Development of an Immunochromatography Assay to Detect Marburg Virus and Ravn Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses and Cells
2.2. Preparation of Virus-like Particles (VLPs) and Purified Recombinant NPs (rNPs)
2.3. Mouse mAbs for the Preparation of IC Assay Devices
2.4. Nonhuman Primate (NHP) Serum Samples
3. Results
3.1. Selection of mAbs for the IC Assay
3.2. Sensitivity and Specificity of the IC Assay to Detect MARV and RAVV in Tissue Culture Supernatants
3.3. Performance of the IC Assay in NHP Models of MVD
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feldmann, H.; Sanchez, A.; Geisbert, T.W. Filoviridae: Marburg and Ebola Viruses. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Cohen, J.I., Griffin, D.E., Lamb, R.A., Martin, M.A., Racaniello, V.R., Roizman, B., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; Volume 1, pp. 923–956. [Google Scholar]
- Kuhn, J.H.; Abe, J.; Adkins, S.; Alkhovsky, S.V.; Avšič-Županc, T.; Ayllón, M.A.; Bahl, J.; Balkema-Buschmann, A.; Ballinger, M.J.; Kumar Baranwal, V.; et al. Annual (2023) taxonomic update of RNA-directed RNA polymerase-encoding negative-sense RNA viruses (realm Riboviria: Kingdom Orthornavirae: Phylum Negarnaviricota). J. Gen. Virol. 2023, 104, 001864. [Google Scholar] [CrossRef] [PubMed]
- Biedenkopf, N.; Bukreyev, A.; Chandran, K.; Di Paola, N.; Formenty, P.B.H.; Griffiths, A.; Hume, A.J.; Mühlberger, E.; Netesov, S.V.; Palacios, G.; et al. Renaming of genera Ebolavirus and Marburgvirus to Orthoebolavirus and Orthomarburgvirus, respectively, and introduction of binomial species names within family Filoviridae. Arch. Virol. 2023, 168, 220. [Google Scholar] [CrossRef] [PubMed]
- Changula, K.; Kajihara, M.; Mweene, A.S.; Takada, A. Ebola and Marburg virus diseases in Africa: Increased risk of outbreaks in previously unaffected areas? Microbiol. Immunol. 2014, 58, 483–491. [Google Scholar] [CrossRef] [PubMed]
- CDC. Marburg Virus Disease Outbreaks. Available online: https://www.cdc.gov/vhf/marburg/outbreaks/chronology.html (accessed on 19 September 2023).
- Slenczka, W. Filovirus Research: How it Began. Curr. Top. Microbiol. Immunol. 2017, 411, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Adjemian, J.; Farnon, E.C.; Tschioko, F.; Wamala, J.F.; Byaruhanga, E.; Bwire, G.S.; Kansiime, E.; Kagirita, A.; Ahimbisibwe, S.; Katunguka, F.; et al. Outbreak of Marburg hemorrhagic fever among miners in Kamwenge and Ibanda Districts, Uganda, 2007. J. Infect. Dis. 2011, 204, S796–S799. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.P.; Timen, A.; Vossen, A.; van Dissel, J.T. Marburg haemorrhagic fever in returning travellers: An overview aimed at clinicians. Clin. Microbiol. Infect. 2019, 21S, e28–e31. [Google Scholar] [CrossRef] [PubMed]
- MacNeil, A.; Farnon, E.C.; Morgan, O.W.; Gould, P.; Boehmer, T.K.; Blaney, D.D.; Wiersma, P.; Tappero, J.W.; Nichol, S.T.; Ksiazek, T.G.; et al. Filovirus outbreak detection and surveillance: Lessons from Bundibugyo. J. Infect. Dis. 2011, 204, S761–S767. [Google Scholar] [CrossRef]
- MacNeil, A.; Rollin, P.E. Ebola and marburg hemorrhagic fevers: Neglected tropical diseases? PLoS Negl. Trop. Dis. 2012, 6, e1546. [Google Scholar] [CrossRef]
- Marzi, A.; Feldmann, H. Marburg Virus Disease: Global Threat or Isolated Events? J. Infect. Dis. 2023, 228, 103–105. [Google Scholar] [CrossRef]
- Feldmann, H.; Mühlberger, E.; Randolf, A.; Will, C.; Kiley, M.P.; Sanchez, A.; Klenk, H.D. Marburg virus, a filovirus: Messenger RNAs, gene order, and regulatory elements of the replication cycle. Virus Res. 1992, 24, 1–19. [Google Scholar] [CrossRef]
- Bharat, T.A.; Riches, J.D.; Kolesnikova, L.; Welsch, S.; Krahling, V.; Davey, N.; Parsy, M.L.; Becker, S.; Briggs, J.A. Cryo-electron tomography of Marburg virus particles and their morphogenesis within infected cells. PLoS Biol. 2011, 9, e1001196. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.; Kiley, M.P.; Klenk, H.D.; Feldmann, H. Sequence analysis of the Marburg virus nucleoprotein gene: Comparison to Ebola virus and other non-segmented negative-strand RNA viruses. J. Gen. Virol. 1992, 73, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Kiley, M.P.; Cox, N.J.; Elliott, L.H.; Sanchez, A.; DeFries, R.; Buchmeier, M.J.; Richman, D.D.; McCormick, J.B. Physicochemical properties of Marburg virus: Evidence for three distinct virus strains and their relationship to Ebola virus. J. Gen. Virol. 1988, 69, 1957–1967. [Google Scholar] [CrossRef]
- Changula, K.; Yoshida, R.; Noyori, O.; Marzi, A.; Miyamoto, H.; Ishijima, M.; Yokoyama, A.; Kajihara, M.; Feldmann, H.; Mweene, A.S.; et al. Mapping of conserved and species-specific antibody epitopes on the Ebola virus nucleoprotein. Virus Res. 2013, 176, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, R.; Muramatsu, S.; Akita, H.; Saito, Y.; Kuwahara, M.; Kato, D.; Changula, K.; Miyamoto, H.; Kajihara, M.; Manzoor, R.; et al. Development of an Immunochromatography assay (QuickNavi-Ebola) to detect multiple species of ebolaviruses. J. Infect. Dis. 2016, 214, S185–S191. [Google Scholar] [CrossRef] [PubMed]
- Makiala, S.; Mukadi, D.; De, W.A.; Muramatsu, S.; Kato, D.; Inano, K.; Gondaira, F.; Kajihara, M.; Yoshida, R.; Changula, K.; et al. Clinical Evaluation of QuickNavi™-Ebola in the 2018 Outbreak of Ebola Virus Disease in the Democratic Republic of the Congo. Viruses 2019, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Noda, T.; Sagara, H.; Suzuki, E.; Takada, A.; Kida, H.; Kawaoka, Y. Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP. J. Virol. 2002, 76, 4855–4865. [Google Scholar] [CrossRef]
- Bharat, T.A.; Noda, T.; Riches, J.D.; Kraehling, V.; Kolesnikova, L.; Becker, S.; Kawaoka, Y.; Briggs, J.A. Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography. Proc. Natl. Acad. Sci. USA 2012, 109, 4275–4280. [Google Scholar] [CrossRef]
- Noda, T.; Watanabe, S.; Sagara, H.; Kawaoka, Y. Mapping of the VP40-binding regions of the nucleoprotein of Ebola virus. J. Virol. 2007, 81, 3554–3562. [Google Scholar] [CrossRef]
- Marzi, A.; Robertson, S.J.; Haddock, E.; Feldmann, F.; Hanley, P.W.; Scott, D.P.; Strong, J.E.; Kobinger, G.; Best, S.M.; Feldmann, H. VSV-EBOV rapidly protects macaques against infection with the 2014/15 Ebola virus outbreak strain. Science 2015, 349, 739–742. [Google Scholar] [CrossRef]
- Nicholas, V.V.; Rosenke, R.; Feldmann, F.; Long, D.; Thomas, T.; Scott, D.P.; Feldmann, H.; Marzi, A. Distinct Biological Phenotypes of Marburg and Ravn Virus Infection in Macaques. J. Infect. Dis. 2018, 218, S458–S465. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.L.; Feldmann, F.; Kaza, B.; Clancy, C.S.; Hanley, P.W.; Fletcher, P.; Marzi, A. Rapid protection of nonhuman primates against Marburg virus disease using a single low-dose VSV-based vaccine. EBioMedicine 2023, 89, 104463. [Google Scholar] [CrossRef] [PubMed]
- Brauburger, K.; Hume, A.J.; Muhlberger, E.; Olejnik, J. Forty-five years of Marburg virus research. Viruses 2012, 4, 1878–1927. [Google Scholar] [CrossRef] [PubMed]
- Amman, B.R.; Carroll, S.A.; Reed, Z.D.; Sealy, T.K.; Balinandi, S.; Swanepoel, R.; Kemp, A.; Erickson, B.R.; Comer, J.A.; Campbell, S.; et al. Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 2012, 8, e1002877. [Google Scholar] [CrossRef] [PubMed]
- Schuh, A.J.; Amman, B.R.; Jones, M.E.; Sealy, T.K.; Uebelhoer, L.S.; Spengler, J.R.; Martin, B.E.; Coleman-McCray, J.A.; Nichol, S.T.; Towner, J.S. Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats. Nat. Commun. 2017, 8, 14446. [Google Scholar] [CrossRef] [PubMed]
- Bausch, D.G.; Nichol, S.T.; Muyembe-Tamfum, J.J.; Borchert, M.; Rollin, P.E.; Sleurs, H.; Campbell, P.; Tshioko, F.K.; Roth, C.; Colebunders, R.; et al. Marburg hemorrhagic fever associated with multiple genetic lineages of virus. N. Engl. J. Med. 2006, 355, 909–919. [Google Scholar] [CrossRef]
- Towner, J.S.; Amman, B.R.; Sealy, T.K.; Carroll, S.A.; Comer, J.A.; Kemp, A.; Swanepoel, R.; Paddock, C.D.; Balinandi, S.; Khristova, M.L.; et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 2009, 5, e1000536. [Google Scholar] [CrossRef]
- Maganga, G.D.; Bourgarel, M.; Ella, G.E.; Drexler, J.F.; Gonzalez, J.P.; Drosten, C.; Leroy, E.M. Is Marburg virus enzootic in Gabon? J. Infect. Dis. 2011, 204, S800–S803. [Google Scholar] [CrossRef]
- Kajihara, M.; Hang’ombe, B.M.; Changula, K.; Harima, H.; Isono, M.; Okuya, K.; Yoshida, R.; Mori-Kajihara, A.; Eto, Y.; Orba, Y.; et al. Marburgvirus in Egyptian Fruit Bats, Zambia. Emerg. Infect. Dis. 2019, 25, 1577–1580. [Google Scholar] [CrossRef]
- Amman, B.R.; Bird, B.H.; Bakarr, I.A.; Bangura, J.; Schuh, A.J.; Johnny, J.; Sealy, T.K.; Conteh, I.; Koroma, A.H.; Foday, I.; et al. Isolation of Angola-like Marburg virus from Egyptian rousette bats from West Africa. Nat. Commun. 2020, 11, 510. [Google Scholar] [CrossRef]
- Pawęska, J.T.; Storm, N.; Markotter, W.; Di Paola, N.; Wiley, M.R.; Palacios, G.; Jansen van Vuren, P. Shedding of Marburg Virus in Naturally Infected Egyptian Rousette Bats, South Africa, 2017. Emerg. Infect. Dis. 2020, 26, 3051–3055. [Google Scholar] [CrossRef] [PubMed]
- WHO. Prioritizing Diseases for Research and Development in Emergency Contexts. Available online: https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts (accessed on 21 September 2023).
- Emperador, D.M.; Mazzola, L.T.; Wonderly, T.B.; Chua, A.; Kelly-Cirino, C. Diagnostics for filovirus detection: Impact of recent outbreaks on the diagnostic landscape. BMJ Glob. Health 2019, 4, e001112. [Google Scholar] [CrossRef] [PubMed]
- Posthuma-Trumpie, G.A.; Korf, J.; van Amerongen, A. Lateral flow (immuno)assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioana. Chem. 2009, 393, 569–582. [Google Scholar] [CrossRef] [PubMed]
- Linares, E.M.; Kubota, L.T.; Michaelis, J.; Thalhammer, S. Enhancement of the detection limit for lateral flow immunoassays: Evaluation and comparison of bioconjugates. J. Immunol. Methods 2012, 375, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Saijo, M.; Niikura, M.; Morikawa, S.; Ksiazek, T.G.; Meyer, R.F.; Peters, C.J.; Kurane, I. Enzyme-linked immunosorbent assays for detection of antibodies to Ebola and Marburg viruses using recombinant nucleoproteins. J. Clin. Microbiol. 2001, 39, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zehender, G.; Sorrentino, C.; Veo, C.; Fiaschi, L.; Gioffre, S.; Ebranati, E.; Tanzi, E.; Ciccozzi, M.; Lai, A.; Galli, M. Distribution of Marburg virus in Africa: An evolutionary approach. Infect. Genet. Evol. 2016, 44, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Towner, J.S.; Sealy, T.K.; Khristova, M.L.; Albarino, C.G.; Conlan, S.; Reeder, S.A.; Quan, P.L.; Lipkin, W.I.; Downing, R.; Tappero, J.W.; et al. Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog. 2008, 4, e1000212. [Google Scholar] [CrossRef] [PubMed]
- Glaze, E.R.; Roy, M.J.; Dalrymple, L.W.; Lanning, L.L. A Comparison of the Pathogenesis of Marburg Virus Disease in Humans and Nonhuman Primates and Evaluation of the Suitability of These Animal Models for Predicting Clinical Efficacy under the ‘Animal Rule’. Comp. Med. 2015, 65, 241–259. [Google Scholar]
- Alves, D.A.; Glynn, A.R.; Steele, K.E.; Lackemeyer, M.G.; Garza, N.L.; Buck, J.G.; Mech, C.; Reed, D.S. Aerosol exposure to the angola strain of marburg virus causes lethal viral hemorrhagic Fever in cynomolgus macaques. Vet. Pathol. 2010, 47, 831–851. [Google Scholar] [CrossRef]
- Comer, J.E.; Brasel, T.; Massey, S.; Beasley, D.W.; Cirimotich, C.M.; Sanford, D.C.; Chou, Y.L.; Niemuth, N.A.; Novak, J.; Sabourin, C.L.; et al. Natural History of Marburg Virus Infection to Support Medical Countermeasure Development. Viruses 2022, 14, 2291. [Google Scholar] [CrossRef]
- Cooper, C.L.; Morrow, G.; Yuan, M.; Coleman, J.W.; Hou, F.; Reiserova, L.; Li, S.L.; Wagner, D.; Carpov, A.; Wallace-Selman, O.; et al. Nonhuman Primates Are Protected against Marburg Virus Disease by Vaccination with a Vesicular Stomatitis Virus Vector-Based Vaccine Prepared under Conditions to Allow Advancement to Human Clinical Trials. Vaccines 2022, 10, 1582. [Google Scholar] [CrossRef]
- Mukadi-Bamuleka, D.; Bulabula-Penge, J.; De Weggheleire, A.; Jacobs, B.K.; Edidi-Atani, F.; Mambu-Mbika, F.; Mbala-Kingebeni, P.; Makiala-Mandanda, S.; Faye, M.; Diagne, C.T. Field performance of three Ebola rapid diagnostic tests used during the 2018–20 outbreak in the eastern Democratic Republic of the Congo: A retrospective, multicentre observational study. Lancet Infect. Dis. 2022, 22, 891–900. [Google Scholar] [CrossRef]
- Mukadi-Bamuleka, D.; Bulabula-Penge, J.; Jacobs, B.K.; De Weggheleire, A.; Edidi-Atani, F.; Mambu-Mbika, F.; Legand, A.; Klena, J.D.; Fonjungo, P.N.; Mbala-Kingebeni, P. Head-to-head comparison of diagnostic accuracy of four Ebola virus disease rapid diagnostic tests versus GeneXpert® in eastern Democratic Republic of the Congo outbreaks: A prospective observational study. EBioMedicine 2023, 91, 104568. [Google Scholar] [CrossRef]
mAb Clone | Ig Class | Reactivity a | |||
---|---|---|---|---|---|
Musoke | Angola | Ravn | Orthoebolaviruses b | ||
MNP 13-10-1 | IgG1 | + | + | + | - |
MNP 31-8-1 | IgG1 | + | - | - | - |
MNP 52-2-2 | IgG2b | + | + | + | - |
MNP 95-4-2-6 | IgG2b | + | + | + | - |
MNP 98-3-8 | IgG1 | + | + | + | - |
MNP 121-9-5 | IgG1 | + | + | + | - |
MNP 6H9-5.1-6 c | IgG1 | + | + | + | - |
MNP 1D9-9-1 c | IgG3 | + | + | + | - |
MNP 1G5-1-5 | IgG1 | + | + | + | - |
MNP 4H6-7-1 | IgG3 | + | + | + | - |
MNP 6F1-7-1-7 | IgM | + | + | + | - |
MNP 8A3-3-1-4-2-1 | IgG1 | + | + | - | - |
MNP 15F8-2-1 | IgG1 | + | + | + | - |
Genus | Virus | Isolates | Titer (TCID50/mL) | Dilution (10n) | LOD/20 μL | |||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | |||||
Orthomarburgvirus | MARV | Musoke | 5.0 × 105 | ++ | + | - | - | 1.0 × 103 |
MARV | Angola | 1.0 × 106 | ++ | ++ | + | - | 2.0 × 102 | |
MARV | Ozolin | 7.0 × 106 | ++ | + | - | - | 1.4 × 104 | |
MARV | Ci67 | 1.0 × 107 | ++ | ++ | - | - | 2.0 × 104 | |
RAVV | Ravn | 1.0 × 106 | ++ | + | - | - | 2.0 × 103 | |
Orthoebolavirus | EBOV | Mayinga 76 | 1.0 × 106 | - | - | - | - | NA |
SUDV | Boniface | 3.0 × 105 | - | - | - | - | NA | |
BDBV | Butalya | 1.0 × 105 | - | - | - | - | NA | |
RESTV | Pennsylvania | 7.0 × 105 | - | - | - | - | NA |
NHP ID | Day after Infection | IC Assay Result | TCID50/mL Blood |
---|---|---|---|
MARV#1 (rhesus) | 0 | Not detected | Not detected |
3 | Not detected | Not detected | |
6 | Detected | 3.2 × 108 | |
7 a | Detected | 5.6 × 107 | |
MARV#2 (rhesus) | 0 | Not detected | Not detected |
3 | Not detected | Not detected | |
6 | Detected | 3.2 × 107 | |
8 a | Detected | 3.2 × 106 | |
MARV#3 (cynomolgus) | 0 | Not detected | Not detected |
3 | Not detected | Not detected | |
6 | Detected | 5.6 × 107 | |
7 a | Detected | 1.8 × 108 | |
MARV#4 (cynomolgus) | 0 | Not detected | Not detected |
3 | Not detected | Not detected | |
6 | Detected | 5.6 × 107 | |
7 a | Detected | 1.8 × 108 | |
MARV#5 (cynomolgus) | 0 | Not detected | Not detected |
3 | Not detected | 1.6 × 104 | |
6 | Detected | 3.4 × 107 | |
7 a | Not determined | Not determined | |
RAVV#1 b (rhesus) | 0 | Not detected | Not detected |
3 | Not detected | Not detected | |
6 | Detected c | 3.2 × 103 | |
9 | Detected | Not detected | |
12 b | Not detected | Not detected | |
RAVV#3 (cynomolgus) | 0 | Not detected | Not detected |
3 | Not detected | Not detected | |
6 | Detected | 3.2 × 105 | |
9 a | Detected | 1.8 × 107 | |
RAVV#4 (cynomolgus) | 0 | Not detected | Not detected |
3 | Not detected | Not detected | |
6 | Detected | 3.2 × 105 | |
9 a | Detected | 3.2 × 108 | |
EBOV#1 (cynomolgus) | 0 | Not detected | Not detected |
3 | Not detected | 3.2 × 103 | |
5 a | Not detected | 1.8 × 108 | |
EBOV#2 (cynomolgus) | 0 | Not detected | Not detected |
3 | Not detected | Not detected | |
6 | Not detected | 3.2 × 106 | |
7 a | Not detected | 1.8 × 106 | |
EBOV#3 (cynomolgus) | 0 | Not detected | Not detected |
3 | Not detected | Not detected | |
6 | Not detected | 3.2 × 107 | |
7 a | Not detected | 1.8 × 108 |
Isolate | Titer (TCID50/mL) | LOD/20 μL | ||||
---|---|---|---|---|---|---|
1.0 × 105 | 5.0 × 104 | 2.5 × 104 | 1.3 × 104 | 6.1 × 103 | ||
Angola | ++ | ++ | + | - | - | 5.0 × 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Changula, K.; Kajihara, M.; Muramatsu, S.; Hiraoka, K.; Yamaguchi, T.; Yago, Y.; Kato, D.; Miyamoto, H.; Mori-Kajihara, A.; Shigeno, A.; et al. Development of an Immunochromatography Assay to Detect Marburg Virus and Ravn Virus. Viruses 2023, 15, 2349. https://doi.org/10.3390/v15122349
Changula K, Kajihara M, Muramatsu S, Hiraoka K, Yamaguchi T, Yago Y, Kato D, Miyamoto H, Mori-Kajihara A, Shigeno A, et al. Development of an Immunochromatography Assay to Detect Marburg Virus and Ravn Virus. Viruses. 2023; 15(12):2349. https://doi.org/10.3390/v15122349
Chicago/Turabian StyleChangula, Katendi, Masahiro Kajihara, Shino Muramatsu, Koji Hiraoka, Toru Yamaguchi, Yoko Yago, Daisuke Kato, Hiroko Miyamoto, Akina Mori-Kajihara, Asako Shigeno, and et al. 2023. "Development of an Immunochromatography Assay to Detect Marburg Virus and Ravn Virus" Viruses 15, no. 12: 2349. https://doi.org/10.3390/v15122349
APA StyleChangula, K., Kajihara, M., Muramatsu, S., Hiraoka, K., Yamaguchi, T., Yago, Y., Kato, D., Miyamoto, H., Mori-Kajihara, A., Shigeno, A., Yoshida, R., Henderson, C. W., Marzi, A., & Takada, A. (2023). Development of an Immunochromatography Assay to Detect Marburg Virus and Ravn Virus. Viruses, 15(12), 2349. https://doi.org/10.3390/v15122349