Genetic Profile of African Swine Fever Viruses Circulating at Pig Farms in South Korea during the Outbreaks between 2022 and April 2023
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Laboratory Detection of ASFV
2.2. PCR Assay
2.3. Genetic Analysis of ASFV Strains
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dixon, L.K.; Chapman, D.A.; Netherton, C.L.; Upton, C. African swine fever virus replication and genomics. Virus Res. 2013, 173, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Galindo, I.; Alonso, C. African swine fever virus: A review. Viruses 2017, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, R.E. On a form of swine fever occurring in British East Africa (Kenya Colony). J. Comp. Pathol. 1921, 34, 159–191. [Google Scholar] [CrossRef] [Green Version]
- Costard, S.; Wieland, B.; de Glanville, W.; Jori, F.; Rowlands, R.; Vosloo, W.; Roger, F.; Pfeiffer, D.U.; Dixon, L.K. African swine fever: How can global spread be prevented? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 364, 2683–2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Li, N.; Luo, Y.; Liu, Y.; Miao, F.; Chen, T.; Zhang, S.; Cao, P.; Li, X.; Tian, K.; et al. Emergence of African swine fever in China, 2018. Transbound. Emerg. Dis. 2018, 65, 1482–1484. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Cho, K.H.; Lee, S.K.; Kim, D.Y.; Nah, J.J.; Kim, H.J.; Kim, H.J.; Hwang, J.Y.; Sohn, H.J.; Choi, J.G.; et al. Outbreak of African swine fever in South Korea, 2019. Transbound. Emerg. Dis. 2020, 67, 473–475. [Google Scholar] [CrossRef]
- Yoo, D.S.; Kim, Y.; Lee, E.S.; Lim, J.S.; Hong, S.K.; Lee, I.S.; Jung, C.S.; Yoon, H.C.; Wee, S.H.; Pfeiffer, D.U.; et al. Transmission dynamics of African swine fever virus, South Korea, 2019. Emerg. Infect. Dis. 2021, 27, 1909–1918. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, J.; Son, K.; Choi, Y.; Jeong, H.S.; Kim, Y.K.; Park, J.E.; Hong, Y.J.; Lee, S.I.; Wang, S.J.; et al. Wild boar harbouring African swine fever virus in the demilitarized zone in South Korea, 2019. Emerg. Microbes Infect. 2020, 9, 628–630. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.S.; Gortázar, C. African swine fever in wild boar: Assessing interventions in South Korea. Transbound. Emerg. Dis. 2021, 68, 2878–2889. [Google Scholar] [CrossRef]
- Korean Statistical Information Service (KOSIS). Livestock Trend Survey of Domestic Statistics. Available online: https://kosis.kr/index/index.do (accessed on 20 June 2023). (In Korean).
- Cho, K.H.; Kim, H.J.; Jang, M.K.; Ryu, J.H.; Yoo, D.S.; Kang, H.E.; Park, J.Y. Detection of African swine fever at an abattoir in South Korea, 2020. Vet. Sci. 2022, 9, 150. [Google Scholar] [CrossRef]
- Cho, K.H.; Kim, D.Y.; Jang, M.K.; Hong, S.K.; Ryu, J.H.; Kang, H.E.; Park, J.Y. Genetic characterization of African swine fever virus from pig farms in South Korea during outbreaks in 2019–2021. Viruses 2022, 14, 2621. [Google Scholar] [CrossRef] [PubMed]
- Bastos, A.D.; Penrith, M.L.; Crucière, C.; Edrich, J.L.; Hutchings, G.; Roger, F.; Couacy-Hymann, E.; Thomson, G.R. Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Arch. Virol. 2003, 148, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Achenbach, J.E.; Gallardo, C.; Nieto-Pelegrín, E.; Rivera-Arroyo, B.; Degefa-Negi, T.; Arias, M.; Jenberie, S.; Mulisa, D.D.; Gizaw, D.; Gelaye, E.; et al. Identification of a new genotype of African swine fever virus in domestic pigs from Ethiopia. Transbound. Emerg. Dis. 2017, 64, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Ge, S.; Zhang, Y.; Wu, X.; Wang, Z. A systematic review of genotypes and serogroups of African swine fever virus. Virus Genes. 2022, 58, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, C.; Casado, N.; Soler, A.; Djadjovski, I.; Krivko, L.; Madueño, E.; Nieto, R.; Perez, C.; Simon, A.; Ivanova, E.; et al. A multi gene-approach genotyping method identifies 24 genetic clusters within the genotype II-European African swine fever viruses circulating from 2007 to 2022. Front. Vet. Sci. 2023, 10, 1112850. [Google Scholar] [CrossRef] [PubMed]
- King, D.P.; Reid, S.M.; Hutchings, G.H.; Grierson, S.S.; Wilkinson, P.J.; Dixon, L.K.; Bastos, A.D.; Drew, T.W. Development of a TaqMan PCR assay with internal amplification control for the detection of African swine fever virus. J. Virol. Methods. 2003, 107, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, C.; Mwaengo, D.M.; Macharia, J.M.; Arias, M.; Taracha, E.A.; Soler, A.; Okoth, E.; Martín, E.; Kasiti, J.; Bishop, R.P. Enhanced discrimination of African swine fever virus isolates through nucleotide sequencing of the p54, p72, and pB602L (CVR) genes. Virus Genes 2009, 38, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Malogolovkin, A.; Burmakina, G.; Titov, I.; Sereda, A.; Gogin, A.; Baryshnikova, E.; Kolbasov, D. Comparative analysis of African swine fever virus genotypes and serogroups. Emerg. Infect. Dis. 2015, 21, 312–315. [Google Scholar] [CrossRef]
- Gallardo, C.; Fernández-Pinero, J.; Pelayo, V.; Gazaev, I.; Markowska-Daniel, I.; Pridotkas, G.; Nieto, R.; Fernández-Pacheco, P.; Bokhan, S.; Nevolko, O.; et al. Genetic variation among African swine fever genotype II viruses, eastern and central Europe. Emerg. Infect. Dis. 2014, 20, 1544–1547. [Google Scholar] [CrossRef] [Green Version]
- Tran, H.T.T.; Truong, A.D.; Dang, A.K.; Ly, D.V.; Chu, N.T.; Van Hoang, T.; Nguyen, H.T.; Netherton, C.L.; Dang, H.V. Novel method for sub-grouping of genotype II African swine fever viruses based on the intergenic region between the A179L and A137R genes. Vet. Med. Sci. 2022, 8, 607–609. [Google Scholar] [CrossRef]
- Kim, H.J.; Cho, K.H.; Ryu, J.H.; Jang, M.K.; Chae, H.G.; Choi, J.D.; Nah, J.J.; Kim, Y.J.; Kang, H.E. Isolation and genetic characterization of African swine fever virus from domestic pig farms in South Korea, 2019. Viruses 2020, 12, 1237. [Google Scholar] [CrossRef] [PubMed]
- Elsukova, A.; Shevchenki, I.; Varentsova, A.; Zinyakov, N.; Igolkin, A.; Vlasova, N. African swine fever (ASF), intergenic region, 9R/10R, NGS, Tandem Repeat Sequences in the Intergenic Region MGF 505 9R/10R is a new marker of the genetic variability among ASF genotype II viruses. In Proceedings of the EPIZONE, 10th Annual Meeting, Madrid, Spain, 27–29 September 2016; Volume 9, p. 78. [Google Scholar]
- Sanna, G.; Dei Giudici, S.; Bacciu, D.; Angioi, P.P.; Giammarioli, M.; De Mia, G.M.; Oggiano, A. Improved strategy for molecular characterization of African swine fever viruses from Sardinia, based on analysis of p30, CD2V and I73R/I329L variable regions. Transbound. Emerg. Dis. 2017, 64, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Panasiuk, N.; Walczak, M.; Juszkiewicz, M.; Woźniakowski, G. The spillover of African swine fever in Western Poland revealed its estimated origin on the basis of O174L, K145R, MGF 505–5R and IGR I73R/I329L genomic sequences. Viruses 2020, 12, 1094. [Google Scholar] [CrossRef] [PubMed]
- Nix, R.J.; Gallardo, C.; Hutchings, G.; Blanco, E.; Dixon, L.K. Molecular epidemiology of African swine fever virus studied by analysis of four variable genome regions. Arch. Virol. 2006, 151, 2475–2494. [Google Scholar] [CrossRef] [PubMed]
- Sun, E.; Huang, L.; Zhang, X.; Zhang, J.; Shen, D.; Zhang, Z.; Wang, Z.; Huo, H.; Wang, W.; Huangfu, H.; et al. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerg. Microbes Infect. 2021, 10, 2183–2193. [Google Scholar] [CrossRef] [PubMed]
- REUTERS. New China Swine Fever Strains Point to Unlicensed Vaccines. Available online: https://reuters.com/article/us-china-swinefever-vaccines-insight-idUSKBN29R00X (accessed on 22 January 2021).
- Vilem, A.; Nurmoja, I.; Niine, T.; Riit, T.; Nieto, R.; Viltrop, A.; Gallardo, C. Molecular characterization of African swine fever virus isolates in Estonia in 2014–2019. Pathogens 2020, 9, 582. [Google Scholar] [CrossRef] [PubMed]
- Levinson, G.; Gutman, G.A. Slipped-strand mispairing: A major mechanism for DNA sequence evolution. Mol. Biol. Evol. 1987, 4, 203–221. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Lee, S.I.; Jeong, H.G.; Yoo, J.; Jeong, H.; Choi, Y.; Son, K.; Jheong, W.H. Rapid emergence of African swine fever virus variants with different numbers of a tandem repeat sequence in South Korea. Transbound. Emerg. Dis. 2021, 68, 1726–1730. [Google Scholar] [CrossRef]
- Goller, K.V.; Malogolovkin, A.S.; Katorkin, S.; Kolbasov, D.; Titov, I.; Höper, D.; Beer, M.; Keil, G.M.; Portugal, R.; Blome, S. Tandem repeat insertion in African swine fever virus, Russia, 2012. Emerg. Infect. Dis. 2015, 21, 731–732. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Ren, Z.; Wang, Q.; Ge, S.; Liu, Y.; Liu, C.; Liu, F.; Hu, Y.; Li, J.; Bao, J.; et al. Infection of African swine fever in wild boar, China, 2018. Transbound. Emerg. Dis. 2019, 66, 1395–1398. [Google Scholar] [CrossRef]
- Ge, S.; Liu, Y.; Li, L.; Wang, Q.; Li, J.; Ren, W.; Liu, C.; Bao, J.; Wu, X.; Wang, Z. An extra insertion of tandem repeat sequence in African swine fever virus, China, 2019. Virus Genes 2019, 55, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Cho, K.H.; Mai, N.T.A.; Park, J.Y.; Trinh, T.B.N.; Jang, M.K.; Nguyen, T.T.H.; Vu, X.D.; Nguyen, T.L.; Nguyen, V.D.; et al. Multiple variants of African swine fever virus circulating in Vietnam. Arch. Virol. 2022, 167, 1137–1140. [Google Scholar] [CrossRef] [PubMed]
- Mai, N.T.A.; Dam, V.P.; Cho, K.H.; Nguyen, V.T.; Van Tuyen, N.; Nguyen, T.L.; Ambagala, A.; Park, J.Y.; Le, V.P. Emergence of a novel intergenic region (IGR) IV variant of african swine fever virus genotype II in domestic pigs in Vietnam. Vet. Res. Commun. 2023, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Chapman, D.A.; Darby, A.C.; Da Silva, M.; Upton, C.; Radford, A.D.; Dixon, L.K. Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus. Emerg. Infect. Dis. 2011, 17, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Mazloum, A.; Igolkin, A.S.; Vlasova, N.N.; Romenskaya, D.V. African swine fever virus: Use of genetic markers in analysis of its routes of spread. Vet. Segodnâ 2019, 3, 3–14. [Google Scholar] [CrossRef] [Green Version]
Date of Outbreak | Isolate Name | Organ of Origin | qPCR Ct | p72 Genotype | CD2v Serogroup | CVR | IGRI73R-I329L | IGRA179L-A137R | IGRMGF 505 9R/10R | ECO2 | O174L | K145R | MGF 505-5R | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 16 September 2019 | Korea/Pig/Paju1/2019 | Spleen | 17.1 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
2 | 17 September 2019 | Korea/Pig/Yeoncheon1/2019 | Spleen | 17.2 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
3 | 23 September 2019 | Korea/Pig/Gimpo1/2019 | Blood | 15.4 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
4 | 23 September 2019 | Korea/Pig/Paju2/2019 | Spleen | 15.3 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
5 | 23 September 2019 | Korea/Pig/Ganghwa1/2019 | Blood | 13.3 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
6 | 25 September 2019 | Korea/Pig/Ganghwa2/2019 | Blood | 15.4 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
7 | 25 September 2019 | Korea/Pig/Ganghwa3/2019 | Blood | 15.5 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
8 | 26 September 2019 | Korea/Pig/Ganghwa4/2019 | Blood | 16.0 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
9 | 26 September 2019 | Korea/Pig/Ganghwa5/2019 | Spleen | 17.6 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
10 | 1 October 2019 | Korea/Pig/Paju3/2019 | Spleen | 18.1 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
11 | 1 October 2019 | Korea/Pig/Paju4/2019 | Blood | 15.4 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
12 | 2 October 2019 | Korea/Pig/Paju5/2019 | Spleen | 16.4 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
13 | 2 October 2019 | Korea/Pig/Gimpo2/2019 | Spleen | 18.1 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
14 | 9 October 2019 | Korea/Pig/Yeoncheon2/2019 | Blood | 15.5 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
15 | 8 October 2020 | Korea/Pig/Hwacheon1/2020 | Spleen | 17.2 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
16 | 9 October 2020 | Korea/Pig/Hwacheon2/2020 | Blood | 34.3 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
17 | 4 May 2021 | Korea/Pig/Yeongwol/2021 | Spleen | 17.3 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
18 | 7 August 2021 | Korea/Pig/Goseong/2021 | Spleen | 17.1 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
19 | 15 August 2021 | Korea/Pig/Inje1/2021 | Blood | 13.2 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
20 | 25 August 2021 | Korea/Pig/Hongcheon/2021 | Blood | 25.7 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
21 | 5 October 2021 | Korea/Pig/Inje2/2021 | Spleen | 17.7 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
22 | 26 May 2022 | Korea/Pig/Hongcheon/2022 | Spleen | 20.8 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
23 | 18 August 2022 | Korea/Pig/Yanggu/2022 | Spleen | 19.8 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
24 | 18 September 2022 | Korea/Pig/Chuncheon1/2022 | Spleen | 15.1 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
25 | 19 September 2022 | Korea/Pig/Chuncheon2/2022 | Blood | 17.2 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
26 | 28 September 2022 | Korea/Pig/Gimpo/2022 | Blood | 15.8 | II | 8 | CVR1 | II | No deletion with SNP | MGF-1 | ECO2-I | I | I | I |
27 | 28 September 2022 | Korea/Pig/Paju/2022 | Lymph node | 16.5 | II | 8 | CVR1 | II | No deletion with SNP | MGF-1 | ECO2-I | I | I | I |
28 | 9 November 2022 | Korea/Pig/Cheorwon/2022 | Spleen | 17.9 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
29 | 5 January 2023 | Korea/Pig/Pocheon1/2023 | Blood | 15.0 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
30 | 11 January 2023 | Korea/Pig/Cheorwon/2023 | Blood | 19.3 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
31 | 22 January 2023 | Korea/Pig/Gimpo/2023 | Spleen | 20.1 | II | 8 | CVR1 | I | No deletion | MGF-1 | ECO2-I | I | I | I |
32 | 11 February 2023 | Korea/Pig/Yangyang/2023 | Spleen | 16.5 | II | 8 | CVR1 | II | No deletion | MGF-1 | ECO2-I | I | I | I |
33 | 19 March 2023 | Korea/Pig/Pocheon2/2023 | Spleen | 18.1 | II | 8 | CVR1 | II | No deletion with SNP | MGF-1 | ECO2-I | I | I | I |
34 | 29 March 2023 | Korea/Pig/Pocheon3/2023 | Spleen | 19.1 | II | 8 | CVR1 | II | No deletion with SNP | MGF-1 | ECO2-I | I | I | I |
35 | 31 March 2023 | Korea/Pig/Pocheon4/2023 | Blood | 21.3 | II | 8 | CVR1 | II | No deletion with SNP | MGF-1 | ECO2-I | I | I | I |
36 | 13 April 2023 | Korea/Pig/Pocheon5/2023 | Blood | 22.0 | II | 8 | CVR1 | II | No deletion with SNP | MGF-1 | ECO2-I | I | I | I |
GenBank | Strain | Country | Date of Collection | Origin | IGRI73R-I329L | Reference |
---|---|---|---|---|---|---|
FR682485 | Georgia 2007/1 | Georgia | April 2007 | Domestic pig | I | [37] |
OQ030809 | Pol17/WB/CASE237 | Poland | 13 March 2017 | Wild boar | I | [16] |
MK189457 | China/Jilin/2018/boar | China | 16 November 2018 | Wild boar | I | [33] |
MZ812370 | VNUA Hanoi-ASF2 | Vietnam | 24 September 2019 | Domestic pig | I | [35] |
MT300324 | Korea/19S3965wb/2019 | South Korea | 3 December 2019 | Wild boar | I | [31] |
OQ417675 | Korea/Pig/Gimpo/2023 | South Korea | 22 January 2023 | Domestic pig | I | This study |
KJ627206 | Pol14/Sz | Poland | 14 February 2014 | Wild boar | II | [20] |
MH717104 | ASFV-SY18 | China | July 2018 | Domestic pig | II | [5] |
MN603969 | Korea/Pig/Paju1/2019 | South Korea | 16 September 2019 | Domestic pig | II | [6] |
MN817979 | Korea/19S804/wb/2019 | South Korea | 2 October 2019 | Wild boar | II | [8] |
MZ812354 | VNUA QNinh-ASF2 | Vietnam | 2 May 2019 | Domestic pig | II | [35] |
OQ030832 | POL17/DP/OUT66 | Poland | 3 August 2017 | Domestic pig | III | [16] |
MK670729 | China/Guangxi/2019/Domestic pig | China | 7 March 2019 | Domestic pig | III | [34] |
MT300325 | Korea/19S5464/wb/2019 | South Korea | 30 December 2019 | Wild boar | III | [31] |
MZ812411 | VNUA BG-ASF3 | Vietnam | 22 June 2020 | Domestic pig | III | [35] |
MZ812475 | VNUA BG Hanoi-ASF9 | Vietnam | 7 August 2021 | Domestic pig | III | [35] |
OQ030919 | POL18/WBCASE3314 | Poland | 13 December 2018 | Wild boar | IV | [16] |
MT889536 | Pol19_01529_C88/19 | Poland | 2019 | Wild boar | IV | [25] |
MT889539 | Pol19_04468_O1/19 | Poland | 2019 | Domestic pig | IV | [25] |
MT951774 | Pol20_32983_O15/20 | Poland | 2020 | Domestic pig | IV | [25] |
ON053211 | VNUA HB-ASF2 | Vietnam | 19 October 2021 | Domestic pig | IV | [36] |
ON053216 | VNUA VP-ASF7 | Vietnam | 3 November 2021 | Domestic pig | IV | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, K.-H.; Yoo, D.-S.; Hong, S.-K.; Kim, D.-Y.; Jang, M.-K.; Kang, H.-E.; Kim, Y.-H. Genetic Profile of African Swine Fever Viruses Circulating at Pig Farms in South Korea during the Outbreaks between 2022 and April 2023. Viruses 2023, 15, 1552. https://doi.org/10.3390/v15071552
Cho K-H, Yoo D-S, Hong S-K, Kim D-Y, Jang M-K, Kang H-E, Kim Y-H. Genetic Profile of African Swine Fever Viruses Circulating at Pig Farms in South Korea during the Outbreaks between 2022 and April 2023. Viruses. 2023; 15(7):1552. https://doi.org/10.3390/v15071552
Chicago/Turabian StyleCho, Ki-Hyun, Dae-Sung Yoo, Seong-Keun Hong, Da-Young Kim, Min-Kyung Jang, Hae-Eun Kang, and Yeon-Hee Kim. 2023. "Genetic Profile of African Swine Fever Viruses Circulating at Pig Farms in South Korea during the Outbreaks between 2022 and April 2023" Viruses 15, no. 7: 1552. https://doi.org/10.3390/v15071552
APA StyleCho, K. -H., Yoo, D. -S., Hong, S. -K., Kim, D. -Y., Jang, M. -K., Kang, H. -E., & Kim, Y. -H. (2023). Genetic Profile of African Swine Fever Viruses Circulating at Pig Farms in South Korea during the Outbreaks between 2022 and April 2023. Viruses, 15(7), 1552. https://doi.org/10.3390/v15071552