Mammalian Cell-Line-Expressed CD2v Protein of African Swine Fever Virus Provides Partial Protection against the HLJ/18 Strain in the Early Infection Stage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Biosafety Statement and Facility
2.3. Cells and Viruses
2.4. Construction of Plasmids
2.5. Establishment of Stable Cell Lines Secreted Expression of CD2v, p30 and K205R Proteins
2.6. Indirect Immunofluorescence Assays
2.7. SDS-PAGE and Western Blotting Analysis
2.8. Purification of Recombinant Proteins
2.9. Immunization and Challenge of Pigs
2.10. Enzyme Linked Immunosorbent Assay
2.11. Hemadsorption Assay
3. Results
3.1. Expression, Purification and Characterization of CD2v Protein
3.2. Cell-Line-Expressed Protein Antigens Induced Robust Antibody Responses
3.3. CD2v Provided Partial Immune Protection, but p30 Showed No Synergistic Protective Effect
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Penrith, M.-L. History of ‘Swine Fever’ in Southern Africa. J. S. Afr. Vet. Assoc. 2013, 84, a1106. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Li, N.; Luo, Y.; Liu, Y.; Miao, F.; Chen, T.; Zhang, S.; Cao, P.; Li, X.; Tian, K.; et al. Emergence of African Swine Fever in China, 2018. Transbound. Emerg. Dis. 2018, 65, 1482–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Liu, R.; Zhang, X.; Li, F.; Wang, J.; Zhang, J.; Liu, X.; Wang, L.; Zhang, J.; Wu, X.; et al. Replication and Virulence in Pigs of the First African Swine Fever Virus Isolated in China. Emerg. Microbes Infect. 2019, 8, 438–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, L.K.; Stahl, K.; Jori, F.; Vial, L.; Pfeiffer, D.U. African Swine Fever Epidemiology and Control. Annu. Rev. Anim. Biosci. 2020, 8, 221–246. [Google Scholar] [CrossRef] [Green Version]
- Bastos, A.D.S.; Penrith, M.-L.; Crucière, C.; Edrich, J.L.; Hutchings, G.; Roger, F.; Couacy-Hymann, E.; Thomson, G.R. Genotyping Field Strains of African Swine Fever Virus by Partial P72 Gene Characterisation. Arch. Virol. 2003, 148, 693–706. [Google Scholar] [CrossRef]
- Achenbach, J.E.; Gallardo, C.; Nieto-Pelegrín, E.; Rivera-Arroyo, B.; Degefa-Negi, T.; Arias, M.; Jenberie, S.; Mulisa, D.D.; Gizaw, D.; Gelaye, E.; et al. Identification of a New Genotype of African Swine Fever Virus in Domestic Pigs from Ethiopia. Transbound. Emerg. Dis. 2017, 64, 1393–1404. [Google Scholar] [CrossRef]
- Quembo, C.J.; Jori, F.; Vosloo, W.; Heath, L. Genetic Characterization of African Swine Fever Virus Isolates from Soft Ticks at the Wildlife/Domestic Interface in Mozambique and Identification of a Novel Genotype. Transbound. Emerg. Dis. 2018, 65, 420–431. [Google Scholar] [CrossRef] [Green Version]
- Chapman, D.A.G.; Darby, A.C.; Da Silva, M.; Upton, C.; Radford, A.D.; Dixon, L.K. Genomic Analysis of Highly Virulent Georgia 2007/1 Isolate of African Swine Fever Virus. Emerg. Infect. Dis. 2011, 17, 599–605. [Google Scholar] [CrossRef]
- Gallardo, C.; Fernández-Pinero, J.; Pelayo, V.; Gazaev, I.; Markowska-Daniel, I.; Pridotkas, G.; Nieto, R.; Fernández-Pacheco, P.; Bokhan, S.; Nevolko, O.; et al. Genetic Variation among African Swine Fever Genotype II Viruses, Eastern and Central Europe. Emerg. Infect. Dis. 2014, 20, 1544–1547. [Google Scholar] [CrossRef] [Green Version]
- Ge, S.; Li, J.; Fan, X.; Liu, F.; Li, L.; Wang, Q.; Ren, W.; Bao, J.; Liu, C.; Wang, H.; et al. Molecular Characterization of African Swine Fever Virus, China, 2018. Emerg. Infect. Dis. 2018, 24, 2131–2133. [Google Scholar] [CrossRef] [Green Version]
- Dixon, L.K.; Chapman, D.A.G.; Netherton, C.L.; Upton, C. African Swine Fever Virus Replication and Genomics. Virus Res. 2013, 173, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Puertas, P.; Rodríguez, F.; Oviedo, J.M.; Ramiro-Ibáñez, F.; Ruiz-Gonzalvo, F.; Alonso, C.; Escribano, J.M. Neutralizing Antibodies to Different Proteins of African Swine Fever Virus Inhibit Both Virus Attachment and Internalization. J. Virol. 1996, 70, 5689–5694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Puertas, P.; Rodríguez, F.; Oviedo, J.M.; Brun, A.; Alonso, C.; Escribano, J.M. The African Swine Fever Virus Proteins P54 and P30 Are Involved in Two Distinct Steps of Virus Attachment and Both Contribute to the Antibody-Mediated Protective Immune Response. Virology 1998, 243, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Galindo, I.; Alonso, C. African Swine Fever Virus: A Review. Viruses 2017, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argilaguet, J.M.; Pérez-Martín, E.; López, S.; Goethe, M.; Escribano, J.M.; Giesow, K.; Keil, G.M.; Rodríguez, F. BacMam Immunization Partially Protects Pigs against Sublethal Challenge with African Swine Fever Virus. Antivir. Res. 2013, 98, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Burmakina, G.; Malogolovkin, A.; Tulman, E.R.; Zsak, L.; Delhon, G.; Diel, D.G.; Shobogorov, N.M.; Morgunov, Y.P.; Morgunov, S.Y.; Kutish, G.F.; et al. African Swine Fever Virus Serotype-Specific Proteins Are Significant Protective Antigens for African Swine Fever. J. Gen. Virol. 2016, 97, 1670–1675. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Gonzalvo, F.; Rodríguez, F.; Escribano, J.M. Functional and Immunological Properties of the Baculovirus-Expressed Hemagglutinin of African Swine Fever Virus. Virology 1996, 218, 285–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kollnberger, S.D.; Gutierrez-Castañeda, B.; Foster-Cuevas, M.; Corteyn, A.; Parkhouse, R.M.E. Identification of the Principal Serological Immunodeterminants of African Swine Fever Virus by Screening a Virus CDNA Library with Antibody. J. Gen. Virol. 2002, 83, 1331–1342. [Google Scholar] [CrossRef]
- Reis, A.L.; Parkhouse, R.M.E.; Penedos, A.R.; Martins, C.; Leitão, A. Systematic Analysis of Longitudinal Serological Responses of Pigs Infected Experimentally with African Swine Fever Virus. J. Gen. Virol. 2007, 88, 2426–2434. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Castañeda, B.; Reis, A.L.; Corteyn, A.; Parkhouse, R.M.E.; Kollnberger, S. Expression, Cellular Localization and Antibody Responses of the African Swine Fever Virus Genes B602L and K205R. Arch. Virol. 2008, 153, 2303–2306. [Google Scholar] [CrossRef]
- Lokhandwala, S.; Waghela, S.D.; Bray, J.; Sangewar, N.; Charendoff, C.; Martin, C.L.; Hassan, W.S.; Koynarski, T.; Gabbert, L.; Burrage, T.G.; et al. Adenovirus-Vectored Novel African Swine Fever Virus Antigens Elicit Robust Immune Responses in Swine. PLoS ONE 2017, 12, e0177007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Xiao, L.; Peng, B.; Wang, Y.; Yang, Z.; Yao, X.; Hu, L.; Lin, X. Prokaryotic Expression, Purification and Antigenicity Analysis of African Swine Fever Virus PK205R Protein. Pol. J. Vet. Sci. 2016, 19, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Hua, R.-H.; Li, Y.-N.; Chen, Z.-S.; Liu, L.-K.; Huo, H.; Wang, X.-L.; Guo, L.-P.; Shen, N.; Wang, J.-F.; Bu, Z.-G. Generation and Characterization of a New Mammalian Cell Line Continuously Expressing Virus-like Particles of Japanese Encephalitis Virus for a Subunit Vaccine Candidate. BMC Biotechnol. 2014, 14, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, R.-H.; Huo, H.; Li, Y.-N.; Xue, Y.; Wang, X.-L.; Guo, L.-P.; Zhou, B.; Song, Y.; Bu, Z.-G. Generation and Efficacy Evaluation of Recombinant Classical Swine Fever Virus E2 Glycoprotein Expressed in Stable Transgenic Mammalian Cell Line. PLoS ONE 2014, 9, e106891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhong, J.; Chen, W.-Y.; Wang, H.; Zhang, J.-W.; Bu, Z.-G.; Hua, R.-H. Eukaryotic expression of African swine virus p30 protein and preparation of monoclonal antibody. Chin. J. Prev. Vet. Med. 2021, 43, 1074–1079. [Google Scholar] [CrossRef]
- Zhang, S.-J.; Liu, J.; Niu, B.; Zhu, Y.-M.; Zhao, D.-M.; Chen, W.-Y.; Liu, R.-Q.; Bu, Z.-G.; Hua, R.-H. Comprehensive Mapping of Antigenic Linear B-Cell Epitopes on K205R Protein of African Swine Fever Virus with Monoclonal Antibodies. Virus Res. 2023, 328, 199085. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, D.; He, X.; Liu, R.; Wang, Z.; Zhang, X.; Li, F.; Shan, D.; Chen, H.; Zhang, J.; et al. A Seven-Gene-Deleted African Swine Fever Virus Is Safe and Effective as a Live Attenuated Vaccine in Pigs. Sci. China Life Sci. 2020, 63, 623–634. [Google Scholar] [CrossRef]
- Alejo, A.; Matamoros, T.; Guerra, M.; Andrés, G. A Proteomic Atlas of the African Swine Fever Virus Particle. J. Virol. 2018, 92, e01293-18. [Google Scholar] [CrossRef] [Green Version]
- Monteagudo, P.L.; Lacasta, A.; López, E.; Bosch, L.; Collado, J.; Pina-Pedrero, S.; Correa-Fiz, F.; Accensi, F.; Navas, M.J.; Vidal, E.; et al. BA71ΔCD2: A New Recombinant Live Attenuated African Swine Fever Virus with Cross-Protective Capabilities. J. Virol. 2017, 91, e01058-17. [Google Scholar] [CrossRef] [Green Version]
- Borca, M.V.; O’Donnell, V.; Holinka, L.G.; Risatti, G.R.; Ramirez-Medina, E.; Vuono, E.A.; Shi, J.; Pruitt, S.; Rai, A.; Silva, E.; et al. Deletion of CD2-like Gene from the Genome of African Swine Fever Virus Strain Georgia Does Not Attenuate Virulence in Swine. Sci. Rep. 2020, 10, 494. [Google Scholar] [CrossRef] [Green Version]
Group | Pig No. | Viremia Titers * (Log HAD50/mL) | ||||
---|---|---|---|---|---|---|
3 dpc | 6 dpc | 7 dpc | 15 dpc | 21 dpc | ||
A | A1 | <1.7 | 7.2 | 6.95 | / | / |
A2 | <1.7 | 6.45 | 6.45 | / | / | |
A3 | <1.7 | 5.45 | 5.45 | / | / | |
A4 | <1.7 | 6.1 | 6.3 | / | / | |
B | B1 | 5.7 | 7.1 | / | / | / |
B2 | 2.3 | 6.54 | / | / | / | |
B3 | 3.7 | 5.45 | / | / | / | |
C | C1 | <1.7 | 5.7 | / | / | / |
C2 | <1.7 | 4.2 | 4.2 | 3.45 | <1.7 | |
C3 | 2.3 | 6.95 | / | / | / | |
D | D1 | 5.2 | 7.1 | 7.2 | / | / |
D2 | 6.27 | 7.45 | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, R.-H.; Liu, J.; Zhang, S.-J.; Liu, R.-Q.; Zhang, X.-F.; He, X.-J.; Zhao, D.-M.; Bu, Z.-G. Mammalian Cell-Line-Expressed CD2v Protein of African Swine Fever Virus Provides Partial Protection against the HLJ/18 Strain in the Early Infection Stage. Viruses 2023, 15, 1467. https://doi.org/10.3390/v15071467
Hua R-H, Liu J, Zhang S-J, Liu R-Q, Zhang X-F, He X-J, Zhao D-M, Bu Z-G. Mammalian Cell-Line-Expressed CD2v Protein of African Swine Fever Virus Provides Partial Protection against the HLJ/18 Strain in the Early Infection Stage. Viruses. 2023; 15(7):1467. https://doi.org/10.3390/v15071467
Chicago/Turabian StyleHua, Rong-Hong, Jing Liu, Shu-Jian Zhang, Ren-Qiang Liu, Xian-Feng Zhang, Xi-Jun He, Dong-Ming Zhao, and Zhi-Gao Bu. 2023. "Mammalian Cell-Line-Expressed CD2v Protein of African Swine Fever Virus Provides Partial Protection against the HLJ/18 Strain in the Early Infection Stage" Viruses 15, no. 7: 1467. https://doi.org/10.3390/v15071467
APA StyleHua, R.-H., Liu, J., Zhang, S.-J., Liu, R.-Q., Zhang, X.-F., He, X.-J., Zhao, D.-M., & Bu, Z.-G. (2023). Mammalian Cell-Line-Expressed CD2v Protein of African Swine Fever Virus Provides Partial Protection against the HLJ/18 Strain in the Early Infection Stage. Viruses, 15(7), 1467. https://doi.org/10.3390/v15071467