Characterisation of a Live-Attenuated Rabies Virus Expressing a Secreted scFv for the Treatment of Rabies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mammalian Cell Culture
2.2. Molecular Biology Techniques
2.3. Rabies Virus Culture and Rescue
2.4. Virus Titration and Growth Kinetics
2.5. ELISA and Western Blot
2.6. Fluorescent Antibody Virus Neutralisation Test
2.7. Cell to Cell Spread
2.8. Cell Viability
2.9. hCMEC/D3 Cells
2.10. In Vivo Studies
2.11. Fluorescent Antibody Test (FAT)
2.12. Rabies Tissue Culture Isolation Test
2.13. Statistics
3. Results
3.1. Molecular Cloning and RABV Virus Rescue
3.2. Cell Viability
3.3. Growth Kinetics
3.4. Cell-Cell Spread
3.5. Viral Expression of 62-71-3 scFv
3.6. Neutralisation Properties of r62-71-3 scFv
3.7. In Vitro Blood-Brain Barrier Model
3.8. In Vivo Toxicity Assessment of RABV-62scFv
3.9. Serological Assessment of Mice Infected with RABV-62scFv
3.10. Investigating the Presence of RABV N Protein and Live Virus in Mouse Brain
3.11. Histopathological Assessment of CNS Immune Cell Infiltration
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nandi, S.; Kumar, M. Development in Immunoprophylaxis against Rabies for Animals and Humans. Avicenna J. Med. Biotechnol. 2010, 2, 3–21. [Google Scholar] [PubMed]
- Fooks, A.R.; Cliquet, F.; Finke, S.; Freuling, C.; Hemachudha, T.; Mani, R.S.; Muller, T.; Nadin-Davis, S.; Picard-Meyer, E.; Wilde, H.; et al. Rabies. Nat. Rev. Dis. Primers 2017, 3, 17091. [Google Scholar] [CrossRef] [PubMed]
- Hampson, K.; Coudeville, L.; Lembo, T.; Sambo, M.; Kieffer, A.; Attlan, M.; Barrat, J.; Blanton, J.D.; Briggs, D.J.; Cleaveland, S.; et al. Global Alliance for Rabies Control Partners for Rabies, P. Estimating the global burden of endemic canine rabies. PLoS Negl. Trop Dis. 2015, 9, e0003709. [Google Scholar]
- Conzelmann, K.K.; Cox, J.H.; Schneider, L.G.; Thiel, H.J. Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology 1990, 175, 485–499. [Google Scholar] [CrossRef] [Green Version]
- Borca, M.V.; Ramirez-Medina, E.; Silva, E.; Vuono, E.; Rai, A.; Pruitt, S.; Holinka, L.G.; Velazquez-Salinas, L.; Zhu, J.; Gladue, D.P. Development of a Highly Effective African Swine Fever Virus Vaccine by Deletion of the I177L Gene Results in Sterile Immunity against the Current Epidemic Eurasia Strain. J. Virol. 2020, 94, 10–1128. [Google Scholar] [CrossRef]
- Calvelage, S.; Tammiranta, N.; Nokireki, T.; Gadd, T.; Eggerbauer, E.; Zaeck, L.M.; Potratz, M.; Wylezich, C.; Hoper, D.; Muller, T.; et al. Genetic and Antigenetic Characterization of the Novel Kotalahti Bat Lyssavirus (KBLV). Viruses 2021, 13, 69. [Google Scholar] [CrossRef]
- Shwiff, S.A.; Elser, J.L.; Ernst, K.H.; Shwiff, S.S.; Anderson, A.M. Cost-benefit analysis of controlling rabies: Placing economics at the heart of rabies control to focus political will. Rev. Sci. Tech. 2018, 37, 681–689. [Google Scholar] [CrossRef]
- Velasco-Villa, A.; Escobar, L.E.; Sanchez, A.; Shi, M.; Streicker, D.G.; Gallardo-Romero, N.F.; Vargas-Pino, F.; Gutierrez-Cedillo, V.; Damon, I.; Emerson, G. Successful strategies implemented towards the elimination of canine rabies in the Western Hemisphere. Antivir. Res. 2017, 143, 1–12. [Google Scholar] [CrossRef]
- Freuling, C.M.; Hampson, K.; Selhorst, T.; Schroder, R.; Meslin, F.X.; Mettenleiter, T.C.; Muller, T. The elimination of fox rabies from Europe: Determinants of success and lessons for the future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20120142. [Google Scholar] [CrossRef] [Green Version]
- Taylor, L.H.; Nel, L.H. Global epidemiology of canine rabies: Past, present, and future prospects. Vet. Med. 2015, 6, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Lebrun, A.; Portocarrero, C.; Kean, R.B.; Barkhouse, D.A.; Faber, M.; Hooper, D.C. T-bet Is Required for the Rapid Clearance of Attenuated Rabies Virus from Central Nervous System Tissue. J. Immunol. 2015, 195, 4358–4368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooper, D.C.; Phares, T.W.; Fabis, M.J.; Roy, A. The production of antibody by invading B cells is required for the clearance of rabies virus from the central nervous system. PLoS Negl. Trop. Dis. 2009, 3, e535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooper, D.C.; Roy, A.; Kean, R.B.; Phares, T.W.; Barkhouse, D.A. Therapeutic immune clearance of rabies virus from the CNS. Future Virol. 2011, 6, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.C.; Morimoto, K.; Bette, M.; Weihe, E.; Koprowski, H.; Dietzschold, B. Collaboration of antibody and inflammation in clearance of rabies virus from the central nervous system. J. Virol. 1998, 72, 3711–3719. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Smith, T.G.; Jackson, F.; Gallardo-Romero, N.F.; Morgan, C.N.; Olson, V.; Hutson, C.L.; Wu, X. Revisiting rabies virus neutralizing antibodies through infecting BALB/c mice with live rabies virus. Virus Res. 2018, 248, 39–43. [Google Scholar] [CrossRef]
- Damodar, T.; Mani, R.S.; Prathyusha, P.V. Utility of rabies neutralizing antibody detection in cerebrospinal fluid and serum for ante-mortem diagnosis of human rabies. PLoS Negl. Trop. Dis. 2019, 13, e0007128. [Google Scholar] [CrossRef] [Green Version]
- Gnanadurai, C.W.; Zhou, M.; He, W.; Leyson, C.M.; Huang, C.T.; Salyards, G.; Harvey, S.B.; Chen, Z.; He, B.; Yang, Y.; et al. Presence of virus neutralizing antibodies in cerebral spinal fluid correlates with non-lethal rabies in dogs. PLoS Negl. Trop. Dis. 2013, 7, e2375. [Google Scholar] [CrossRef] [Green Version]
- Realegeno, S.; Niezgoda, M.; Yager, P.A.; Kumar, A.; Hoque, L.; Orciari, L.; Sambhara, S.; Olson, V.A.; Satheshkumar, P.S. An ELISA-based method for detection of rabies virus nucleoprotein-specific antibodies in human antemortem samples. PLoS ONE 2018, 13, e0207009. [Google Scholar] [CrossRef]
- Roy, A.; Hooper, D.C. Lethal silver-haired bat rabies virus infection can be prevented by opening the blood-brain barrier. J. Virol. 2007, 81, 7993–7998. [Google Scholar] [CrossRef] [Green Version]
- Liao, P.H.; Yang, H.H.; Chou, P.T.; Wang, M.H.; Chu, P.C.; Liu, H.L.; Chen, L.K. Sufficient virus-neutralizing antibody in the central nerve system improves the survival of rabid rats. J. Biomed. Sci. 2012, 19, 61. [Google Scholar] [CrossRef] [Green Version]
- Dietzschold, B.; Kao, M.; Zheng, Y.M.; Chen, Z.Y.; Maul, G.; Fu, Z.F.; Rupprecht, C.E.; Koprowski, H. Delineation of putative mechanisms involved in antibody-mediated clearance of rabies virus from the central nervous system. Proc. Natl. Acad. Sci. USA 1992, 89, 7252–7256. [Google Scholar] [CrossRef] [PubMed]
- Phares, T.W.; Kean, R.B.; Mikheeva, T.; Hooper, D.C. Regional differences in blood-brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J. Immunol. 2006, 176, 7666–7675. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.S.; Selden, D.; Wu, G.; Wright, E.; Horton, D.L.; Fooks, A.R.; Banyard, A.C. Antigenic site changes in the rabies virus glycoprotein dictates functionality and neutralizing capability against divergent lyssaviruses. J. Gen. Virol. 2018, 99, 169–180. [Google Scholar] [CrossRef]
- WHO World Health Organization. WHO Consultation on a Rabies Monoclonal Antibody Cocktail for Rabies Post Exposure Treatment; WHO: Geneva, Switzerland, 2002. [Google Scholar]
- Both, L.; van Dolleweerd, C.; Wright, E.; Banyard, A.C.; Bulmer-Thomas, B.; Selden, D.; Altmann, F.; Fooks, A.R.; Ma, J.K. Production, characterization, and antigen specificity of recombinant 62-71-3, a candidate monoclonal antibody for rabies prophylaxis in humans. FASEB J. 2013, 27, 2055–2065. [Google Scholar] [CrossRef]
- Muller, T.; Dietzschold, B.; Ertl, H.; Fooks, A.R.; Freuling, C.; Fehlner-Gardiner, C.; Kliemt, J.; Meslin, F.X.; Franka, R.; Rupprecht, C.E.; et al. Development of a mouse monoclonal antibody cocktail for post-exposure rabies prophylaxis in humans. PLoS Negl. Trop. Dis. 2009, 3, e542. [Google Scholar] [CrossRef]
- Both, L.; Banyard, A.C.; van Dolleweerd, C.; Wright, E.; Ma, J.K.; Fooks, A.R. Monoclonal antibodies for prophylactic and therapeutic use against viral infections. Vaccine 2013, 31, 1553–1559. [Google Scholar] [CrossRef] [Green Version]
- Van Dolleweerd, C.J.; Teh, A.Y.; Banyard, A.C.; Both, L.; Lotter-Stark, H.C.; Tsekoa, T.; Phahladira, B.; Shumba, W.; Chakauya, E.; Sabeta, C.T.; et al. Engineering, expression in transgenic plants and characterisation of E559, a rabies virus-neutralising monoclonal antibody. J. Infect. Dis. 2014, 210, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Strasser, R.; Altmann, F.; Mach, L.; Glossl, J.; Steinkellner, H. Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1,3-linked fucose. FEBS Lett. 2004, 561, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Whaley, K.J.; Hiatt, A.; Zeitlin, L. Emerging antibody products and Nicotiana manufacturing. Hum. Vaccin. 2011, 7, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Horton, D.L.; McElhinney, L.M.; Marston, D.A.; Wood, J.L.; Russell, C.A.; Lewis, N.; Kuzmin, I.V.; Fouchier, R.A.; Osterhaus, A.D.; Fooks, A.R.; et al. Quantifying antigenic relationships among the lyssaviruses. J. Virol. 2010, 84, 11841–11848. [Google Scholar] [CrossRef] [Green Version]
- Fooks, A.R.; Shipley, R.; Markotter, W.; Tordo, N.; Freuling, C.M.; Muller, T.; McElhinney, L.M.; Banyard, A.C.; Rupprecht, C.E. Renewed Public Health Threat from Emerging Lyssaviruses. Viruses 2021, 13, 1769. [Google Scholar] [CrossRef] [PubMed]
- Ledesma, L.A.; Lemos, E.R.S.; Horta, M.A. Comparing clinical protocols for the treatment of human rabies: The Milwaukee protocol and the Brazilian protocol (Recife). Rev. Soc. Bras. Med. Trop. 2020, 53, e20200352. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.P.; Wu, G.; Fooks, A.R.; Ma, J.; Banyard, A.C. Trying to treat the untreatable: Experimental approaches to clear rabies virus infection from the CNS. J. Gen. Virol. 2019, 100, 1171–1186. [Google Scholar] [CrossRef] [PubMed]
- De Melo, G.D.; Sonthonnax, F.; Lepousez, G.; Jouvion, G.; Minola, A.; Zatta, F.; Larrous, F.; Kergoat, L.; Mazo, C.; Moigneu, C.; et al. A combination of two human monoclonal antibodies cures symptomatic rabies. EMBO Mol. Med. 2020, 12, e12628. [Google Scholar] [CrossRef] [PubMed]
- Faber, M.; Pulmanausahakul, R.; Hodawadekar, S.S.; Spitsin, S.; McGettigan, J.P.; Schnell, M.J.; Dietzschold, B. Overexpression of the rabies virus glycoprotein results in enhancement of apoptosis and antiviral immune response. J. Virol. 2002, 76, 3374–3381. [Google Scholar] [CrossRef] [Green Version]
- Faber, M.; Li, J.; Kean, R.B.; Hooper, D.C.; Alugupalli, K.R.; Dietzschold, B. Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc. Natl. Acad. Sci. USA 2009, 106, 11300–11305. [Google Scholar] [CrossRef]
- Huang, F.; Guan, Z.; Ahmad, W.; Qiao, B.; Song, Y.; Duan, M.; Zhang, M. Protective efficacy of live attenuated rabies virus against Lethal Challenged Virus Strain (CVS-11) infection in the Central Nervous System (CNS) of mice. Viruses 2014, 165, 219–224. [Google Scholar]
- Huang, F.; Ahmad, W.; Duan, M.; Liu, Z.; Guan, Z.; Zhang, M.; Qiao, B.; Li, Y.; Song, Y.; Song, Y.; et al. Efficiency of live attenuated and inactivated rabies viruses in prophylactic and post exposure vaccination against the street virus strain. Acta Virol. 2015, 59, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, G.; Wen, Y.; Yang, S.; Xia, X.; Fu, Z.F. Intracerebral administration of recombinant rabies virus expressing GM-CSF prevents the development of rabies after infection with street virus. PLoS ONE 2011, 6, e25414. [Google Scholar] [CrossRef]
- Kgaladi, J.; Faber, M.; Dietzschold, B.; Nel, L.H.; Markotter, W. Pathogenicity and Immunogenicity of Recombinant Rabies Viruses Expressing the Lagos Bat Virus Matrix and Glycoprotein: Perspectives for a Pan-Lyssavirus Vaccine. Trop. Med. Infect. Dis. 2017, 2, 37. [Google Scholar] [CrossRef] [Green Version]
- Faber, M.; Pulmanausahakul, R.; Nagao, K.; Prosniak, M.; Rice, A.B.; Koprowski, H.; Schnell, M.J.; Dietzschold, B. Identification of viral genomic elements responsible for rabies virus neuroinvasiveness. Proc. Natl. Acad. Sci. USA 2004, 101, 16328–16332. [Google Scholar] [CrossRef] [PubMed]
- Marston, D.A.; McElhinney, L.M.; Banyard, A.C.; Horton, D.L.; Nunez, A.; Koser, M.L.; Schnell, M.J.; Fooks, A.R. Interspecies protein substitution to investigate the role of the lyssavirus glycoprotein. J. Gen. Virol. 2013, 94 Pt 2, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Brookes, S.M.; Parsons, G.; Johnson, N.; McElhinney, L.M.; Fooks, A.R. Rabies human diploid cell vaccine elicits cross-neutralising and cross-protecting immune responses against European and Australian bat lyssaviruses. Vaccine 2005, 23, 4101–4109. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, M.A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 2016, 5, 85–86. [Google Scholar] [CrossRef] [PubMed]
- Eigenmann, D.E.; Xue, G.; Kim, K.S.; Moses, A.V.; Hamburger, M.; Oufir, M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS 2013, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Han, L.; Bae, Y.; Manickam, D.S. Lucifer Yellow-A Robust Paracellular Permeability Marker in a Cell Model of the Human Blood-brain Barrier. J. Vis. Exp. 2019, 150, e58900. [Google Scholar]
- Madhusudana, S.N.; Sundaramoorthy, S.; Ullas, P.T. Utility of human embryonic kidney cell line HEK-293 for rapid isolation of fixed and street rabies viruses: Comparison with Neuro-2a and BHK-21 cell lines. Int. J. Infect. Dis. 2010, 14, e1067–e1071. [Google Scholar] [CrossRef] [Green Version]
- Rudd, R.J.; Trimarchi, C.V. Development and evaluation of an in vitro virus isolation procedure as a replacement for the mouse inoculation test in rabies diagnosis. J. Clin. Microbiol. 1989, 27, 2522–2528. [Google Scholar] [CrossRef]
- Faber, M.; Bette, M.; Preuss, M.A.; Pulmanausahakul, R.; Rehnelt, J.; Schnell, M.J.; Dietzschold, B.; Weihe, E. Overexpression of tumor necrosis factor alpha by a recombinant rabies virus attenuates replication in neurons and prevents lethal infection in mice. J. Virol. 2005, 79, 15405–15416. [Google Scholar] [CrossRef] [Green Version]
- Phoolcharoen, W.; Prehaud, C.; van Dolleweerd, C.J.; Both, L.; da Costa, A.; Lafon, M.; Ma, J.K. Enhanced transport of plant-produced rabies single-chain antibody-RVG peptide fusion protein across an in cellulo blood-brain barrier device. Plant Biotechnol. J. 2017, 15, 1331–1339. [Google Scholar] [CrossRef] [Green Version]
- Finke, S.; Cox, J.H.; Conzelmann, K.K. Differential transcription attenuation of rabies virus genes by intergenic regions: Generation of recombinant viruses overexpressing the polymerase gene. J. Virol. 2000, 74, 7261–7269. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, Y.; Liu, H.; Zhang, X.; Baolige, D.; Zhao, S.; Hu, W.; Yang, Y. Change in the Single Amino Acid Site 83 in Rabies Virus Glycoprotein Enhances the BBB Permeability and Reduces Viral Pathogenicity. Front. Cell Dev. Biol. 2020, 8, 632957. [Google Scholar] [CrossRef]
- Pulmanausahakul, R.; Li, J.; Schnell, M.J.; Dietzschold, B. The glycoprotein and the matrix protein of rabies virus affect pathogenicity by regulating viral replication and facilitating cell-to-cell spread. J. Virol. 2008, 82, 2330–2338. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, E.J.; Manguiat, K.; Wood, H.; Drebot, M. Two Detailed Plaque Assay Protocols for the Quantification of Infectious SARS-CoV-2. Curr. Protoc. Microbiol. 2020, 57, e105. [Google Scholar] [CrossRef]
- Means, R.E.; Roy, S.G.; Katz, S.G. The Propagation and Quantification of Two Emerging Oncolytic Viruses: Vesicular Stomatitis (VSV) and Zika (ZIKV). Methods Mol. Biol. 2020, 2097, 253–263. [Google Scholar] [PubMed]
- Baer, A.; Kehn-Hall, K. Viral concentration determination through plaque assays: Using traditional and novel overlay systems. J. Vis. Exp. 2014, 93, e52065. [Google Scholar]
- Goh, K.C.; Tang, C.K.; Norton, D.C.; Gan, E.S.; Tan, H.C.; Sun, B.; Syenina, A.; Yousuf, A.; Ong, X.M.; Kamaraj, U.S.; et al. Molecular determinants of plaque size as an indicator of dengue virus attenuation. Sci. Rep. 2016, 6, 26100. [Google Scholar] [CrossRef] [Green Version]
- Mei, M.; Long, T.; Zhang, Q.; Zhao, J.; Tian, Q.; Peng, J.; Luo, J.; Wang, Y.; Lin, Y.; Guo, X. Phenotypic Consequences In vivo and In vitro of Rearranging the P Gene of RABV HEP-Flury. Front. Microbiol. 2017, 8, 120. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Zhang, Y.; Zhang, Q.; Wu, Y.; Zhang, B.; Mo, M.; Tian, Q.; Zhao, J.; Mei, M.; Guo, X. The Deoptimization of Rabies Virus Matrix Protein Impacts Viral Transcription and Replication. Viruses 2019, 12, 4. [Google Scholar] [CrossRef] [Green Version]
- Okada, K.; Ito, N.; Yamaoka, S.; Masatani, T.; Ebihara, H.; Goto, H.; Nakagawa, K.; Mitake, H.; Okadera, K.; Sugiyama, M. Roles of the Rabies Virus Phosphoprotein Isoforms in Pathogenesis. J. Virol. 2016, 90, 8226–8237. [Google Scholar] [CrossRef] [Green Version]
BHK-21 | N2A | |||
---|---|---|---|---|
Virus | Plateau Titre (FFU/mL) | Statistical Significance | Plateau Titre (FFU/mL) | Statistical Significance |
RABV-cSN | 4.83 × 107 | 2.63 × 107 | ||
RABV-mCH RABV-mCH-K226R | 2.51 × 105 2.96 × 104 | 3.45 × 105 1.89 × 104 | ||
RABV-62scFv | 8.76 × 105 | 3.05 × 104 |
Challenge Virus | Media Assessed for Neutralisation | Neutralising/Non-Neutralising | Reciprocal Titre/IU/mL |
---|---|---|---|
CVS-11 | r62-71-3 | Neutralising | 12.14/0.39 |
CVS-11 | RABV-mCH-K226R supernatant sera | Non-Neutralising | n/a |
CVS-11 | Cell Culture Media Control | Non-Neutralising | n/a |
RV437 | r62-71-3 | Neutralising | 13.09/n/a |
RV437 | RABV-mCH-K226R supernatant sera | Non-Neutralising | n/a |
RV437 | Cell Culture Media Control | Non-Neutralising | n/a |
Virus Challenge Group | Dose (FFU) | Challenge Route | Survival to the End of the Study | Presence of RABV N Protein in Brain Smear (FAT) | Presence of Live Virus in Brain Homogenate (RTCIT) |
---|---|---|---|---|---|
RABV-62scFv | 101–104 | ic | Y | − | − |
RABV-CVS-mCH | 101 | N N N Y | + + + − | + + + − | |
RABV-CVS-mCH | 102 | Y Y N N | − − + + | − − + + | |
103–104 | N | + | + | ||
RABV-62scFv | 101–104 | iv | Y | − | − |
RABV-CVS-mCH | 101–104 | Y | − | − | |
Media Control | N/A | ic/iv | Y | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, S.P.; Shipley, R.; Drake, P.; Fooks, A.R.; Ma, J.; Banyard, A.C. Characterisation of a Live-Attenuated Rabies Virus Expressing a Secreted scFv for the Treatment of Rabies. Viruses 2023, 15, 1674. https://doi.org/10.3390/v15081674
Smith SP, Shipley R, Drake P, Fooks AR, Ma J, Banyard AC. Characterisation of a Live-Attenuated Rabies Virus Expressing a Secreted scFv for the Treatment of Rabies. Viruses. 2023; 15(8):1674. https://doi.org/10.3390/v15081674
Chicago/Turabian StyleSmith, Samuel P., Rebecca Shipley, Pascal Drake, Anthony R. Fooks, Julian Ma, and Ashley C. Banyard. 2023. "Characterisation of a Live-Attenuated Rabies Virus Expressing a Secreted scFv for the Treatment of Rabies" Viruses 15, no. 8: 1674. https://doi.org/10.3390/v15081674
APA StyleSmith, S. P., Shipley, R., Drake, P., Fooks, A. R., Ma, J., & Banyard, A. C. (2023). Characterisation of a Live-Attenuated Rabies Virus Expressing a Secreted scFv for the Treatment of Rabies. Viruses, 15(8), 1674. https://doi.org/10.3390/v15081674