 |
UWSP-07 | KKP 3692 | UWSP | Enterobacter cloacae | Enterobacter cloacae | OM281803 |
UWSP-08 | KKP 3887 | UWSP | Pantoea agglomerans | Pantoea agglomerans | OP999723 |
UWSP-20 | KKP 3892 | UWSP | Enterobacter sp. | Enterobacter sp. | OP999695 |
UWSP-23 | KKP 3656 | UWSP | Enterobacter cloacae | Enterobacter cloacae | OM304355 |
UWSP-30 | KKP 3888 | UWSP | Pantoea agglomerans | Pantoea agglomerans | OQ001073 |
UWSP-33 | KKP 3891 | UWSP | Enterobacter sp. | Enterobacter sp. | OP999696 |
UWSP-36 | KKP 3890 | UWSP | Serratia liquefaciens | Serratia liquefaciens | OP999702 |
UWSP-37 | KKP 671 | UWSP | Serratia marcescens | Serratia marcescens | OP935745 |
UWSP-40 | KKP 1218 | UWSP | Rahnella aquatilis | Rahnella aquatilis | OP935749 |
Bacterial Strain Number | Source of Isolation | Antibiotic Resistance Pattern | MAR Index | MDR |
---|---|---|---|---|
KKP 3706 | RUC | AMP-SAM-AMC | 0.11 | |
KKP 3655 | RUC | AMC-MXF | 0.07 | |
KKP 3800 | RUC | no resistance * | - | |
KKP 3801 | RUC | no resistance * | - | |
KKP 3825 | RUC | no resistance * | - | |
KKP 3651 | RUC | no resistance * | - | |
KKP 3889 | MLSC | AMC | - | |
KKP 575 | MLSC | AMP-SAM-AMC | 0.11 | |
KKP 1384 | MLSC | AMP-CPT-CRO-PEF-MXF-AK | 0.21 | + |
KKP 3082 | MLSC | AMP-AMC | 0.07 | |
KKP 3687 | MLSC | CPT-MXF | 0.07 | |
KKP 3824 | MLSC | no resistance * | - | |
KKP 591 | MLSC | AMP-CPT | 0.07 | |
KKP 3083 | MLSC | AMP-CPT | 0.07 | |
KKP 590 | MLSC | AMP-AMC-FEP-CPT-CAZ-CT-PEF-MXF-AK | 0.32 | + |
KKP 3084 | MLSB | AMP-CPT | 0.07 | |
KKP 589 | MLSB | no resistance * | - | |
KKP 1383 | MLSB | AMP-CPT-CT-CRO-CIP-PEF-MXF-NOR-AK-TOB | 0.36 | + |
KKP 3654 | MLSB | no resistance * | - | |
KKP 357 | MLSB | AMC-CPT-CT | 0.11 | |
KKP 3688 | MLSB | no resistance * | - | |
KKP 3705 | MLSB | no resistance * | - | |
KKP 581 | MLSB | AMC-MXF-AK | 0.11 | + |
KKP 585 | MLSB | AMP-AMC-CPT-CT-PEF-MXF-AK-CN-TOB | 0.32 | + |
KKP 3650 | MLSB | no resistance * | - | |
KKP 3689 | MLSB | AMP-NOR | 0.07 | |
KKP 584 | MLSB | no resistance * | - | |
KKP 3684 | MLSB | AMP-AMC | 0.07 | |
KKP 3685 | WSP | AMP-CPT | 0.07 | |
KKP 3652 | WSP | no resistance * | - | |
KKP 3686 | WSP | AMP-SAM-AMC | 0.11 | |
KKP 3802 | WSP | no resistance * | - | |
KKP 3707 | WSP | no resistance * | - | |
KKP 3691 | WSP | no resistance * | - | |
KKP 3692 | UWSP | AMP-SAM-AMC-CPT-CT-OFX | 0.21 | + |
KKP 3887 | UWSP | AMP | - | |
KKP 3892 | UWSP | AMP-SAM-AMC | 0.11 | |
KKP 3656 | UWSP | AMP-SAM-AMC-CPT | 0.14 | |
KKP 3888 | UWSP | no resistance * | - | |
KKP 3891 | UWSP | CPT | - | |
KKP 3890 | UWSP | no resistance * | - | |
KKP 671 | UWSP | AMP-AMC-CPT-MXF-CN-TOB | 0.21 | + |
KKP 1218 | UWSP | AMP-CPT-MXF-OFX | 0.14 | + |
Antimicrobial Class (n = 8) | Antimicrobial Agent (n = 28) | Number of Resistant Strains (n = 43) | Percentage of Resistant Strains (%) | |
---|---|---|---|---|
β–lactam Antibiotics | Penicillins | ampicillin | 20 | 46.5 |
sulbactam/ampicillin | 6 | 14.0 | ||
amoxicillin/clavulanic acid | 15 | 34.9 | ||
piperacillin | 0 | 0.0 | ||
piperacillin/tazobactam | 0 | 0.0 | ||
ticarcillin/clavulanic acid | 0 | 0.0 | ||
Cephalosporins | cefepime | 1 | 2.3 | |
cefotaxime | 0 | 0.0 | ||
ceftaroline | 15 | 34.9 | ||
ceftazidime | 1 | 2.3 | ||
ceftazidime/avibactam | 0 | 0.0 | ||
ceftolozane/tazobactam | 5 | 11.6 | ||
ceftriaxone | 2 | 4.7 | ||
Carbapenems | ertapenem | 0 | 0.0 | |
imipenem | 0 | 0.0 | ||
meropenem | 0 | 0.0 | ||
Monobactams | aztreonam | 0 | 0.0 | |
Fluoroquinolones | ciprofloxacin | 1 | 2.3 | |
pefloxacin | 4 | 9.3 | ||
levofloxacin | 0 | 0.0 | ||
moxifloxacin | 9 | 20.9 | ||
ofloxacin | 2 | 4.7 | ||
norfloxacin | 2 | 4.7 | ||
Aminoglycosides | amikacin | 5 | 11.6 | |
gentamycin | 2 | 4.7 | ||
tobramycin | 3 | 7.0 | ||
Phenicols | chloramphenicol | 0 | 0.0 | |
Sulfonamides | sulphamethoxazole/trimethoprim | 0 | 0.0 |
Bacterial Strain Number | Source of Isolation | Phage Titer [PFU mL−1] | Appearance of Phage Plaques | Control Culture | Phage–Infected Bacterial Culture | ||||
---|---|---|---|---|---|---|---|---|---|
MOI 1.0 | MOI 0.1 | ||||||||
∆OD | μ [h−1] | ∆OD | μ [h−1] | ∆OD | μ [h−1] | ||||
KKP 3706 | RUC | 1.4 × 109 | CP | 0.397 | 0.062 | 0.207 | 0.033 | 0.310 | 0.049 |
KKP 3655 | RUC | 6.2 × 109 | CP | 0.255 | 0.031 | 0.136 | 0.017 | 0.273 | 0.025 |
KKP 3800 | RUC | 1.1 × 107 | CP | 0.206 | 0.021 | 0.089 | 0.008 | 0.105 | 0.011 |
KKP 3801 | RUC | 5.8 × 107 | CP | 0.300 | 0.042 | 0.156 | 0.021 | 0.185 | 0.026 |
KKP 3825 | RUC | 1.9 × 107 | CP | 0.206 | 0.022 | 0.019 | 0.002 | 0.090 | 0.008 |
KKP 3651 | RUC | 9.4 × 107 | CP | 0.217 | 0.019 | 0.024 | 0.002 | 0.094 | 0.009 |
KKP 3889 | MLSC | 6.4 × 106 | CP | 0.218 | 0.021 | 0.150 | 0.013 | 0.167 | 0.015 |
KKP 575 | MLSC | 2.2 × 108 | CP | 0.247 | 0.020 | 0.008 | 0.002 | 0.168 | 0.015 |
KKP 1384 | MLSC | 3.5 × 107 | CP | 0.215 | 0.019 | 0.152 | 0.013 | 0.184 | 0.015 |
KKP 3082 | MLSC | 1.4 × 1010 | CPH | 0.312 | 0.026 | 0.147 | 0.019 | 0.261 | 0.023 |
KKP 3687 | MLSC | 2.6 × 107 | CPH | 0.413 | 0.036 | 0.287 | 0.024 | 0.412 | 0.032 |
KKP 3824 | MLSC | 1.0 × 1010 | CP | 0.258 | 0.022 | 0.081 | 0.009 | 0.069 | 0.008 |
KKP 591 | MLSC | 6.2 × 106 | TP | 0.598 | 0.047 | 0.486 | 0.037 | 0.510 | 0.041 |
KKP 3083 | MLSC | 7.2 × 108 | CPH | 0.486 | 0.035 | 0.160 | 0.014 | 0.206 | 0.022 |
KKP 590 | MLSC | 6.4 × 106 | CP | 0.252 | 0.022 | 0.039 | 0.005 | 0.158 | 0.014 |
KKP 3084 | MLSB | 4.4 × 108 | CPH | 0.464 | 0.039 | 0.102 | 0.008 | 0.173 | 0.019 |
KKP 589 | MLSB | 1.6 × 108 | CP | 0.142 | 0.012 | 0.022 | 0.004 | 0.064 | 0.007 |
KKP 1383 | MLSB | 1.2 × 109 | CP | 0.342 | 0.029 | 0.006 | 0.003 | 0.242 | 0.022 |
KKP 3654 | MLSB | 8.2 × 109 | CPH | 0.411 | 0.032 | 0.149 | 0.015 | 0.355 | 0.029 |
KKP 357 | MLSB | 1.0 × 106 | CP | 0.089 | 0.009 | 0.062 | 0.007 | 0.087 | 0.008 |
KKP 3688 | MLSB | 9.0 × 109 | CP | 0.107 | 0.011 | 0.079 | 0.008 | 0.024 | 0.004 |
KKP 3705 | MLSB | 1.1 × 1010 | TP | 0.135 | 0.013 | 0.053 | 0.007 | 0.046 | 0.006 |
KKP 581 | MLSB | 1.3 × 109 | CP | 0.120 | 0.011 | 0.151 | 0.015 | 0.059 | 0.007 |
KKP 585 | MLSB | 3.5 × 109 | TP | 0.152 | 0.013 | 0.087 | 0.008 | 0.135 | 0.012 |
KKP 3650 | MLSB | 4.6 × 107 | CP | 0.312 | 0.027 | 0.187 | 0.017 | 0.201 | 0.019 |
KKP 3689 | MLSB | 4.0 × 107 | CPH | 0.239 | 0.022 | 0.123 | 0.012 | 0.044 | 0.005 |
KKP 584 | MLSB | 2.2 × 109 | CP | 0.215 | 0.019 | 0.009 | 0.002 | 0.025 | 0.004 |
KKP 3684 | MLSB | 7.6 × 105 | CPH | 0.247 | 0.021 | 0.057 | 0.007 | 0.124 | 0.013 |
KKP 3685 | WSP | 2.5 × 108 | CP | 0.278 | 0.023 | 0.169 | 0.017 | 0.278 | 0.023 |
KKP 3652 | WSP | 1.7 × 108 | TP | 0.274 | 0.024 | 0.057 | 0.006 | 0.191 | 0.017 |
KKP 3686 | WSP | 8.2 × 105 | CP | 0.115 | 0.008 | 0.088 | 0.011 | 0.055 | 0.014 |
KKP 3802 | WSP | 5.6 × 108 | CP | 0.262 | 0.023 | 0.161 | 0.006 | 0.235 | 0.006 |
KKP 3707 | WSP | 7.4 × 107 | CP | 0.223 | 0.019 | 0.116 | 0.008 | 0.221 | 0.003 |
KKP 3691 | WSP | 1.1 × 108 | CP | 0.317 | 0.025 | 0.144 | 0.011 | 0.203 | 0.018 |
KKP 3692 | UWSP | 2.0 × 109 | CP | 0.157 | 0.013 | 0.010 | 0.003 | 0.094 | 0.008 |
KKP 3887 | UWSP | 1.3 × 109 | CP | 0.314 | 0.025 | 0.017 | 0.002 | 0.209 | 0.019 |
KKP 3892 | UWSP | 1.7 × 108 | CP | 0.436 | 0.037 | 0.032 | 0.003 | 0.091 | 0.011 |
KKP 3656 | UWSP | 2.2 × 109 | CPH | 0.318 | 0.023 | 0.195 | 0.008 | 0.179 | 0.013 |
KKP 3888 | UWSP | 1.1 × 1010 | CP | 0.295 | 0.026 | 0.149 | 0.006 | 0.112 | 0.009 |
KKP 3891 | UWSP | 5.2 × 109 | TP | 0.229 | 0.019 | 0.166 | 0.006 | 0.164 | 0.009 |
KKP 3890 | UWSP | 7.4 × 109 | CP | 0.233 | 0.019 | 0.127 | 0.002 | 0.147 | 0.005 |
KKP 671 | UWSP | 8.0 × 108 | CP | 0.332 | 0.029 | 0.164 | 0.015 | 0.250 | 0.022 |
KKP 1218 | UWSP | 5.7 × 107 | CP | 0.238 | 0.019 | 0.135 | 0.015 | 0.218 | 0.018 |
RTE Food Products | Time [h] | Total Number of Bacteria x ± SD [log CFU g−1] | ||
---|---|---|---|---|
Control | Spraying | Absorption Pad | ||
Rucola | 0 | 8.47 ± 0.11 de | 8.35 ± 0.16 def | 7.73 ± 0.49 f |
6 | 9.35 ± 0.23 bc | 7.69 ± 0.45 f | 8.17 ± 0.17 ef | |
24 | 9.86 ± 0.04 b | 8.91 ± 0.06 cd | 9.66 ± 0.16 b | |
48 | 11.49 ± 0.13 a | 9.46 ± 0.06 bc | 9.52 ± 0.08 bc | |
Mixed Leaf Salad with Carrot | 0 | 8.00 ± 0.03 fg | 7.80 ± 0.10 g | 8.52 ± 0.18 de |
6 | 8.48 ± 0.11 def | 8.00 ± 0.20 fg | 8.15 ± 0.15 efg | |
24 | 8.75 ± 0.25 cd | 9.05 ± 0.16 bc | 9.30 ± 0.10 b | |
48 | 11.71 ± 0.06 a | 9.07 ± 0.34 bc | 8.67 ± 0.14 cd | |
Mixed Leaf Salad with Beetroot | 0 | 8.49 ± 0.13 cde | 8.35 ± 0.54 de | 8.15 ± 0.09 e |
6 | 8.51 ± 0.15 cde | 7.90 ± 0.04 e | 8.25 ± 0.12 de | |
24 | 9.15 ± 0.32 bcd | 8.55 ± 0.23 bcde | 8.73 ± 0.55 bcde | |
48 | 11.78 ± 0.01 a | 9.33 ± 0.56 bc | 9.44 ± 0.07 b | |
Washed Spinach | 0 | 7.73 ± 0.14 cd | 6.85 ± 0.02 f | 7.24 ± 0.04 def |
6 | 7.57 ± 0.11 de | 6.95 ± 0.22 f | 7.13 ± 0.22 ef | |
24 | 8.61 ± 0.27 ab | 8.20 ± 0.14 bc | 8.33 ± 0.15 b | |
48 | 8.63 ± 0.16 ab | 8.87 ± 0.23 a | 8.69 ± 0.11 ab | |
Unwashed Spinach | 0 | 6.98 ± 0.10 d | 6.95 ± 0.01 d | 6.75 ± 0.12 d |
6 | 8.26 ± 0.20 ab | 6.25 ± 0.44 e | 7.65 ± 0.01 c | |
24 | 8.63 ± 0.12 a | 8.18 ± 0.13 ab | 8.05 ± 0.06 bc | |
48 | 7.86 ± 0.05 bc | 8.35 ± 0.19 ab | 8.63 ± 0.03 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcicki, M.; Świder, O.; Gientka, I.; Błażejak, S.; Średnicka, P.; Shymialevich, D.; Cieślak, H.; Wardaszka, A.; Emanowicz, P.; Sokołowska, B.; et al. Effectiveness of a Phage Cocktail as a Potential Biocontrol Agent against Saprophytic Bacteria in Ready-To-Eat Plant-Based Food. Viruses 2023, 15, 172. https://doi.org/10.3390/v15010172
Wójcicki M, Świder O, Gientka I, Błażejak S, Średnicka P, Shymialevich D, Cieślak H, Wardaszka A, Emanowicz P, Sokołowska B, et al. Effectiveness of a Phage Cocktail as a Potential Biocontrol Agent against Saprophytic Bacteria in Ready-To-Eat Plant-Based Food. Viruses. 2023; 15(1):172. https://doi.org/10.3390/v15010172
Chicago/Turabian StyleWójcicki, Michał, Olga Świder, Iwona Gientka, Stanisław Błażejak, Paulina Średnicka, Dziyana Shymialevich, Hanna Cieślak, Artur Wardaszka, Paulina Emanowicz, Barbara Sokołowska, and et al. 2023. "Effectiveness of a Phage Cocktail as a Potential Biocontrol Agent against Saprophytic Bacteria in Ready-To-Eat Plant-Based Food" Viruses 15, no. 1: 172. https://doi.org/10.3390/v15010172
APA StyleWójcicki, M., Świder, O., Gientka, I., Błażejak, S., Średnicka, P., Shymialevich, D., Cieślak, H., Wardaszka, A., Emanowicz, P., Sokołowska, B., & Juszczuk-Kubiak, E. (2023). Effectiveness of a Phage Cocktail as a Potential Biocontrol Agent against Saprophytic Bacteria in Ready-To-Eat Plant-Based Food. Viruses, 15(1), 172. https://doi.org/10.3390/v15010172