Molnupiravir Revisited—Critical Assessment of Studies in Animal Models of COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Extracted Data
2.3. Dose Calculations
Animal Model 1 | SARS-CoV-2 Isolate Used for Inoculation 2 | Viral Dose 3 | Oral Drug Dose in mg/kg, Bidaily | Oral Drug Dose in mg/m2, Bidaily 4 | Start of Treatment Relative to Time of Infection | Treatment Duration 5 | Efficacy of Molnupiravir 6 | Study |
---|---|---|---|---|---|---|---|---|
SCID mouse | Beta | 105 TCID50 | 200 | 600 | At inoculation | 3 d | Reduced viral titers and viral RNA in lungs; improved lung pathology | Abdelnabi et al., 2022 [38] |
K18-hACE2 mouse | Original type | 5 MLD50 | 20 | 60 | 6 h after | 5 d | Modest weight loss protection; improved clinical score; decreased viral RNA; viral titers in lungs largely unchanged; increased survival | Jeong et al., 2022 [39] |
Lung-only mice | Original type | 1–3 × 105 PFU | 500 | 1500 | 12 h before | 2 d and 12 h | Markedly reduced lung viral titers with pre-inoculation treatment being most effective; lower viral antigen in lungs; improved lung pathology | Wahl et al., 2021 [40] |
24 h after | 2 d | |||||||
48 h after | 2 d | |||||||
K18-hACE-2 mouse | Original type | 300 FFU | 50 | 150 | 2 h before | 3 d and 20 h | Reduction in lung viral titers; lung pathology not improved | Stegmann et al., 2022 [41] |
Syrian hamster | Original type, Alpha, Beta | 105 TCID50 | 200 | 1000 | 1 h before | 4 d | Reduced viral titers and viral RNA in lungs; improved lung pathology; major weight increase for original viral type and Beta variant | Abdelnabi et al., 2021 [42] |
Syrian hamster | Original type | 2 × 106 TCID50 | 75 | 375 | 1 h before | 4 d | Lung virus titers not reduced by 75 mg/kg dose of molnupiravir but lowered by the higher doses; 150 mg/kg dose probably suboptimal for monotherapy | Abdelnabi et al., 2021 [43] |
150 | 750 | |||||||
200 | 1000 | |||||||
Syrian hamster | Beta | 104 TCID50 | 150 | 750 | At inoculation | 4 d | Reduction in viral titers and virus RNA in lungs; lung pathology not significantly improved; no effect on body weight | Abdelnabi et al., 2022 [44] |
Syrian hamster | Original type | 106 PFU | 50 | 250 | 4 h before | 5 d and 4 h | Full protection against weight loss with molnupiravir at 500 mg/kg and partial weight loss protection with the lower doses; lung viral titers decreased below detection limit with molnupiravir at 150 and 500 mg/kg; lung pathology improved | Bakowski et al., 2021 [45] |
150 | 750 | |||||||
500 | 2500 | |||||||
Syrian hamster | Beta | 104 TCID50 | 150 | 750 | 1 h before | 4 d | Reduced virus titers and virus RNA in lungs; improved lung pathology | Foo et al., 2022 [46] |
Syrian hamster | Omicron | 103 PFU | 500 | 2500 | 24 h after | 3 d | Viral titers reduced in lungs but not in nasal turbinates | Uraki et al., 2022 [47] |
Syrian hamster | Omicron | 103 PFU | 500 | 2500 | 24 h after | 3 d | Reduction in nasal turbinate viral titer on second day after inoculation; viable virus not detected in lungs during period treatment | Uraki et al., 2022 [48] |
Syrian hamster | Original type | 5 × 102 TCID50 | 250 | 1250 | 12 h before | 4 d | Reduced viral RNA, viral titers and viral antigen in lungs for treatments initiated both before and after inoculation; improved lung pathology; no effect on viral load in oral swabs | Rosenke et al., 2021 [49] |
2 h before | 3 d and 14 h | |||||||
12 h after | 3 d | |||||||
Syrian hamster | Alpha, Beta, Delta, Omicron | 103 or 104 TCID50 | 250 | 1250 | 12 h after | 3 d | Reduced viral titers and viral antigen of all examined variants in lungs; reduced lung disease; no reduction in viral load in oral swabs except for Omicron variant | Rosenke et al., 2022 [50] |
Syrian hamster | Original type | 104 TCID50 | 250 | 1250 | 24 h before | 7 d and 12 h | Small decrease in nasal viral titer and in weight loss; improved lung pathology | Stegmann et al., 2022 [41] |
Roborovski dwarf hamster | Delta, Gamma, Omicron | 105 PFU or 3 × 104 PFU (Delta) | 250 | 900 | 12 h after | 11 d and 12 h | Prevented death by all SARS-CoV-2 types; reduced viral titers and viral RNA in lungs with larger reduction for Gamma variant; improved lung pathology for all virus variants | Lieber et al., 2022 [51] |
Roborovski dwarf hamster | Omicron | 104 PFU | 250 | 900 | 12 h after | 4 d and 12 h (short) or 13 d and 12 h (long) | Short treatment reduced viral lung titer and prevented clinical signs, death, and viral rebound; long treatment prevented death, reduced lung viral titer but not viral RNA in lungs and trachea | Cox et al., 2023 [52] |
Ferret | Alpha, Delta, Gamma, Omicron | 105 PFU | 5 | 35 | 12 h after | 3 d and 12 h | Titers in nasal lavages of all viral isolates below detection level 12 h after treatment start; blocked contact transmission; not all virus variants established productive infection | Lieber et al., 2022 [51] |
Ferret | Original type | 105 PFU | 5 | 35 | 12 h after | 3 d and 12 h | Viral titers below detection limit in nasal lavages within 1 and 1.5 d for treatment started 12 and 36 h after inoculation, respectively; no contact transmission | Cox et al., 2021 [8] |
15 | 105 | 12 h after | 3 d and 12 h | |||||
15 | 105 | 36 h after | 2 d and 12 h | |||||
Ferret | Original type | 105 PFU | 1.25 | 8.75 | 12 h after | 3 d and 12 h | All molnupiravir dose groups exhibited reduced viral titers and did not infect untreated contact animals | Cox et al., 2023 [52] |
2.5 | 17.5 | |||||||
5.0 | 35 | |||||||
Ferret | Original type | 105 PFU | 5 | 35 | 12 h before | 6 d | No clinical signs, no infectious virus, and decreased viral RNA in nasal lavages and turbinates in prophylactically treated ferrets exposed to infected and untreated animals | Cox et al., 2023 [52] |
Rhesus macaque | Original type | 5.15 × 106 or 6.08 × 106 TCID50 | 75 | 900 | At inoculation | 7 d | Reduced nasal swab viral titers and viral RNA in bronchoalveolar lavages by administration of 250 mg/kg molnupiravir compared to dose of 75 mg/kg and vehicle; no effect on virus titers in bronchoalveolar lavage; lung pathology difficult to evaluate | Johnson et al., 2023 [9] |
250 | 3000 | |||||||
Rhesus macaque | Delta | 2 × 106 TCID50 | 130 1 | 1560 | 12 h after | 3 d and 12 h | Reduced viral titers but not viral RNA in nasal and oral swabs; largely unchanged viral titers and viral RNA in lower airways; slightly milder disease course; less severe lung pathology | Rosenke et al., 2023 [10] |
2.4. Assessment of Data
3. Results
3.1. Viral Doses and Variants
3.2. Dose Levels of Molnupiravir
3.3. Time from Inoculation to Viral Load Peak
3.4. Time to Initiation of Treatment
3.5. Duration of Treatment
4. Discussion
4.1. Viral Strains and Doses
4.2. Dose Levels of Molnupiravir
4.3. Time from Infection to Viral Load Peak
4.4. Time to Initiation of Treatment
4.5. Duration of Treatment
4.6. Potential Confounding Factors
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Yang, L. Broad-Spectrum Prodrugs with Anti-SARS-CoV-2 Activities: Strategies, Benefits, and Challenges. J. Med. Virol. 2022, 94, 1373–1390. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Pang, Z.; Li, M.; Lou, F.; An, X.; Zhu, S.; Song, L.; Tong, Y.; Fan, H.; Fan, J. Molnupiravir and Its Antiviral Activity Against COVID-19. Front. Immunol. 2022, 13, 855496. [Google Scholar] [CrossRef] [PubMed]
- Urakova, N.; Kuznetsova, V.; Crossman, D.K.; Sokratian, A.; Guthrie, D.B.; Kolykhalov, A.A.; Lockwood, M.A.; Natchus, M.G.; Crowley, M.R.; Painter, G.R.; et al. β-d-N4-Hydroxycytidine Is a Potent Anti-Alphavirus Compound That Induces a High Level of Mutations in the Viral Genome. J. Virol. 2018, 92, e01965-17. [Google Scholar] [CrossRef] [PubMed]
- Painter, G.R.; Natchus, M.G.; Cohen, O.; Holman, W.; Painter, W.P. Developing a Direct Acting, Orally Available Antiviral Agent in a Pandemic: The Evolution of Molnupiravir as a Potential Treatment for COVID-19. Curr. Opin. Virol. 2021, 50, 17–22. [Google Scholar] [CrossRef]
- Stuyver, L.J.; Whitaker, T.; McBrayer, T.R.; Hernandez-Santiago, B.I.; Lostia, S.; Tharnish, P.M.; Ramesh, M.; Chu, C.K.; Jordan, R.; Shi, J.; et al. Ribonucleoside Analogue That Blocks Replication of Bovine Viral Diarrhea and Hepatitis C Viruses in Culture. Antimicrob. Agents Chemother. 2003, 47, 244–254. [Google Scholar] [CrossRef]
- Reynard, O.; Nguyen, X.-N.; Alazard-Dany, N.; Barateau, V.; Cimarelli, A.; Volchkov, V.E. Identification of a New Ribonucleoside Inhibitor of Ebola Virus Replication. Viruses 2015, 7, 6233–6240. [Google Scholar] [CrossRef]
- Toots, M.; Yoon, J.-J.; Cox, R.M.; Hart, M.; Sticher, Z.M.; Makhsous, N.; Plesker, R.; Barrena, A.H.; Reddy, P.G.; Mitchell, D.G.; et al. Characterization of Orally Efficacious Influenza Drug with High Resistance Barrier in Ferrets and Human Airway Epithelia. Sci. Transl. Med. 2019, 11, eaax5866. [Google Scholar] [CrossRef]
- Cox, R.M.; Wolf, J.D.; Plemper, R.K. Therapeutically Administered Ribonucleoside Analogue MK-4482/EIDD-2801 Blocks SARS-CoV-2 Transmission in Ferrets. Nat. Microbiol. 2021, 6, 11–18. [Google Scholar] [CrossRef]
- Johnson, D.M.; Brasel, T.; Massey, S.; Garron, T.; Grimes, M.; Smith, J.; Torres, M.; Wallace, S.; Villasante-Tezanos, A.; Beasley, D.W.; et al. Evaluation of Molnupiravir (EIDD-2801) Efficacy against SARS-CoV-2 in the Rhesus Macaque Model. Antiviral Res. 2023, 209, 105492. [Google Scholar] [CrossRef]
- Rosenke, K.; Lewis, M.C.; Feldmann, F.; Bohrnsen, E.; Schwarz, B.; Okumura, A.; Bohler, W.F.; Callison, J.; Shaia, C.; Bosio, C.M.; et al. Combined Molnupiravir-Nirmatrelvir Treatment Improves the Inhibitory Effect on SARS-CoV-2 in Macaques. JCI Insight 2023, 8, e166485. [Google Scholar] [CrossRef]
- Bernal, A.J.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for Oral Treatment of COVID-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D. Molnupiravir: From Hope to Epic Fail? Viruses 2022, 14, 2560. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.M.; Mirchandani, M.; Hill, A. Evaluation of Publication Bias for 12 Clinical Trials of Molnupiravir to Treat SARS-CoV-2 Infection in 13,694 Patients with Meta-Analysis. J. Antimicrob. Chemother. 2023, 78, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Butler, C.C.; Hobbs, F.D.R.; Gbinigie, O.A.; Rahman, N.M.; Hayward, G.; Richards, D.B.; Dorward, J.; Lowe, D.M.; Standing, J.F.; Breuer, J.; et al. Molnupiravir plus Usual Care versus Usual Care Alone as Early Treatment for Adults with COVID-19 at Increased Risk of Adverse Outcomes (PANORAMIC): An Open-Label, Platform-Adaptive Randomised Controlled Trial. Lancet 2023, 401, 281–293. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Refusal of the Marketing Authorisation for Lagevrio (Molnupiravir), 24 February 2023. Available online: https://www.ema.europa.eu/en/documents/smop-initial/questions-answers-refusal-marketing-authorisation-lagevrio-molnupiravir_en.pdf (accessed on 10 March 2023).
- Gentry, C.A.; Nguyen, P.; Thind, S.K.; Kurdgelashvili, G.; Williams, R.J. Characteristics and Outcomes of US Veterans at Least 65 Years of Age at High Risk of Severe SARS-CoV-2 Infection with or without Receipt of Oral Antiviral Agents. J. Infect. 2023, 86, 248–255. [Google Scholar] [CrossRef]
- Butt, A.A.; Yan, P.; Shaikh, O.S.; Omer, S.B.; Mayr, F.B.; Talisa, V.B. Molnupiravir Use and 30-Day Hospitalizations or Death in a Previously Uninfected Nonhospitalized High-Risk Population With COVID-19. J. Infect. Dis. 2023, 228, 1033–1041. [Google Scholar] [CrossRef]
- Vegivinti, C.T.R.; Evanson, K.W.; Lyons, H.; Akosman, I.; Barrett, A.; Hardy, N.; Kane, B.; Keesari, P.R.; Pulakurthi, Y.S.; Sheffels, E.; et al. Efficacy of Antiviral Therapies for COVID-19: A Systematic Review of Randomized Controlled Trials. BMC Infect. Dis. 2022, 22, 107. [Google Scholar] [CrossRef]
- Schöning, V.; Kern, C.; Chaccour, C.; Hammann, F. Effectiveness of Antiviral Therapy in Highly-Transmissible Variants of SARS-CoV-2: A Modeling and Simulation Study. Front. Pharmacol. 2022, 13, 816429. [Google Scholar] [CrossRef]
- Goyal, A.; Cardozo-Ojeda, E.F.; Schiffer, J.T. Potency and Timing of Antiviral Therapy as Determinants of Duration of SARS-CoV-2 Shedding and Intensity of Inflammatory Response. Sci. Adv. 2020, 6, eabc7112. [Google Scholar] [CrossRef]
- Sundararaj Stanleyraj, J.; Sethuraman, N.; Gupta, R.; Thiruvoth, S.; Gupta, M.; Ryo, A. Treating COVID-19: Are We Missing out the Window of Opportunity? J. Antimicrob. Chemother. 2021, 76, 283–285. [Google Scholar] [CrossRef]
- Arons, M.M.; Hatfield, K.M.; Reddy, S.C.; Kimball, A.; James, A.; Jacobs, J.R.; Taylor, J.; Spicer, K.; Bardossy, A.C.; Oakley, L.P.; et al. Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility. N. Engl. J. Med. 2020, 382, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Galmiche, S.; Cortier, T.; Charmet, T.; Schaeffer, L.; Chény, O.; von Platen, C.; Lévy, A.; Martin, S.; Omar, F.; David, C.; et al. SARS-CoV-2 Incubation Period across Variants of Concern, Individual Factors, and Circumstances of Infection in France: A Case Series Analysis from the ComCor Study. The Lancet Microbe 2023, 4, e409–e417. [Google Scholar] [CrossRef] [PubMed]
- Challenger, J.D.; Foo, C.Y.; Wu, Y.; Yan, A.W.C.; Marjaneh, M.M.; Liew, F.; Thwaites, R.S.; Okell, L.C.; Cunnington, A.J. Modelling Upper Respiratory Viral Load Dynamics of SARS-CoV-2. BMC Med. 2022, 20, 25. [Google Scholar] [CrossRef]
- Hakki, S.; Zhou, J.; Jonnerby, J.; Singanayagam, A.; Barnett, J.L.; Madon, K.J.; Koycheva, A.; Kelly, C.; Houston, H.; Nevin, S.; et al. Onset and Window of SARS-CoV-2 Infectiousness and Temporal Correlation with Symptom Onset: A Prospective, Longitudinal, Community Cohort Study. Lancet Respir. Med. 2022, 10, 1061–1073. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.A.; Jordan, K.; Clyne, B.; Rohde, D.; Drummond, L.; Byrne, P.; Ahern, S.; Carty, P.G.; O’Brien, K.K.; O’Murchu, E.; et al. SARS-CoV-2 Detection, Viral Load and Infectivity over the Course of an Infection. J. Infect. 2020, 81, 357–371. [Google Scholar] [CrossRef]
- Karita, H.C.S.; Dong, T.Q.; Johnston, C.; Neuzil, K.M.; Paasche-Orlow, M.K.; Kissinger, P.J.; Bershteyn, A.; Thorpe, L.E.; Deming, M.; Kottkamp, A.; et al. Trajectory of Viral RNA Load Among Persons With Incident SARS-CoV-2 G614 Infection (Wuhan Strain) in Association With COVID-19 Symptom Onset and Severity. JAMA Netw. Open 2022, 5, e2142796. [Google Scholar] [CrossRef]
- Ejima, K.; Kim, K.S.; Bento, A.I.; Iwanami, S.; Fujita, Y.; Aihara, K.; Shibuya, K.; Iwami, S. Estimation of Timing of Infection from Longitudinal SARS-CoV-2 Viral Load Data: Mathematical Modelling Study. BMC Infect. Dis. 2022, 22, 656. [Google Scholar] [CrossRef]
- He, X.; Lau, E.H.Y.; Wu, P.; Deng, X.; Wang, J.; Hao, X.; Lau, Y.C.; Wong, J.Y.; Guan, Y.; Tan, X.; et al. Temporal Dynamics in Viral Shedding and Transmissibility of COVID-19. Nat. Med. 2020, 26, 672–675. [Google Scholar] [CrossRef]
- Shou, S.; Liu, M.; Yang, Y.; Kang, N.; Song, Y.; Tan, D.; Liu, N.; Wang, F.; Liu, J.; Xie, Y. Animal Models for COVID-19: Hamsters, Mouse, Ferret, Mink, Tree Shrew, and Non-Human Primates. Front. Microbiol. 2021, 12, 626553. [Google Scholar] [CrossRef]
- Qin, S.; Li, R.; Zheng, Z.; Zeng, X.; Wang, Y.; Wang, X. Review of Selected Animal Models for Respiratory Coronavirus Infection and Its Application in Drug Research. J. Med. Virol. 2022, 94, 3032–3042. [Google Scholar] [CrossRef]
- Trimpert, J.; Vladimirova, D.; Dietert, K.; Abdelgawad, A.; Kunec, D.; Dökel, S.; Voss, A.; Gruber, A.D.; Bertzbach, L.D.; Osterrieder, N. The Roborovski Dwarf Hamster Is a Highly Susceptible Model for a Rapid and Fatal Course of SARS-CoV-2 Infection. Cell Rep. 2020, 33, 108488. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Chan, J.F.-W.; Yuen, K.-Y. Animal Models in SARS-CoV-2 Research. Nat. Methods 2022, 19, 392–394. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.C.; Ricks, K.M.; Jay, A.; Raymond, J.L.; Rossi, F.; Zeng, X.; Scruggs, J.; Dyer, D.; Frick, O.; Koehler, J.W.; et al. Development of a Coronavirus Disease 2019 Nonhuman Primate Model Using Airborne Exposure. PLoS One 2021, 16, e0246366. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.B.; Jacob, S. A Simple Practice Guide for Dose Conversion between Animals and Human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Du Bois, D.; Du Bois, E.F. A Formula to Estimate the Approximate Surface Area If Height and Weight Be Known. 1916. Nutrition 1989, 5, 303–311; discussion 312–313. [Google Scholar] [PubMed]
- Sawadogo, W.; Tsegaye, M.; Gizaw, A.; Adera, T. Overweight and Obesity as Risk Factors for COVID-19-Associated Hospitalisations and Death: Systematic Review and Meta-Analysis. BMJ Nutr. Prev. Health 2022, 5, e000375. [Google Scholar] [CrossRef]
- Abdelnabi, R.; Foo, C.S.; Kaptein, S.J.F.; Boudewijns, R.; Vangeel, L.; De Jonghe, S.; Jochmans, D.; Weynand, B.; Neyts, J. A SCID Mouse Model To Evaluate the Efficacy of Antivirals against SARS-CoV-2 Infection. J. Virol. 2022, 96, e0075822. [Google Scholar] [CrossRef]
- Jeong, J.H.; Chokkakula, S.; Min, S.C.; Kim, B.K.; Choi, W.-S.; Oh, S.; Yun, Y.S.; Kang, D.H.; Lee, O.-J.; Kim, E.-G.; et al. Combination Therapy with Nirmatrelvir and Molnupiravir Improves the Survival of SARS-CoV-2 Infected Mice. Antiviral Res. 2022, 208, 105430. [Google Scholar] [CrossRef]
- Wahl, A.; Gralinski, L.E.; Johnson, C.E.; Yao, W.; Kovarova, M.; Dinnon, K.H.; Liu, H.; Madden, V.J.; Krzystek, H.M.; De, C.; et al. SARS-CoV-2 Infection Is Effectively Treated and Prevented by EIDD-2801. Nature 2021, 591, 451–457. [Google Scholar] [CrossRef]
- Stegmann, K.M.; Dickmanns, A.; Heinen, N.; Blaurock, C.; Karrasch, T.; Breithaupt, A.; Klopfleisch, R.; Uhlig, N.; Eberlein, V.; Issmail, L.; et al. Inhibitors of Dihydroorotate Dehydrogenase Cooperate with Molnupiravir and N4-Hydroxycytidine to Suppress SARS-CoV-2 Replication. iScience 2022, 25, 104293. [Google Scholar] [CrossRef]
- Abdelnabi, R.; Foo, C.S.; De Jonghe, S.; Maes, P.; Weynand, B.; Neyts, J. Molnupiravir Inhibits Replication of the Emerging SARS-CoV-2 Variants of Concern in a Hamster Infection Model. J. Infect. Dis. 2021, 224, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Abdelnabi, R.; Foo, C.S.; Kaptein, S.J.F.; Zhang, X.; Do, T.N.D.; Langendries, L.; Vangeel, L.; Breuer, J.; Pang, J.; Williams, R.; et al. The Combined Treatment of Molnupiravir and Favipiravir Results in a Potentiation of Antiviral Efficacy in a SARS-CoV-2 Hamster Infection Model. EBioMedicine 2021, 72, 103595. [Google Scholar] [CrossRef] [PubMed]
- Abdelnabi, R.; Maes, P.; de Jonghe, S.; Weynand, B.; Neyts, J. Combination of the Parent Analogue of Remdesivir (GS-441524) and Molnupiravir Results in a Markedly Potent Antiviral Effect in SARS-CoV-2 Infected Syrian Hamsters. Front. Pharmacol. 2022, 13, 1072202. [Google Scholar] [CrossRef]
- Bakowski, M.A.; Beutler, N.; Wolff, K.C.; Kirkpatrick, M.G.; Chen, E.; Nguyen, T.-T.H.; Riva, L.; Shaabani, N.; Parren, M.; Ricketts, J.; et al. Drug Repurposing Screens Identify Chemical Entities for the Development of COVID-19 Interventions. Nat. Commun. 2021, 12, 3309. [Google Scholar] [CrossRef] [PubMed]
- Foo, C.S.; Abdelnabi, R.; Vangeel, L.; De Jonghe, S.; Jochmans, D.; Weynand, B.; Neyts, J. Ivermectin Does Not Protect against SARS-CoV-2 Infection in the Syrian Hamster Model. Microorganisms 2022, 10, 633. [Google Scholar] [CrossRef]
- Uraki, R.; Kiso, M.; Iida, S.; Imai, M.; Takashita, E.; Kuroda, M.; Halfmann, P.J.; Loeber, S.; Maemura, T.; Yamayoshi, S.; et al. Characterization and Antiviral Susceptibility of SARS-CoV-2 Omicron BA.2. Nature 2022, 607, 119–127. [Google Scholar] [CrossRef]
- Uraki, R.; Kiso, M.; Imai, M.; Yamayoshi, S.; Ito, M.; Fujisaki, S.; Takashita, E.; Ujie, M.; Furusawa, Y.; Yasuhara, A.; et al. Therapeutic Efficacy of Monoclonal Antibodies and Antivirals against SARS-CoV-2 Omicron BA.1 in Syrian Hamsters. Nat. Microbiol. 2022, 7, 1252–1258. [Google Scholar] [CrossRef]
- Rosenke, K.; Hansen, F.; Schwarz, B.; Feldmann, F.; Haddock, E.; Rosenke, R.; Barbian, K.; Meade-White, K.; Okumura, A.; Leventhal, S.; et al. Orally Delivered MK-4482 Inhibits SARS-CoV-2 Replication in the Syrian Hamster Model. Nat. Commun. 2021, 12, 2295. [Google Scholar] [CrossRef]
- Rosenke, K.; Okumura, A.; Lewis, M.C.; Feldmann, F.; Meade-White, K.; Bohler, W.F.; Griffin, A.; Rosenke, R.; Shaia, C.; Jarvis, M.A.; et al. Molnupiravir Inhibits SARS-CoV-2 Variants Including Omicron in the Hamster Model. JCI Insight 2022, 7, e160108. [Google Scholar] [CrossRef]
- Lieber, C.M.; Cox, R.M.; Sourimant, J.; Wolf, J.D.; Juergens, K.; Phung, Q.; Saindane, M.T.; Smith, M.K.; Sticher, Z.M.; Kalykhalov, A.A.; et al. SARS-CoV-2 VOC Type and Biological Sex Affect Molnupiravir Efficacy in Severe COVID-19 Dwarf Hamster Model. Nat. Commun. 2022, 13, 4416. [Google Scholar] [CrossRef]
- Cox, R.M.; Lieber, C.M.; Wolf, J.D.; Karimi, A.; Lieberman, N.A.P.; Sticher, Z.M.; Roychoudhury, P.; Andrews, M.K.; Krueger, R.E.; Natchus, M.G.; et al. Comparing Molnupiravir and Nirmatrelvir/Ritonavir Efficacy and the Effects on SARS-CoV-2 Transmission in Animal Models. Nat. Commun. 2023, 14, 4731. [Google Scholar] [CrossRef] [PubMed]
- Painter, W.P.; Holman, W.; Bush, J.A.; Almazedi, F.; Malik, H.; Eraut, N.C.J.E.; Morin, M.J.; Szewczyk, L.J.; Painter, G.R. Human Safety, Tolerability, and Pharmacokinetics of Molnupiravir, a Novel Broad-Spectrum Oral Antiviral Agent with Activity against SARS-CoV-2. Antimicrob. Agents Chemother. 2021, 65, e02428-20. [Google Scholar] [CrossRef] [PubMed]
- The Foundation for the National Institutes of Health (FNIH). Field Guide: Best Practices for COVID-19 Research in Small Animal Models. October 2020. Available online: https://fnih.org/sites/default/files/2021-07/ACTIV_SARS-CoV-2_Small_Animal_Models_Field_Guide_11.30.20_vF.pdf (accessed on 9 October 2023).
- Ehaideb, S.N.; Abdullah, M.L.; Abuyassin, B.; Bouchama, A. Evidence of a Wide Gap between COVID-19 in Humans and Animal Models: A Systematic Review. Crit. Care 2020, 24, 594. [Google Scholar] [CrossRef] [PubMed]
- Hui, K.P.Y.; Ho, J.C.W.; Cheung, M.; Ng, K.; Ching, R.H.H.; Lai, K.; Kam, T.T.; Gu, H.; Sit, K.-Y.; Hsin, M.K.Y.; et al. SARS-CoV-2 Omicron Variant Replication in Human Bronchus and Lung Ex Vivo. Nature 2022, 603, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; McNeill, J.H. To Scale or Not to Scale: The Principles of Dose Extrapolation. Br. J. Pharmacol. 2009, 157, 907–921. [Google Scholar] [CrossRef]
- Smoliga, J.M.; Blanchard, O.L. Allometric Scaling Models: History, Use, and Misuse in Translating Resveratrol from Basic Science to Human Clinical Applications. Funct. Foods Health Dis. 2017, 7, 338. [Google Scholar] [CrossRef]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose Translation from Animal to Human Studies Revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef]
- Wang, A.Q.; Hagen, N.R.; Padilha, E.C.; Yang, M.; Shah, P.; Chen, C.Z.; Huang, W.; Terse, P.; Sanderson, P.; Zheng, W.; et al. Preclinical Pharmacokinetics and In Vitro Properties of GS-441524, a Potential Oral Drug Candidate for COVID-19 Treatment. Front. Pharmacol. 2022, 13, 918083. [Google Scholar] [CrossRef]
- Hanafin, P.O.; Jermain, B.; Hickey, A.J.; Kabanov, A.V.; Kashuba, A.D.M.; Sheahan, T.P.; Rao, G.G. A Mechanism-based Pharmacokinetic Model of Remdesivir Leveraging Interspecies Scaling to Simulate COVID-19 Treatment in Humans. CPT Pharmacometrics Syst. Pharmacol. 2021, 10, 89–99. [Google Scholar] [CrossRef]
- Mali, K.R.; Eerike, M.; Raj, G.M.; Bisoi, D.; Priyadarshini, R.; Ravi, G.; Chaliserry, L.F.; Janti, S.S. Efficacy and Safety of Molnupiravir in COVID-19 Patients: A Systematic Review. Ir. J. Med. Sci. 2022, 192, 1665–1678. [Google Scholar] [CrossRef]
- Malin, J.J.; Weibel, S.; Gruell, H.; Kreuzberger, N.; Stegemann, M.; Skoetz, N. Efficacy and Safety of Molnupiravir for the Treatment of SARS-CoV-2 Infection: A Systematic Review and Meta-Analysis. J. Antimicrob. Chemother. 2023, 78, 1586–1598. [Google Scholar] [CrossRef] [PubMed]
- Santi Laurini, G.; Montanaro, N.; Motola, D. Safety Profile of Molnupiravir in the Treatment of COVID-19: A Descriptive Study Based on FAERS Data. J. Clin. Med. 2022, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Hill, C.S.; Sarkar, S.; Tse, L.V.; Woodburn, B.M.D.; Schinazi, R.F.; Sheahan, T.P.; Baric, R.S.; Heise, M.T.; Swanstrom, R. β-d-N4-Hydroxycytidine Inhibits SARS-CoV-2 Through Lethal Mutagenesis But Is Also Mutagenic To Mammalian Cells. J. Infect. Dis. 2021, 224, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Marikawa, Y.; Alarcon, V.B. An Active Metabolite of the Anti-COVID-19 Drug Molnupiravir Impairs Mouse Preimplantation Embryos at Clinically Relevant Concentrations. Reprod. Toxicol. 2023, 121, 108475. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, T.; Hisner, R.; Donovan-Banfield, I.; Hartman, H.; Løchen, A.; Peacock, T.P.; Ruis, C. A Molnupiravir-Associated Mutational Signature in Global SARS-CoV-2 Genomes. Nature 2023. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Wu, D.; Ren, L.; Chu, X.; Qin, C.; Han, X.; Hang, T.; Xu, Y.; Yang, L.; et al. Liposomal Remdesivir Inhalation Solution for Targeted Lung Delivery as a Novel Therapeutic Approach for COVID-19. Asian J. Pharm. Sci. 2021, 16, 772–783. [Google Scholar] [CrossRef]
- Vermillion, M.S.; Murakami, E.; Ma, B.; Pitts, J.; Tomkinson, A.; Rautiola, D.; Babusis, D.; Irshad, H.; Seigel, D.; Kim, C.; et al. Inhaled Remdesivir Reduces Viral Burden in a Nonhuman Primate Model of SARS-CoV-2 Infection. Sci. Transl. Med. 2022, 14, eabl8282. [Google Scholar] [CrossRef]
- Humeniuk, R.; Juneja, K.; Chen, S.; Ellis, S.; Anoshchenko, O.; Xiao, D.; Share, A.; Johnston, M.; Davies, S.; DeZure, A.; et al. Pharmacokinetics, Safety, and Tolerability of Inhaled Remdesivir in Healthy Participants. Clin. Transl. Sci. 2023. [Google Scholar] [CrossRef]
- Shannon, A.; Le, N.T.-T.; Selisko, B.; Eydoux, C.; Alvarez, K.; Guillemot, J.-C.; Decroly, E.; Peersen, O.; Ferron, F.; Canard, B. Remdesivir and SARS-CoV-2: Structural Requirements at Both Nsp12 RdRp and Nsp14 Exonuclease Active-Sites. Antiviral Res. 2020, 178, 104793. [Google Scholar] [CrossRef]
- Kabinger, F.; Stiller, C.; Schmitzová, J.; Dienemann, C.; Kokic, G.; Hillen, H.S.; Höbartner, C.; Cramer, P. Mechanism of Molnupiravir-Induced SARS-CoV-2 Mutagenesis. Nat. Struct. Mol. Biol. 2021, 28, 740–746. [Google Scholar] [CrossRef]
- Zadeh, V.R.; Afowowe, T.O.; Abe, H.; Urata, S.; Yasuda, J. Potential and Action Mechanism of Favipiravir as an Antiviral against Junin Virus. PLoS Pathog. 2022, 18, e1010689. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhong, W. Mechanism of Action of Favipiravir against SARS-CoV-2: Mutagenesis or Chain Termination? Innovation 2021, 2, 100165. [Google Scholar] [CrossRef] [PubMed]
- Shannon, A.; Selisko, B.; Le, N.-T.-T.; Huchting, J.; Touret, F.; Piorkowski, G.; Fattorini, V.; Ferron, F.; Decroly, E.; Meier, C.; et al. Rapid Incorporation of Favipiravir by the Fast and Permissive Viral RNA Polymerase Complex Results in SARS-CoV-2 Lethal Mutagenesis. Nat. Commun. 2020, 11, 4682. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 25 September 2023).
- Marangoni, D.; Antonello, R.M.; Coppi, M.; Palazzo, M.; Nassi, L.; Streva, N.; Povolo, L.; Malentacchi, F.; Zammarchi, L.; Rossolini, G.M.; et al. Combination Regimen of Nirmatrelvir/Ritonavir and Molnupiravir for the Treatment of Persistent SARS-CoV-2 Infection: A Case Report and a Scoping Review of the Literature. Int. J. Infect. Dis. 2023, 133, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Rosenke, K.; Meade-White, K.; Letko, M.; Clancy, C.; Hansen, F.; Liu, Y.; Okumura, A.; Tang-Huau, T.-L.; Li, R.; Saturday, G.; et al. Defining the Syrian Hamster as a Highly Susceptible Preclinical Model for SARS-CoV-2 Infection. Emerg. Microbes Infect. 2020, 9, 2673–2684. [Google Scholar] [CrossRef]
- Kim, Y.-I.; Kim, S.-G.; Kim, S.-M.; Kim, E.-H.; Park, S.-J.; Yu, K.-M.; Chang, J.-H.; Kim, E.J.; Lee, S.; Casel, M.A.B.; et al. Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe 2020, 27, 704–709.e2. [Google Scholar] [CrossRef]
- Yinda, C.K.; Port, J.R.; Bushmaker, T.; Offei Owusu, I.; Purushotham, J.N.; Avanzato, V.A.; Fischer, R.J.; Schulz, J.E.; Holbrook, M.G.; Hebner, M.J.; et al. K18-HACE2 Mice Develop Respiratory Disease Resembling Severe COVID-19. PLoS Pathog. 2021, 17, e1009195. [Google Scholar] [CrossRef]
- Kim, K.S.; Ejima, K.; Iwanami, S.; Fujita, Y.; Ohashi, H.; Koizumi, Y.; Asai, Y.; Nakaoka, S.; Watashi, K.; Aihara, K.; et al. A Quantitative Model Used to Compare Within-Host SARS-CoV-2, MERS-CoV, and SARS-CoV Dynamics Provides Insights into the Pathogenesis and Treatment of SARS-CoV-2. PLoS Biol. 2021, 19, e3001128. [Google Scholar] [CrossRef]
- Perelson, A.S.; Ke, R. Mechanistic Modeling of SARS-CoV-2 and Other Infectious Diseases and the Effects of Therapeutics. Clin. Pharmacol. Ther. 2021, 109, 829–840. [Google Scholar] [CrossRef]
- Cegolon, L.; Pol, R.; Simonetti, O.; Larese Filon, F.; Luzzati, R. Molnupiravir, Nirmatrelvir/Ritonavir, or Sotrovimab for High-Risk COVID-19 Patients Infected by the Omicron Variant: Hospitalization, Mortality, and Time until Negative Swab Test in Real Life. Pharmaceuticals 2023, 16, 721. [Google Scholar] [CrossRef]
- Golden, J.W.; Cline, C.R.; Zeng, X.; Garrison, A.R.; Carey, B.D.; Mucker, E.M.; White, L.E.; Shamblin, J.D.; Brocato, R.L.; Liu, J.; et al. Human Angiotensin-Converting Enzyme 2 Transgenic Mice Infected with SARS-CoV-2 Develop Severe and Fatal Respiratory Disease. JCI Insight 2020, 5, e142032. [Google Scholar] [CrossRef] [PubMed]
- Oladunni, F.S.; Park, J.-G.; Pino, P.A.; Gonzalez, O.; Akhter, A.; Allué-Guardia, A.; Olmo-Fontánez, A.; Gautam, S.; Garcia-Vilanova, A.; Ye, C.; et al. Lethality of SARS-CoV-2 Infection in K18 Human Angiotensin-Converting Enzyme 2 Transgenic Mice. Nat. Commun. 2020, 11, 6122. [Google Scholar] [CrossRef] [PubMed]
- Scully, E.P.; Haverfield, J.; Ursin, R.L.; Tannenbaum, C.; Klein, S.L. Considering How Biological Sex Impacts Immune Responses and COVID-19 Outcomes. Nat. Rev. Immunol. 2020, 20, 442–447. [Google Scholar] [CrossRef]
- van der Worp, H.B.; Howells, D.W.; Sena, E.S.; Porritt, M.J.; Rewell, S.; O’Collins, V.; Macleod, M.R. Can Animal Models of Disease Reliably Inform Human Studies? PLoS Med. 2010, 7, e1000245. [Google Scholar] [CrossRef]
- Gross, A.S.; Harry, A.C.; Clifton, C.S.; Della Pasqua, O. Clinical Trial Diversity: An Opportunity for Improved Insight into the Determinants of Variability in Drug Response. Br. J. Clin. Pharmacol. 2022, 88, 2700–2717. [Google Scholar] [CrossRef] [PubMed]
- Selker, H.P.; Gorman, S.; Kaitin, K.I. Efficacy-to-Effectiveness Clinical Trials. Trans. Am. Clin. Climatol. Assoc. 2018, 129, 279–300. [Google Scholar]
- Selker, H.P.; Eichler, H.-G.; Stockbridge, N.L.; McElwee, N.E.; Dere, W.H.; Cohen, T.; Erban, J.K.; Seyfert-Margolis, V.L.; Honig, P.K.; Kaitin, K.I.; et al. Efficacy and Effectiveness Too Trials: Clinical Trial Designs to Generate Evidence on Efficacy and on Effectiveness in Wide Practice. Clin. Pharmacol. Ther. 2019, 105, 857–866. [Google Scholar] [CrossRef]
- Nazha, B.; Mishra, M.; Pentz, R.; Owonikoko, T.K. Enrollment of Racial Minorities in Clinical Trials: Old Problem Assumes New Urgency in the Age of Immunotherapy. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 3–10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasmussen, H.B.; Hansen, P.R. Molnupiravir Revisited—Critical Assessment of Studies in Animal Models of COVID-19. Viruses 2023, 15, 2151. https://doi.org/10.3390/v15112151
Rasmussen HB, Hansen PR. Molnupiravir Revisited—Critical Assessment of Studies in Animal Models of COVID-19. Viruses. 2023; 15(11):2151. https://doi.org/10.3390/v15112151
Chicago/Turabian StyleRasmussen, Henrik Berg, and Peter Riis Hansen. 2023. "Molnupiravir Revisited—Critical Assessment of Studies in Animal Models of COVID-19" Viruses 15, no. 11: 2151. https://doi.org/10.3390/v15112151
APA StyleRasmussen, H. B., & Hansen, P. R. (2023). Molnupiravir Revisited—Critical Assessment of Studies in Animal Models of COVID-19. Viruses, 15(11), 2151. https://doi.org/10.3390/v15112151