Seven Epidemic Waves of COVID-19 in a Hospital in Madrid: Analysis of Severity and Associated Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Subjects
- All consecutive adult patients (over 16 years old) admitted to the Hospital Universitario de Fuenlabrada with a diagnosis of COVID-19 during the study period.
- Asymptomatic patients, regardless of the results of microbiological tests.
- Patients with symptoms not considered compatible with COVID-19, regardless of the results of microbiological tests.
- From March 2020 to June 2020, microbiological tests were not available for most patients. We classified cases as COVID-19 when compatible clinical symptoms were present, if clinicians did not diagnose any other infectious disease.
- From June 2020 to April 2022, the hospital implemented a comprehensive strategy to prevent nosocomial transmission by testing all admitted patients for the SARS-CoV-2 antigen or nucleic acid detection. We classified cases as COVID-19 when both a positive microbiological test result and a clinical diagnosis were present.
- From April 2022 to December 2022, the hospital only tested for the SARS-CoV-2 antigen or nucleic acid detection in admitted patients with a clinical suspicion of COVID-19. We only classified cases as COVID-19 when they had a positive microbiological test.
2.3. Definition of Epidemic Waves
2.4. Variables
2.5. Statistics
3. Results
3.1. Duration of the Epidemic Waves
- First wave: 4 March 2020 to 2 July 2020, with a peak on 31 March 2020.
- Second wave: 15 July 2020 to 25 November 2020, with a peak on 25 September 2020.
- Third wave: 26 November 2020 to 28 February 2021, with a peak on 25 January 2021.
- Fourth wave: 1 March 2021 to 30 June 2021, with a peak on 16 April 2021.
- Fifth wave: 1 July 2021 to 30 September 2021, with a peak on 23 August 2021.
- Sixth wave: 1 October 2021 to 4 April 2022, with a peak on 17 January 2022.
- Seventh wave: 5 April 2022 to 31 December 2022, with a peak on 28 June 2022.
3.2. Description
3.3. Factors Associated with COVID-19 Mechanical Ventilation
3.4. Factors Associated with COVID-19 Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- Twohig, K.A.; Nyberg, T.; Zaidi, A.; Thelwall, S.; Sinnathamby, M.A.; Aliabadi, S.; Seaman, S.R.; Harris, R.J.; Hope, R.; Lopez-Bernal, J.; et al. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: A cohort study. Lancet Infect. Dis. 2022, 22, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Brosh-Nissimov, T.; Orenbuch-Harroch, E.; Chowers, M.; Elbaz, M.; Nesher, L.; Stein, M.; Maor, Y.; Cohen, R.; Hussein, K.; Weinberger, M.; et al. BNT162b2 vaccine breakthrough: Clinical characteristics of 152 fully vaccinated hospitalized COVID-19 patients in Israel. Clin. Microbiol. Infect. 2021, 27, 1652–1657. [Google Scholar] [CrossRef]
- Sen-Crowe, B.; McKenney, M.; Elkbuli, A. Social distancing during the COVID-19 pandemic: Staying home save lives. Am. J. Emerg. Med. 2020, 38, 1519–1520. [Google Scholar] [CrossRef]
- Jones, R.P. Would the United States Have Had Too Few Beds for Universal Emergency Care in the Event of a More Widespread COVID-19 Epidemic? Int. J. Environ. Res. Public Health 2020, 17, 5210. [Google Scholar] [CrossRef]
- Vasileiou, E.; Simpson, C.R.; Shi, T.; Kerr, S.; Agrawal, U.; Akbari, A.; Bedston, S.; Beggs, J.; Bradley, D.; Chuter, A.; et al. Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: A national prospective cohort study. Lancet 2021, 397, 1646–1657. [Google Scholar] [CrossRef]
- Barandalla, I.; Alvarez, C.; Barreiro, P.; de Mendoza, C.; González-Crespo, R.; Soriano, V. Impact of scaling up SARS-CoV-2 vaccination on COVID-19 hospitalizations in Spain. Int. J. Infect. Dis. 2021, 112, 81–88. [Google Scholar] [CrossRef]
- Macedo, A.; Gonçalves, N.; Febra, C. COVID-19 fatality rates in hospitalized patients: Systematic review and meta-analysis. Ann. Epidemiol. 2021, 57, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Chubachi, S.; Namkoong, H.; Asakura, T.; Tanaka, H.; Otake, S.; Nakagawara, K.; Morita, A.; Fukushima, T.; Watase, M.; et al. Characteristics of hospitalized patients with COVID-19 during the first to fifth waves of infection: A report from the Japan COVID-19 Task Force. BMC Infect. Dis. 2022, 22, 935. [Google Scholar] [CrossRef] [PubMed]
- Salyer, S.J.; Maeda, J.; Sembuche, S.; Kebede, Y.; Tshangela, A.; Moussif, M.; Ihekweazu, C.; Mayet, N.; Abate, E.; Ouma, A.O.; et al. The first and second waves of the COVID-19 pandemic in Africa: A cross-sectional study. Lancet 2021, 397, 1265–1275. [Google Scholar] [CrossRef]
- Weber, G.M.; Zhang, H.G.; L’Yi, S.; Bonzel, C.-L.; Hong, C.; Avillach, P.; Gutiérrez-Sacristán, A.; Palmer, N.P.; Tan, A.L.M.; Wang, X.; et al. International Changes in COVID-19 Clinical Trajectories Across 315 Hospitals and 6 Countries: Retrospective Cohort Study. J. Med. Internet Res. 2021, 23, e31400. [Google Scholar] [CrossRef]
- Ramos-Rincon, J.-M.; Cobos-Palacios, L.; López-Sampalo, A.; Ricci, M.; Rubio-Rivas, M.; Nuñez-Rodriguez, M.-V.; Miranda-Godoy, R.; García-Leoni, M.-E.; Fernández-Madera-Martínez, R.; García-García, G.-M.; et al. Differences in clinical features and mortality in very old unvaccinated patients (≥80 years) hospitalized with COVID-19 during the first and successive waves from the multicenter SEMI-COVID-19 Registry (Spain). BMC Geriatr. 2022, 22, 546. [Google Scholar] [CrossRef] [PubMed]
- The Lancet India’s COVID-19 emergency. Lancet 2021, 397, 1683. [CrossRef]
- Tandon, P.; Leibner, E.S.; Hackett, A.; Maguire, K.; Mashriqi, N.; Kohli-Seth, R. The Third Wave: Comparing Seasonal Trends in COVID-19 Patient Data at a Large Hospital System in New York City. Crit. Care Explor. 2022, 4, e0653. [Google Scholar] [CrossRef]
- Akinocho, E.-M.; Kasongo, M.; Moerman, K.; Sere, F.; Coppieters, Y. Caractéristiques épidémiologiques de l’épidémie de COVID-19 entre 2020 et 2022 au Kongo central, RDC. Med. Trop. Santé Int. 2023, 3, mtsi.v3i2.2023.356. [Google Scholar] [CrossRef]
- Davies, M.; Kassanjee, R.; Rousseau, P.; Morden, E.; Johnson, L.; Solomon, W.; Hsiao, N.; Hussey, H.; Meintjes, G.; Paleker, M.; et al. Outcomes of laboratory-confirmed SARS-CoV-2 infection in the Omicron-driven fourth wave compared with previous waves in the Western Cape Province, South Africa. Trop. Med. Int. Health 2022, 27, 564–573. [Google Scholar] [CrossRef]
- Cordova, E.; Mykietiuk, A.; Sued, O.; Vedia, L.D.; Pacifico, N.; Hernandez, M.H.G.; Baeza, N.M.; Garibaldi, F.; Alzogaray, M.F.; Contreras, R.; et al. Clinical characteristics and outcomes of hospitalized patients with SARS-CoV-2 infection in a Latin American country: Results from the ECCOVID multicenter prospective study. PLoS ONE 2021, 16, e0258260. [Google Scholar] [CrossRef]
- Heydarifard, Z.; Shafiei-Jandaghi, N.-Z.; Safaei, M.; Tavakoli, F.; Shatizadeh Malekshahi, S. Comparison of clinical outcomes, demographic, and laboratory characteristics of hospitalized COVID-19 patients during major three waves driven by Alpha, Delta, and Omicron variants in Tehran, Iran. Influenza Other Respir. Viruses 2023, 17, e13184. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, R.; Islam, M.A.; Haque, M.E.; Hussain, D.A.; Islam, M.R.; Monayem, F.B.; Kamal, M.M.; Sina, H.; Islam, M.F.; Datta, P.K.; et al. Difference in presentation, outcomes, and hospital epidemiologic trend of COVID-19 among first, second, and third waves: A review of hospital records and prospective cohort study. Ann. Med. Surg. 2023, 85, 3816–3826. [Google Scholar] [CrossRef]
- Sargin Altunok, E.; Satici, C.; Dinc, V.; Kamat, S.; Alkan, M.; Demirkol, M.A.; Toprak, I.D.; Kostek, M.E.; Yazla, S.; Esatoglu, S.N. Comparison of demographic and clinical characteristics of hospitalized COVID-19 patients with severe/critical illness in the first wave versus the second wave. J. Med. Virol. 2022, 94, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, P.M.; Galbussera, A.A.; D’Avanzo, B.; Tettamanti, M.; Remuzzi, G.; Fortino, I.; Leoni, O.; Harari, S.; Nobili, A. Two years of SARS-CoV-2 pandemic and COVID-19 in Lombardy, Italy. Intern. Emerg. Med. 2023, 18, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 14 April 2023).
- Informe no 169 Situación Actual de COVID-19 en España a 24 de febrero de 2023.pdf [Internet]. Available online: https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/Documents/INFORMES/Informes%20COVID-19/INFORMES%20COVID-19%202023/Informe%20n%C2%BA%20169%20Situaci%C3%B3n%20actual%20de%20COVID-19%20en%20Espa%C3%B1a%20a%2024%20de%20febrero%20de%202023.pdf (accessed on 20 June 2023).
- Tanaka, H.; Chubachi, S.; Asakura, T.; Namkoong, H.; Azekawa, S.; Otake, S.; Nakagawara, K.; Fukushima, T.; Lee, H.; Watase, M.; et al. Characteristics and clinical effectiveness of COVID-19 vaccination in hospitalized patients in Omicron-dominated epidemic wave—A nationwide study in Japan. Int. J. Infect. Dis. 2023, 132, 84–88. [Google Scholar] [CrossRef] [PubMed]
- informe_epidemiologico_semanal_covid_s52_2022.pdf. [Internet]. Available online: https://www.comunidad.madrid/sites/default/files/doc/sanidad/epid/informe_epidemiologico_semanal_covid_s52_2022.pdf (accessed on 20 June 2023).
- Vahidy, F.S.; Drews, A.L.; Masud, F.N.; Schwartz, R.L.; Askary, B.; Boom, M.L.; Phillips, R.A. Characteristics and Outcomes of COVID-19 Patients During Initial Peak and Resurgence in the Houston Metropolitan Area. JAMA 2020, 324, 998–1000. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Petrilli, C.M.; Jones, S.A.; Yang, J.; Rajagopalan, H.; O’Donnell, L.; Chernyak, Y.; Tobin, K.A.; Cerfolio, R.J.; Francois, F.; Horwitz, L.I. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study. BMJ 2020, 369, m1966. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.; Zhang, H.G.; L’Yi, S.; Weber, G.; Avillach, P.; Tan, B.W.Q.; Gutiérrez-Sacristán, A.; Bonzel, C.-L.; Palmer, N.P.; Malovini, A.; et al. Changes in laboratory value improvement and mortality rates over the course of the pandemic: An international retrospective cohort study of hospitalised patients infected with SARS-CoV-2. BMJ Open 2022, 12, e057725. [Google Scholar] [CrossRef]
- Valero-Bover, D.; Monterde, D.; Carot-Sans, G.; Cainzos-Achirica, M.; Comin-Colet, J.; Vela, E.; Clèries, M.; Folguera, J.; Abilleira, S.; Arrufat, M.; et al. Is Age the Most Important Risk Factor in COVID-19 Patients? The Relevance of Comorbidity Burden: A Retrospective Analysis of 10,551 Hospitalizations. Clin. Epidemiol. 2023, 15, 811–825. [Google Scholar] [CrossRef]
- Garcia-Carretero, R.; Vazquez-Gomez, O.; Ordoñez-Garcia, M.; Garrido-Peño, N.; Gil-Prieto, R.; Gil-de-Miguel, A. Differences in Trends in Admissions and Outcomes among Patients from a Secondary Hospital in Madrid during the COVID-19 Pandemic: A Hospital-Based Epidemiological Analysis (2020–2022). Viruses 2023, 15, 1616. [Google Scholar] [CrossRef]
- Lee, T.; Cheng, M.P.; Vinh, D.C.; Lee, T.C.; Tran, K.C.; Winston, B.W.; Sweet, D.; Boyd, J.H.; Walley, K.R.; Haljan, G.; et al. Outcomes and characteristics of patients hospitalized for COVID-19 in British Columbia, Ontario and Quebec during the Omicron wave. CMAJ Open 2023, 11, E672–E683. [Google Scholar] [CrossRef]
- Consolazio, D.; Murtas, R.; Tunesi, S.; Lamberti, A.; Senatore, S.; Faccini, M.; Russo, A.G. A Comparison Between Omicron and Earlier COVID-19 Variants’ Disease Severity in the Milan Area, Italy. Front. Epidemiol. 2022, 2, 1–6. [Google Scholar] [CrossRef]
- COVID19_Actualizacion_variantes_20230403b.pdf [Internet]. Available online: https://www.sanidad.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos/COVID19_Actualizacion_variantes_20230403b.pdf (accessed on 20 June 2023).
- Casas-Rojo, J.M.; Antón-Santos, J.M.; Millán-Núñez-Cortés, J.; Lumbreras-Bermejo, C.; Ramos-Rincón, J.M.; Roy-Vallejo, E.; Artero-Mora, A.; Arnalich-Fernández, F.; García-Bruñén, J.M.; Vargas-Núñez, J.A.; et al. Clinical characteristics of patients hospitalized with COVID-19 in Spain: Results from the SEMI-COVID-19 Registry. Rev. Clin. Esp. 2020, 220, 480–494. [Google Scholar] [CrossRef]
- Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.M.; Dondelinger, F.; Carson, G.; et al. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: Prospective observational cohort study. BMJ 2020, 369, m1985. [Google Scholar] [CrossRef] [PubMed]
- Borobia, A.M.; Carcas, A.J.; Arnalich, F.; Álvarez-Sala, R.; Monserrat-Villatoro, J.; Quintana, M.; Figueira, J.C.; Torres Santos-Olmo, R.M.; García-Rodríguez, J.; Martín-Vega, A.; et al. A Cohort of Patients with COVID-19 in a Major Teaching Hospital in Europe. J. Clin. Med. 2020, 9, 1733. [Google Scholar] [CrossRef] [PubMed]
- RECOVERY Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Pascall, D.J.; Vink, E.; Blacow, R.; Bulteel, N.; Campbell, A.; Campbell, R.; Clifford, S.; Davis, C.; Filipe, A.; da Sakka, N.E.; et al. The SARS-CoV-2 Alpha variant was associated with increased clinical severity of COVID-19 in Scotland: A genomics-based retrospective cohort analysis. PLoS ONE 2023, 18, e0284187. [Google Scholar] [CrossRef]
- Vacunación COVID-19 Gobierno de España. Available online: http://www.vacunacovid.gob.es/ (accessed on 11 April 2023).
- Ruiz-Giardin, J.M.; Rivilla, M.; Mesa, N.; Morales, A.; Rivas, L.; Izquierdo, A.; Escribá, A.; Martín, J.V.S.; Bernal-Bello, D.; Madroñal, E.; et al. Comparative Study of Vaccinated and Unvaccinated Hospitalised Patients: A Retrospective Population Study of 500 Hospitalised Patients with SARS-CoV-2 Infection in a Spanish Population of 220,000 Inhabitants. Viruses 2022, 14, 2284. [Google Scholar] [CrossRef]
- Modes, M.E. Clinical Characteristics and Outcomes Among Adults Hospitalized with Laboratory-Confirmed SARS-CoV-2 Infection During Periods of B.1.617.2 (Delta) and B.1.1.529 (Omicron) Variant Predominance—One Hospital, California, July 15–September 23, 2021, and December 21, 2021–January 27, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 217–223. [Google Scholar] [CrossRef]
- Bager, P.; Wohlfahrt, J.; Bhatt, S.; Stegger, M.; Legarth, R.; Møller, C.H.; Skov, R.L.; Valentiner-Branth, P.; Voldstedlund, M.; Fischer, T.K.; et al. Risk of hospitalisation associated with infection with SARS-CoV-2 omicron variant versus delta variant in Denmark: An observational cohort study. Lancet Infect. Dis. 2022, 22, 967–976. [Google Scholar] [CrossRef]
- Hyams, C.; Challen, R.; Marlow, R.; Nguyen, J.; Begier, E.; Southern, J.; King, J.; Morley, A.; Kinney, J.; Clout, M.; et al. Severity of Omicron (B.1.1.529) and Delta (B.1.617.2) SARS-CoV-2 infection among hospitalised adults: A prospective cohort study in Bristol, United Kingdom. Lancet Reg. Health–Eur. 2023, 25, 100556. [Google Scholar] [CrossRef]
- Sheikh, A.; Kerr, S.; Woolhouse, M.; McMenamin, J.; Robertson, C. Severity of omicron variant of concern and effectiveness of vaccine boosters against symptomatic disease in Scotland (EAVE II): A national cohort study with nested test-negative design. Lancet Infect. Dis. 2022, 22, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, D.; Visseaux, B.; Kassasseya, C.; Daoud, A.; Fémy, F.; Hermand, C.; Truchot, J.; Beaune, S.; Javaud, N.; Peyrony, O.; et al. Comparison of Patients Infected With Delta Versus Omicron COVID-19 Variants Presenting to Paris Emergency Departments: A Retrospective Cohort Study. Ann. Intern. Med. 2022, 175, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Sievers, C.; Zacher, B.; Ullrich, A.; Huska, M.; Fuchs, S.; Buda, S.; Haas, W.; Diercke, M.; Heiden, M.; an der Kröger, S. SARS-CoV-2 Omicron variants BA.1 and BA.2 both show similarly reduced disease severity of COVID-19 compared to Delta, Germany, 2021 to 2022. Eurosurveillance 2022, 27, 2200396. [Google Scholar] [CrossRef] [PubMed]
- Hospitals of the Future: A Technical Brief on Re-Thinking the Architecture of Hospitals. Available online: https://www.who.int/europe/publications/i/item/WHO-EURO-2023-7525-47292-69380 (accessed on 17 August 2023).
- Li, G.; Hilgenfeld, R.; Whitley, R.; De Clercq, E. Therapeutic strategies for COVID-19: Progress and lessons learned. Nat. Rev. Drug Discov. 2023, 22, 449–475. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, E.M.; Rosenberg, E.S.; Patterson, W.; Ferguson, W.P.; Gonzalez, C.; DeHovitz, J.; Udo, T.; Rajulu, D.T.; Hart-Malloy, R.; Tesoriero, J. Factors associated with SARS-CoV-2-related hospital outcomes among and between persons living with and without diagnosed HIV infection in New York State. PLoS ONE 2022, 17, e0268978. [Google Scholar] [CrossRef] [PubMed]
- Casas-Rojo, J.-M.; Ventura, P.S.; Antón Santos, J.M.; de Latierro, A.O.; Arévalo-Lorido, J.C.; Mauri, M.; Rubio-Rivas, M.; González-Vega, R.; Giner-Galvañ, V.; Otero Perpiñá, B.; et al. Improving prediction of COVID-19 mortality using machine learning in the Spanish SEMI-COVID-19 registry. Intern. Emerg. Med. 2023; published online 22 June 2023. [Google Scholar] [CrossRef]
- Bajaj, V.; Gadi, N.; Spihlman, A.P.; Wu, S.C.; Choi, C.H.; Moulton, V.R. Aging, Immunity, and COVID-19: How Age Influences the Host Immune Response to Coronavirus Infections? Front. Physiol. 2020, 11, 571416. [Google Scholar] [CrossRef]
- Vardavas, C.I.; Mathioudakis, A.G.; Nikitara, K.; Stamatelopoulos, K.; Georgiopoulos, G.; Phalkey, R.; Leonardi-Bee, J.; Fernandez, E.; Carnicer-Pont, D.; Vestbo, J.; et al. Prognostic factors for mortality, intensive care unit and hospital admission due to SARS-CoV-2: A systematic review and meta-analysis of cohort studies in Europe. Eur. Respir. Rev. 2022, 31, 220098. [Google Scholar] [CrossRef]
- Loomba, R.S.; Villarreal, E.G.; Farias, J.S.; Aggarwal, G.; Aggarwal, S.; Flores, S. Serum biomarkers for prediction of mortality in patients with COVID-19. Ann. Clin. Biochem. 2022, 59, 15–22. [Google Scholar] [CrossRef]
- Alam, M.R.; Kabir, R.; Reza, S. Comorbidities might be a risk factor for the incidence of COVID-19: Evidence from a web-based survey. Prev. Med. Rep. 2021, 21, 101319. [Google Scholar] [CrossRef]
- Abou-Ismail, M.Y.; Diamond, A.; Kapoor, S.; Arafah, Y.; Nayak, L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb. Res. 2020, 194, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Groff, D.; Sun, A.; Ssentongo, A.E.; Ba, D.M.; Parsons, N.; Poudel, G.R.; Lekoubou, A.; Oh, J.S.; Ericson, J.E.; Ssentongo, P.; et al. Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review. JAMA Netw. Open 2021, 4, e2128568. [Google Scholar] [CrossRef] [PubMed]
Wave | First | Second | Third | Fourth | Fifth | Sixth | Seventh | Total |
---|---|---|---|---|---|---|---|---|
Patients | 1735 (35%) | 900 (18%) | 823 (17%) | 414 (8%) | 291 (6%) | 441 (8%) | 397 (8%) | 5001 |
Total admissions | 1823 (33%) | 980 (18%) | 900 (16%) | 472 (9%) | 322 (6%) | 522 (9%) | 491 (9%) | 5510 |
Second episodes | 88 (5%) | 80 (8%) | 77 (9%) | 58 (12%) | 31 (10%) | 81 (16%) | 94 (19%) | 509 (9%) |
Wave | First | Second | Third | Fourth | Fifth | Sixth | Seventh | Total | p |
---|---|---|---|---|---|---|---|---|---|
Patients | 1735 (35%) | 900 (18%) | 823 (17%) | 414 (8%) | 291 (6%) | 441 (8%) | 397 (8%) | 5001 | |
Male sex | 957 (55%) | 464 (52%) | 472 (57%) | 232 (56%) | 163 (52%) | 228 (52%) | 200 (50%) | 2743 (54%) | 0.073 |
Age 2 | 64 (54–74) | 60 (48–72) | 65 (54–76) | 61 (50–72) | 53 (38–68) | 68 (57–78) | 79 (71–87) | 65 (53–76) | <0.001 3 |
Place of birth | |||||||||
Spain 1 | 1435 (84, 82–86) | 600 (68, 67–71) | 700 (87, 84–90) | 330 (80, 76–84) | 188 (66, 61–71) | 368 (85, 82–88) | 382 (96, 94–98) | 4003 (81, 80–82) | <0.001 |
Latin America | 168 (10%) | 156 (17%) | 63 (8%) | 49 (12%) | 30 (11%) | 24 (6%) | 6 (2%) | 495 (10%) | <0.001 |
North Africa | 26 (2%) | 66 (7%) | 16 (2%) | 14 (3%) | 25 (8%) | 12 (3%) | 3 (1%) | 162 (3%) | <0.001 |
Vaccinated | 0 | 0 | 1 (0.1%) | 20 (5%) | 112 (39%) | 328 (74%) | 159 (88%) | 620 (13%) | <0.001 |
Comorbidities | |||||||||
Charlson index 4 | 1.3 (2.3) | 1.4 (2.3) | 1.5 (2.3) | 1.4 (2.5) | 1.4 (2.4) | 2.2 (2.8) | 2.7 (2.7) | 1.5 (2.4) | <0.001 5 |
Hypertension | 816 (47%) | 371 (41%) | 425 (52%) | 185 (45%) | 114 (39%) | 253 (57%) | 150 (68%) | 2314 (48%) | <0.001 |
Diabetes | 221 (13%) | 96 (11%) | 113 (14%) | 33 (8%) | 26 (9%) | 58 (13%) | 48 (22%) | 595 (12%) | <0.001 |
Cardiopathy | 77 (4%) | 42 (5%) | 42 (5%) | 13 (3%) | 19 (7%) | 21 (5%) | 24 (11%) | 238 (5%) | 0.002 |
COPD 6 | 171 (10%) | 72 (8%) | 75 (9%) | 32 (8%) | 23 (7%) | 62 (14%) | 88 (35%) | 523 (11%) | <0.001 |
Asthma | 158 (9%) | 66 (7%) | 78 (10%) | 31 (8%) | 24 (8%) | 44 (10%) | 30 (13%) | 431 (9%) | 0.148 |
Cancer | 323 (19%) | 155 (17%) | 149 (18%) | 57 (14%) | 40 (14%) | 119 (27%) | 109 (45%) | 952 (20%) | <0.001 |
Dementia | 51 (3%) | 30 (3%) | 27 (3%) | 12 (3%) | 10 (3%) | 34 (8%) | 52 (21%) | 216 (5%) | <0.001 |
PLHIV 7 | 5 | 2 | 1 | 2 | 0 | 1 | 3 | 14 (0.3%) | 0.228 |
Wave | First | Second | Third | Fourth | Fifth | Sixth | Seventh | Total | p |
---|---|---|---|---|---|---|---|---|---|
Patients | 1735 (35%) | 900 (18%) | 823 (17%) | 414 (8%) | 291 (6%) | 441 (8%) | 397 (8%) | 5001 | |
Oxygen saturation on admission under 94% 1 | 815 (45, 43–47) | 333 (34, 31–37) | 392 (44, 41–47) | 207 (44, 39–49) | 129 (40, 34–46) | 191 (37, 32–41) | 123 (45, 40–50) | 2190 (41, 40–42) | <0.001 |
Worst oxygen saturation under 94% 1 | 1512 (83, 81–85) | 738 (75, 72–78) | 759 (84, 81–87) | 367 (78, 74–82) | 237 (74, 70–78) | 392 (75, 71–79) | 223 (81, 77–85) | 4228 (80, 79–81) | <0.001 |
Oxygen requirements | |||||||||
None 1 | 415 (24, 22–26) | 266 (30, 27–33) | 165 (20, 17–23) | 86 (21, 17–25) | 50 (18, 14–22) | 114 (26, 22–30) | 56 (30, 25–35) | 1152 (25, 24–26) | <0.001 |
Low oxygen flow 1 | 869 (51, 49–53) | 434 (50, 47–53) | 430 (53, 50–56) | 214 (53, 48–58) | 156 (55, 49–51) | 234 (53, 49–58) | 118 (64, 59–69) | 2455 (52, 51–53) | <0.001 |
High oxygen flow 1 | 321 (19, 17–21) | 107 (12, 10–14) | 151 (19, 16–22) | 53 (13, 10–16) | 42 (15, 11–19) | 64 (15, 12–18) | 6 (3, 1–5) | 744 (16, 15–17) | <0.001 |
Mechanical ventilation 1 | 93 (6, 5–7) | 67 (8, 6–10) | 64 (8, 6–10) | 48 (12, 9–15) | 34 (12, 8–16) | 28 (6, 4–8) | 5 (3, 1.5) | 339 (7, 6–8) | <0.001 |
Bilateral infiltrates on chest X-ray 1 | 1162 (67, 66–69) | 310 (33, 30–35) | 433 (48, 45–51) | 175 (40, 35–45) | 145 (56, 50–62) | 149 (29, 25–33) | 9 (3, 7–11) | 2383 (47, 46–48) | <0.001 |
CRP 2,3 | 109 (50–170) | 87 (30–144) | 93 (38–148) | 99 (44–154) | 85 (26–145) | 72 (12–132) | 59 (17–101) | 94 (30–150) | <0.001 4 |
IL-6 2,3 | 44 (1–101) | 34 (0–90) | 50 (1–130) | 47 (1–127) | 42 (1–120) | 27 (1–76) | 12 (1–28) | 40 (0–104) | <0.001 4 |
DD 2,3 | 1021 (256–1785) | 901 (232–1570) | 1092 (123–2061) | 986 (192–1779) | 942 (272–1611) | 1099 (319–1879) | 943 (540–1345) | 1015 (266–1764) | <0.001 4 |
Ferritin 2,3 | 543 (94–991) | 536 (155–917) | 572 (144–1000) | 610 (110–1110) | 539 (174–943) | 412 (72–762) | 196 (16–416) | 528 (121–935) | <0.001 4 |
Remdesivir | 0 | 15 (2%) | 9 (1%) | 2 (0.5%) | 0 | 1 (0.2%) | 9 (5%) | 36 (1%) | <0.001 |
Corticosteroids 1 | 715 (41, 39–43) | 609 (68, 65–71) | 679 (83, 80–86) | 324 (78, 74–82) | 236 (81, 76–86) | 337 (76, 72–80) | 123 (69, 64–74) | 3023 (63, 62–64) | <0.001 |
Tocilizumab 1 | 257 (15, 13–17) | 261 (29, 26–32) | 347 (42, 39–45) | 163 (39, 34–44) | 102 (35, 30–40) | 100 (23, 19–27) | 9 (5, 3–7) | 1239 (26, 25–27) | <0.001 |
Baricitinib 1 | 17 (1, 0–2) | 5 (15, 13–17) | 6 (1, 0–2) | 10 (2, 1–3) | 46 (16, 12–20) | 57 (13, 10–16) | 3 (2, 1–3) | 144 (3, 2–4) | <0.001 |
pLMWH 1,5 | 1450 (84, 82–86) | 801 (89, 87–91) | 750 (91, 89–93) | 398 (87, 84–90) | 284 (89, 85–93) | 365 (83, 79–87) | 121 (68, 63–73) | 4103 (86, 85–87) | <0.001 |
Total length of stay, days 2 | 7.8 (4.3–11.3) | 7.0 (3.5–10.5) | 7.2 (3.2–11.2) | 6.9 (2.4–11.4) | 7.0 (3.0–11.0) | 5.8 (2.3–9.3) | 5.8 (3.3–7.3) | 7.1 (3.1–11.1) | <0.001 6 |
Deaths 1 | 200 (11.5, 10.0–13.0) | 89 (9.9, 8.0–11.8) | 93 (11.3, 9.1–13.5) | 29 (7, 4.5–9.5) | 19 (6.5, 3.7–9.3) | 53 (12, 9–15) | 31 (8, 5.3–10.7) | 514 (10.3, 9.5–11.1) | 0.040 |
Predictive Variables Included in the Model | OR (95% CI) | p |
---|---|---|
Cancer (categorical) | 0.49 (0.30–0.81) | 0.046 |
Worst oxygen saturation < 94% (categorical) | 7.36 (2.04–26.61) | <0.001 |
Bilateral infiltrates (categorical) | 4.03 (3.27–4.95) | <0.001 |
Variables | OR (95% CI) | p |
---|---|---|
Age (continuous, per 1.0 year) | 1.08 (1.07–1.09) | <0.001 |
Charlson index (continuous, per 1.0) | 1.38 (1.31–1.47) | <0.001 |
Cancer (categorical) | 1.99 (1.53–2.60) | <0.001 |
Dementia (categorical) | 1.82 (1.20–2.75) | 0.010 |
High O2 flow (categorical) | 10.243 (6.880–15.251) | <0.001 |
Mechanical ventilation (categorical) | 11.554 (6.996–19.080) | <0.001 |
C-reactive protein (continuous, per 1.0 mg/dL) | 1.04 (1.03–1.06) | <0.001 |
Low-molecular-weight heparin (categorical) | 0.41 (0.30–0.57) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
San Martín-López, J.V.; Mesa, N.; Bernal-Bello, D.; Morales-Ortega, A.; Rivilla, M.; Guerrero, M.; Calderón, R.; Farfán, A.I.; Rivas, L.; Soria, G.; et al. Seven Epidemic Waves of COVID-19 in a Hospital in Madrid: Analysis of Severity and Associated Factors. Viruses 2023, 15, 1839. https://doi.org/10.3390/v15091839
San Martín-López JV, Mesa N, Bernal-Bello D, Morales-Ortega A, Rivilla M, Guerrero M, Calderón R, Farfán AI, Rivas L, Soria G, et al. Seven Epidemic Waves of COVID-19 in a Hospital in Madrid: Analysis of Severity and Associated Factors. Viruses. 2023; 15(9):1839. https://doi.org/10.3390/v15091839
Chicago/Turabian StyleSan Martín-López, Juan Víctor, Nieves Mesa, David Bernal-Bello, Alejandro Morales-Ortega, Marta Rivilla, Marta Guerrero, Ruth Calderón, Ana I. Farfán, Luis Rivas, Guillermo Soria, and et al. 2023. "Seven Epidemic Waves of COVID-19 in a Hospital in Madrid: Analysis of Severity and Associated Factors" Viruses 15, no. 9: 1839. https://doi.org/10.3390/v15091839
APA StyleSan Martín-López, J. V., Mesa, N., Bernal-Bello, D., Morales-Ortega, A., Rivilla, M., Guerrero, M., Calderón, R., Farfán, A. I., Rivas, L., Soria, G., Izquierdo, A., Madroñal, E., Duarte, M., Piedrabuena, S., Toledano-Macías, M., Marrero, J., de Ancos, C., Frutos, B., Cristóbal, R., ... Ruiz-Giardin, J. M. (2023). Seven Epidemic Waves of COVID-19 in a Hospital in Madrid: Analysis of Severity and Associated Factors. Viruses, 15(9), 1839. https://doi.org/10.3390/v15091839