Next Issue
Volume 15, October
Previous Issue
Volume 15, August
 
 

Viruses, Volume 15, Issue 9 (September 2023) – 192 articles

Cover Story (view full-size image): Suppression of the human cytomegalovirus (HCMV) major immediate early protein (MIEP), to restrict the viral lytic transcription programme, is a pre-requisite for latency and is driven by repressive epigenetic modifications at the MIEP during latent infection. We and others have observed that LUNA, a latency-associated viral gene, enhances latency-associated expression. Here, we show that in the absence of LUNA, the expression of multiple latency-associated transcripts is reduced during latent infection. We also show that LUNA interacts with the hematopoietic transcription factor GATA-2, which is known to bind to a number of latency-associated gene promoters. As such, LUNA plays a key role in efficient latency-associated viral gene expression and the carriage of viral genomes during latent carriage. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 3182 KiB  
Article
The Identification of Viral Pathogens in a Physostegia virginiana Plant Using High-Throughput RNA Sequencing
by Jinxi Dong, Yuanling Chen, Yi Xie, Mengji Cao, Shuai Fu and Jianxiang Wu
Viruses 2023, 15(9), 1972; https://doi.org/10.3390/v15091972 - 21 Sep 2023
Viewed by 1186
Abstract
Physostegia virginiana is an important ornamental and cut-flower plant in China. Its commonly used method of clonal propagation leads to virus accumulation in this plant. However, which viruses can infect the Physostegia virginiana plant remains to be illuminated. In this work, five viral [...] Read more.
Physostegia virginiana is an important ornamental and cut-flower plant in China. Its commonly used method of clonal propagation leads to virus accumulation in this plant. However, which viruses can infect the Physostegia virginiana plant remains to be illuminated. In this work, five viral pathogens in a Physostegia virginiana plant with virus-like symptoms of yellow, shriveled, and curled leaves were identified using RNA-seq, bioinformatics, and molecular biological techniques. These techniques allowed us to identify five viruses comprising one known alfalfa mosaic virus (AMV) and four novel viruses. The novel viruses include a virus belonging to the genus Fabavirus, temporarily named Physostegia virginiana crinkle-associated virus 1 (PVCaV1); two viruses belonging to the genus Caulimovirus, temporarily named Physostegia virginiana caulimovirus 1 and 2 (PVCV1 and PVCV2); and a virus belonging to the genus Fijivirus, temporarily named Physostegia virginiana fijivirus (PVFV). The genome sequences of PVCaV1, PVCV1, and PVCV2, and the partial genome sequence of PVFV were identified. Genome organizations and genetic evolutionary relationships of all four novel viruses were analyzed. PVCaV1 has a relatively close evolutionary relationship with five analyzed fabiviruses. PVCV1 and PVCV2 have separately a closest evolutionary relationship with lamium leaf distortion-associated virus (LLDAV) and figwort mosaic virus (FMV), and PVFV has a close evolutionary relationship with the five analyzed fijiviruses. Additionally, PVCaV1 can infect Nicotiana benthamiana plants via friction inoculation. The findings enrich our understanding of Physostegia virginiana viruses and contribute to the prevention and control of Physostegia virginiana viral diseases. Full article
(This article belongs to the Special Issue Emerging Fruit and Vegetable Viruses 2023)
Show Figures

Figure 1

20 pages, 9927 KiB  
Article
The Disruption of a Nuclear Export Signal in the C-Terminus of the Herpes Simplex Virus 1 Determinant of Pathogenicity UL24 Protein Leads to a Syncytial Plaque Phenotype
by Carmen Elena Gonzalez, Nawel Ben Abdeljelil and Angela Pearson
Viruses 2023, 15(9), 1971; https://doi.org/10.3390/v15091971 - 21 Sep 2023
Viewed by 1103
Abstract
UL24 of herpes simplex virus 1 (HSV-1) has been shown to be a determinant of pathogenesis in mouse models of infection. The N-terminus of UL24 localizes to the nucleus and drives the redistribution of nucleolin and B23. In contrast, when expressed alone, the [...] Read more.
UL24 of herpes simplex virus 1 (HSV-1) has been shown to be a determinant of pathogenesis in mouse models of infection. The N-terminus of UL24 localizes to the nucleus and drives the redistribution of nucleolin and B23. In contrast, when expressed alone, the C-terminal domain of UL24 accumulates in the Golgi apparatus; its importance during infection is unknown. We generated a series of mammalian expression vectors encoding UL24 with nested deletions in the C-terminal domain. Interestingly, enhanced nuclear staining was observed for several UL24-deleted forms in transient transfection assays. The substitution of a threonine phosphorylation site had no effect on UL24 localization or viral titers in cell culture. In contrast, mutations targeting a predicted nuclear export signal (NES) significantly enhanced nuclear localization, indicating that UL24 is able to shuttle between the nucleus and the cytoplasm. Recombinant viruses that encode UL24-harboring substitutions in the NES led to the accumulation of UL24 in the nucleus. Treatment with the CRM-1-specific inhibitor leptomycin B blocked the nuclear export of UL24 in transfected cells but not in the context of infection. Viruses encoding UL24 with NES mutations resulted in a syncytial phenotype, but viral yield was unaffected. These results are consistent with a role for HSV-1 UL24 in late cytoplasmic events in HSV-1 replication. Full article
(This article belongs to the Special Issue Advances in HSV Research)
Show Figures

Figure 1

17 pages, 3498 KiB  
Article
Substitutions in SARS-CoV-2 Mpro Selected by Protease Inhibitor Boceprevir Confer Resistance to Nirmatrelvir
by Karen Anbro Gammeltoft, Yuyong Zhou, Line Abildgaard Ryberg, Long V. Pham, Alekxander Binderup, Carlos Rene Duarte Hernandez, Anna Offersgaard, Ulrik Fahnøe, Günther Herbert Johannes Peters, Santseharay Ramirez, Jens Bukh and Judith Margarete Gottwein
Viruses 2023, 15(9), 1970; https://doi.org/10.3390/v15091970 - 21 Sep 2023
Cited by 1 | Viewed by 1443
Abstract
Nirmatrelvir, which targets the SARS-CoV-2 main protease (Mpro), is the first-in-line drug for prevention and treatment of severe COVID-19, and additional Mpro inhibitors are in development. However, the risk of resistance development threatens the future efficacy of such direct-acting antivirals. To gain knowledge [...] Read more.
Nirmatrelvir, which targets the SARS-CoV-2 main protease (Mpro), is the first-in-line drug for prevention and treatment of severe COVID-19, and additional Mpro inhibitors are in development. However, the risk of resistance development threatens the future efficacy of such direct-acting antivirals. To gain knowledge on viral correlates of resistance to Mpro inhibitors, we selected resistant SARS-CoV-2 under treatment with the nirmatrelvir-related protease inhibitor boceprevir. SARS-CoV-2 selected during five escape experiments in VeroE6 cells showed cross-resistance to nirmatrelvir with up to 7.3-fold increased half-maximal effective concentration compared to original SARS-CoV-2, determined in concentration–response experiments. Sequence analysis revealed that escape viruses harbored Mpro substitutions L50F and A173V. For reverse genetic studies, these substitutions were introduced into a cell-culture-infectious SARS-CoV-2 clone. Infectivity titration and analysis of genetic stability of cell-culture-derived engineered SARS-CoV-2 mutants showed that L50F rescued the fitness cost conferred by A173V. In the concentration–response experiments, A173V was the main driver of resistance to boceprevir and nirmatrelvir. Structural analysis of Mpro suggested that A173V can cause resistance by making boceprevir and nirmatrelvir binding less favorable. This study contributes to a comprehensive overview of the resistance profile of the first-in-line COVID-19 treatment nirmatrelvir and can thus inform population monitoring and contribute to pandemic preparedness. Full article
(This article belongs to the Collection SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

21 pages, 4348 KiB  
Review
Transcriptional Stochasticity as a Key Aspect of HIV-1 Latency
by Alexia Damour, Vera Slaninova, Ovidiu Radulescu, Edouard Bertrand and Eugenia Basyuk
Viruses 2023, 15(9), 1969; https://doi.org/10.3390/v15091969 - 21 Sep 2023
Cited by 3 | Viewed by 1492
Abstract
This review summarizes current advances in the role of transcriptional stochasticity in HIV-1 latency, which were possible in a large part due to the development of single-cell approaches. HIV-1 transcription proceeds in bursts of RNA production, which stem from the stochastic switching of [...] Read more.
This review summarizes current advances in the role of transcriptional stochasticity in HIV-1 latency, which were possible in a large part due to the development of single-cell approaches. HIV-1 transcription proceeds in bursts of RNA production, which stem from the stochastic switching of the viral promoter between ON and OFF states. This switching is caused by random binding dynamics of transcription factors and nucleosomes to the viral promoter and occurs at several time scales from minutes to hours. Transcriptional bursts are mainly controlled by the core transcription factors TBP, SP1 and NF-κb, the chromatin status of the viral promoter and RNA polymerase II pausing. In particular, spontaneous variability in the promoter chromatin creates heterogeneity in the response to activators such as TNF-α, which is then amplified by the Tat feedback loop to generate high and low viral transcriptional states. This phenomenon is likely at the basis of the partial and stochastic response of latent T cells from HIV-1 patients to latency-reversing agents, which is a barrier for the development of shock-and-kill strategies of viral eradication. A detailed understanding of the transcriptional stochasticity of HIV-1 and the possibility to precisely model this phenomenon will be important assets to develop more effective therapeutic strategies. Full article
(This article belongs to the Special Issue Regulation of HIV-1 Transcription and Latency)
Show Figures

Figure 1

9 pages, 752 KiB  
Article
BNT162b2 mRNA COVID-19 Vaccine Effectiveness in Patients with Coeliac Disease Autoimmunity: Real-World Data from Mass Vaccination Campaign
by Amir Ben-Tov, Benjamin Lebwohl, Tamar Banon, Gabriel Chodick, Revital Kariv, Amit Assa, Sivan Gazit and Tal Patalon
Viruses 2023, 15(9), 1968; https://doi.org/10.3390/v15091968 - 21 Sep 2023
Cited by 1 | Viewed by 2093
Abstract
Background: Data on COVID-19 vaccine effectiveness among patients with coeliac disease are currently lacking because patients with immune conditions were excluded from clinical trials. We used our coeliac disease autoimmunity (CDA) cohort to explore the effectiveness of the BNT162b2 mRNA COVID-19 vaccine in [...] Read more.
Background: Data on COVID-19 vaccine effectiveness among patients with coeliac disease are currently lacking because patients with immune conditions were excluded from clinical trials. We used our coeliac disease autoimmunity (CDA) cohort to explore the effectiveness of the BNT162b2 mRNA COVID-19 vaccine in preventing SARS-CoV-2 infection among patients with CDA. Methods: This retrospective cohort study included patients with positive autoantibodies against tissue transglutaminase (tTG-IgA). In the primary analysis, the cohort included CDA patients who received two vaccine doses against COVID-19 and matched patients in a 1:3 ratio. Patients were divided into subgroups based on their positive tTG-IgA level at diagnosis and their current serology status. Results: The cohort included 5381 vaccinated patients with CDA and 14,939 matched vaccinated patients. The risk for breakthrough SARS-CoV-2 infection evaluated with Kaplan–Meier survival analysis via log-rank tests was similar between groups (p = 0.71). In a Cox regression survival analysis, the hazard ratio for breakthrough infection among patients with CDA compared to matched patients was 0.91 (95% confidence interval = 0.77–1.09). Conclusions: COVID-19 vaccination is effective in patients with coeliac disease autoimmunity. Vaccine effectiveness was comparable to the reference population. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

10 pages, 2371 KiB  
Article
Broad-Spectrum Detection of HPV in Male Genital Samples Using Target-Enriched Whole-Genome Sequencing
by Tengguo Li, Elizabeth R. Unger and Mangalathu S. Rajeevan
Viruses 2023, 15(9), 1967; https://doi.org/10.3390/v15091967 - 21 Sep 2023
Viewed by 890
Abstract
Most human papillomavirus (HPV) surveillance studies target 30–50 of the more than 200 known types. We applied our recently described enriched whole-genome sequencing (eWGS) assay to demonstrate the impact of detecting all known and novel HPV types in male genital samples (n [...] Read more.
Most human papillomavirus (HPV) surveillance studies target 30–50 of the more than 200 known types. We applied our recently described enriched whole-genome sequencing (eWGS) assay to demonstrate the impact of detecting all known and novel HPV types in male genital samples (n = 50). HPV was detected in nearly all (82%) samples, (mean number of types/samples 13.6; range 1–85), and nearly all HPV-positive samples included types in multiple genera (88%). A total of 560 HPV detections (237 unique HPV types: 46 alpha, 55 beta, 135 gamma, and 1 mu types) were made. The most frequently detected HPV types were alpha (HPV90, 43, and 74), beta (HPV115, 195, and 120), and gamma (HPV134, mSD2, and HPV50). High-risk alpha types (HPV16, 18, 31, 39, 52, and 58) were not common. A novel gamma type was identified (now officially HPV229) along with 90 unclassified types. This pilot study demonstrates the utility of the eWGS assay for broad-spectrum type detection and suggests a significantly higher type diversity in males compared to females that warrants further study. Full article
(This article belongs to the Special Issue HPV-Associated Cancers)
Show Figures

Figure 1

14 pages, 2969 KiB  
Article
Isolation and Characterization of a Novel Recombinant Classical Pseudorabies Virus in the Context of the Variant Strains Pandemic in China
by Zhengmin Lian, Panrao Liu, Zhenbang Zhu, Zhe Sun, Xiuling Yu, Junhua Deng, Ruichao Li, Xiangdong Li and Kegong Tian
Viruses 2023, 15(9), 1966; https://doi.org/10.3390/v15091966 - 20 Sep 2023
Cited by 2 | Viewed by 1163
Abstract
Pseudorabies virus (PRV) variants were discovered in immunized pigs in Northern China and have become the dominant strains since 2011, which caused huge economic losses. In this study, a classical PRV strain was successfully isolated in a PRV gE positive swine farm. The [...] Read more.
Pseudorabies virus (PRV) variants were discovered in immunized pigs in Northern China and have become the dominant strains since 2011, which caused huge economic losses. In this study, a classical PRV strain was successfully isolated in a PRV gE positive swine farm. The complete genome sequence was obtained using a high-throughput sequencing method and the virus was named JS-2020. The nucleotide homology analysis and phylogenetic tree based on complete genome sequences or gC gene showed that the JS-2020 strain was relatively close to the classical Ea strain in genotype II clade. However, a large number of amino acid variations occurred in the JS-2020 strain compared with the Ea strain, including multiple immunogenic and virulence-related genes. In particular, the gE protein of JS-2020 was similar to earlier Chinese PRV strains without Aspartate insertion. However, the amino acid variations analysis based on major immunogenic and virulence-related genes showed that the JS-2020 strain was not only homologous with earlier PRV strains, but also with strains isolated in recent years. Moreover, the JS-2020 strain was identified as a recombinant between the GXGG-2016 and HLJ-2013 strains. The pathogenicity analysis proved that the PRV JS-2020 strain has typical neurogenic infections and a strong pathogenicity in mice. Together, a novel recombinant classical strain was isolated and characterized in the context of the PRV variant pandemic in China. This study provided some valuable information for the study of the evolution of PRV in China. Full article
(This article belongs to the Special Issue Pseudorabies Virus, Volume II)
Show Figures

Figure 1

16 pages, 2952 KiB  
Article
Detection of Alpha- and Betacoronaviruses in Small Mammals in Western Yunnan Province, China
by Fen-Hui Xu, Pei-Yu Han, Jia-Wei Tian, Li-Dong Zong, Hong-Min Yin, Jun-Ying Zhao, Ze Yang, Wei Kong, Xing-Yi Ge and Yun-Zhi Zhang
Viruses 2023, 15(9), 1965; https://doi.org/10.3390/v15091965 - 20 Sep 2023
Cited by 1 | Viewed by 1208
Abstract
The genetic diversity of coronaviruses (CoVs) is high, and their infection in animals has not yet been fully revealed. By RT-PCR detection of the partial RNA-dependent RNA polymerase (RdRp) gene of CoVs, we screened a total of 502 small mammals in the Dali [...] Read more.
The genetic diversity of coronaviruses (CoVs) is high, and their infection in animals has not yet been fully revealed. By RT-PCR detection of the partial RNA-dependent RNA polymerase (RdRp) gene of CoVs, we screened a total of 502 small mammals in the Dali and Nujiang prefectures of Western Yunnan Province, China. The number of overall CoV positives was 20, including β-CoV (n = 13) and α-CoV (n = 7), with a 3.98% prevalence in rectal tissue samples. The identity of the partial RdRp genes obtained for 13 strains of β-CoV was 83.42–99.23% at the nucleotide level, and it is worth noting that the two strains from Kachin red-backed voles showed high identity to BOV-36/IND/2015 from Indian bovines and DcCoV-HKU23 from dromedary camels (Camelus dromedarius) in Morocco; the nucleotide identity was between 97.86 and 98.33%. Similarly, the identity of the seven strains of α-CoV among the partial RdRp sequences was 94.00–99.18% at nucleotide levels. The viral load in different tissues was measured by quantitative RT-PCR (qRT-PCR). The average CoV viral load in small mammalian rectal tissue was 1.35 × 106 copies/g; differently, the mean CoV viral load in liver, heart, lung, spleen, and kidney tissue was from 0.97 × 103 to 3.95 × 103 copies/g, which revealed that CoV has extensive tropism in rectal tissue in small mammals (p < 0.0001). These results revealed the genetic diversity, epidemiology, and infective tropism of α-CoV and β-CoV in small mammals from Dali and Nujiang, which deepens the comprehension of the retention and infection of coronavirus in natural hosts. Full article
(This article belongs to the Special Issue Veterinary Virology and Disease Control in China 2023)
Show Figures

Figure 1

16 pages, 3271 KiB  
Article
Clematis vitalba Is a Natural Host of the Novel Ilarvirus, Prunus Virus I
by Pal Salamon, Zsuzsanna Nagyne-Galbacs, Emese Demian, Adam Achs, Peter Alaxin, Lukáš Predajňa, Evans Duah Agyemang, Francesco Desiderio, Andras Peter Takacs, Wulf Menzel, Dijana Škorić, Miroslav Glasa and Eva Varallyay
Viruses 2023, 15(9), 1964; https://doi.org/10.3390/v15091964 - 20 Sep 2023
Cited by 1 | Viewed by 1273
Abstract
Clematis vitalba L. is a climbing shrub and a pioneer plant in abandoned orchards or vineyards that are widespread in temperate climate zones. In past years, several viruses infecting the Clematis species have been identified, including different ilarviruses. Prunus virus I (PrVI) is [...] Read more.
Clematis vitalba L. is a climbing shrub and a pioneer plant in abandoned orchards or vineyards that are widespread in temperate climate zones. In past years, several viruses infecting the Clematis species have been identified, including different ilarviruses. Prunus virus I (PrVI) is a recently described ilarvirus, which has been shown to infect sweet cherries and peaches in Greece. Moreover, its presence has been detected in ornamental Clematis in Russia. In the present work, we analyzed the virome of wildly growing C. vitalba plants from Hungary, Slovakia and Croatia showing different kinds of symptoms using high-throughput sequencing (HTS) of small RNAs or ribodepleted RNAs. Applying HTS enabled us to identify the presence of PrVI in C. vitalba, and the bioinformatic analyses were further validated with RT-PCR using PrVI-specific primers and Sanger dideoxy sequencing. Nearly full genome sequences of all three viral RNAs of one Hungarian, two Slovak and one Croatian isolate were determined. Their phylogenetic analysis showed high similarity to each other and to other PrVI isolates described from Central Europe. As the sampled plants were co-infected with other viruses, it is not possible to determine a direct correlation between the infection with PrVI and the observed symptoms. Analyses of different Prunus species in stock collection showed infection of several peach and sweet cherry varieties in Hungary. Our results expand the knowledge on the natural host range of PrVI and highlight the necessity to evaluate alternative plant hosts (even non-Prunus) of PrVI and the role of the virus in the etiology of the potential diseases. Full article
(This article belongs to the Special Issue A Tribute to Giovanni P. Martelli)
Show Figures

Figure 1

12 pages, 3269 KiB  
Article
Non-Structural Protein-W61 as a Novel Target in Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV): An In-Vitro and In-Silico Study on Protein-Protein Interactions with Nucleoprotein and Viral Replication
by Ji-Young Park, Chandran Sivasankar, Perumalraja Kirthika, Dhamodharan Prabhu and John Hwa Lee
Viruses 2023, 15(9), 1963; https://doi.org/10.3390/v15091963 - 20 Sep 2023
Cited by 1 | Viewed by 1277
Abstract
The non-structural protein (NSs) and nucleoprotein (NP) of the severe fever with thrombocytopenia syndrome virus (SFTSV) encoded by the S segment are crucial for viral pathogenesis. They reside in viroplasm-like structures (VLS), but their interaction and their significance in viral propagation remain unclear. [...] Read more.
The non-structural protein (NSs) and nucleoprotein (NP) of the severe fever with thrombocytopenia syndrome virus (SFTSV) encoded by the S segment are crucial for viral pathogenesis. They reside in viroplasm-like structures (VLS), but their interaction and their significance in viral propagation remain unclear. Here, we investigated the significance of the association between NSs and NP during viral infection through in-silico and in-vitro analyses. Through in-silico analysis, three possible binding sites were predicted, at positions C6S (Cystein at 6th position to Serine), W61Y (Tryptophan 61st to Tyrosine), and S207T (Serine 207th to Threonine), three mutants of NSs were developed by site-directed mutagenesis and tested for NP interaction by co-immunoprecipitation. NSsW61Y failed to interact with the nucleoprotein, which was substantiated by the conformational changes observed in the structural analyses. Additionally, molecular docking analysis corroborated that the NSW61Y mutant protein does not interact well compared to wild-type NSs. Over-expression of wild-type NSs in HeLa cells increased the SFTSV replication by five folds, but NSsW61Y exhibited 1.9-folds less viral replication than wild-type. We demonstrated that the W61Y alteration was implicated in the reduction of NSs-NP interaction and viral replication. Thus, the present study identified a critical NSs site, which could be targeted for development of therapeutic regimens against SFTSV. Full article
(This article belongs to the Special Issue Severe Fever with Thrombocytopenia Syndrome Virus 3.0)
Show Figures

Figure 1

15 pages, 3357 KiB  
Article
Not Asian Anymore: Reconstruction of the History, Evolution, and Dispersal of the “Asian” Lineage of CPV-2c
by Giovanni Franzo, Francesco Mira, Giorgia Schirò and Marta Canuti
Viruses 2023, 15(9), 1962; https://doi.org/10.3390/v15091962 - 20 Sep 2023
Cited by 2 | Viewed by 1082
Abstract
Variability has been one of the hallmarks of canine parvovirus type 2 (CPV-2) since its discovery, and several lineages and antigenic variants have emerged. Among these, a group of viruses commonly called Asian CPV-2c has recently been reported with increasing frequency in different [...] Read more.
Variability has been one of the hallmarks of canine parvovirus type 2 (CPV-2) since its discovery, and several lineages and antigenic variants have emerged. Among these, a group of viruses commonly called Asian CPV-2c has recently been reported with increasing frequency in different regions. Currently, its global epidemiology and evolution are essentially unknown. The present work deals with this information gap by evaluating, via sequence, phylodynamic, and phylogeographic analyses, all the complete coding sequences of strains classified as Asian CPV-2c based on a combination of amino acid markers and phylogenetic analysis. After its estimated origin around 2008, this lineage circulated undetected in Asia until approximately 2012, when an expansion in viral population size and geographical distribution occurred, involving Africa, Europe, and North America. Asia was predicted to be the main nucleus of viral dispersal, leading to multiple introduction events in other continents/countries, where infection establishment, persistence, and rapid evolution occurred. Although the dog is the main host, other non-canine species were also involved, demonstrating the host plasticity of this lineage. Finally, although most of the strains showed an amino acid motif considered characteristic of this lineage, several exceptions were observed, potentially due to convergent evolution or reversion phenomena. Full article
(This article belongs to the Special Issue Advances in Parvovirus Research 2022)
Show Figures

Figure 1

24 pages, 5398 KiB  
Article
The Antiviral Factor SERINC5 Impairs the Expression of Non-Self-DNA
by Yuhang Shi, Sydney Simpson, Shahad K. Ahmed, Yuexuan Chen, Aidin Tavakoli-Tameh, Sanath Kumar Janaka, David T. Evans and Ruth Serra-Moreno
Viruses 2023, 15(9), 1961; https://doi.org/10.3390/v15091961 - 20 Sep 2023
Cited by 1 | Viewed by 1347
Abstract
SERINC5 is a restriction factor that becomes incorporated into nascent retroviral particles, impairing their ability to infect target cells. In turn, retroviruses have evolved countermeasures against SERINC5. For instance, the primate lentiviruses (HIV and SIV) use Nef, Moloney Murine Leukemia Virus (MLV) uses [...] Read more.
SERINC5 is a restriction factor that becomes incorporated into nascent retroviral particles, impairing their ability to infect target cells. In turn, retroviruses have evolved countermeasures against SERINC5. For instance, the primate lentiviruses (HIV and SIV) use Nef, Moloney Murine Leukemia Virus (MLV) uses GlycoGag, and Equine Infectious Anemia Virus (EIAV) uses S2 to remove SERINC5 from the plasma membrane, preventing its incorporation into progeny virions. Recent studies have shown that SERINC5 also restricts other viruses, such as Hepatitis B Virus (HBV) and Classical Swine Fever Virus (CSFV), although through a different mechanism, suggesting that SERINC5 can interfere with multiple stages of the virus life cycle. To investigate whether SERINC5 can also impact other steps of the replication cycle of HIV, the effects of SERINC5 on viral transcripts, proteins, and virus progeny size were studied. Here, we report that SERINC5 causes significant defects in HIV gene expression, which impacts virion production. While the underlying mechanism is still unknown, we found that the restriction occurs at the transcriptional level and similarly affects plasmid and non-integrated proviral DNA (ectopic or non-self-DNA). However, SERINC5 causes no defects in the expression of viral RNA, host genes, or proviral DNA that is integrated in the cellular genome. Hence, our findings reveal that SERINC5’s actions in host defense extend beyond blocking virus entry. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

11 pages, 622 KiB  
Review
Trends and Challenges in the Surveillance and Control of Avian Metapneumovirus
by Gleidson Biasi Carvalho Salles, Giulia Von Tönnemann Pilati, Eduardo Correa Muniz, Antonio Junior de Lima Neto, Josias Rodrigo Vogt, Mariane Dahmer, Beatriz Pereira Savi, Dayane Azevedo Padilha and Gislaine Fongaro
Viruses 2023, 15(9), 1960; https://doi.org/10.3390/v15091960 - 20 Sep 2023
Cited by 1 | Viewed by 1300
Abstract
Among the respiratory pathogens of birds, the Avian Metapneumovirus (aMPV) is one of the most relevant, as it is responsible for causing infections of the upper respiratory tract and may induce respiratory syndromes. aMPV is capable of affecting the reproductive system of birds, [...] Read more.
Among the respiratory pathogens of birds, the Avian Metapneumovirus (aMPV) is one of the most relevant, as it is responsible for causing infections of the upper respiratory tract and may induce respiratory syndromes. aMPV is capable of affecting the reproductive system of birds, directly impacting shell quality and decreasing egg production. Consequently, this infection can cause disorders related to animal welfare and zootechnical losses. The first cases of respiratory syndromes caused by aMPV were described in the 1970s, and today six subtypes (A, B, C, D, and two more new subtypes) have been identified and are widespread in all chicken and turkey-producing countries in the world, causing enormous economic losses for the poultry industry. Conventionally, immunological techniques are used to demonstrate aMPV infection in poultry, however, the identification of aMPV through molecular techniques helped in establishing the traceability of the virus. This review compiles data on the main aMPV subtypes present in different countries; aMPV and bacteria co-infection; vaccination against aMPV and viral selective pressure, highlighting the strategies used to prevent and control respiratory disease; and addresses tools for viral diagnosis and virus genome studies aiming at improving and streamlining pathogen detection and corroborating the development of new vaccines that can effectively protect herds, preventing viral escapes. Full article
(This article belongs to the Special Issue Avian Respiratory Viruses, Volume III)
Show Figures

Figure 1

24 pages, 391 KiB  
Review
Fitness Determinants of Influenza A Viruses
by Emily Fate Griffin and Stephen Mark Tompkins
Viruses 2023, 15(9), 1959; https://doi.org/10.3390/v15091959 - 20 Sep 2023
Cited by 3 | Viewed by 1670
Abstract
Influenza A (IAV) is a major human respiratory pathogen that causes illness, hospitalizations, and mortality annually worldwide. IAV is also a zoonotic pathogen with a multitude of hosts, allowing for interspecies transmission, reassortment events, and the emergence of novel pandemics, as was seen [...] Read more.
Influenza A (IAV) is a major human respiratory pathogen that causes illness, hospitalizations, and mortality annually worldwide. IAV is also a zoonotic pathogen with a multitude of hosts, allowing for interspecies transmission, reassortment events, and the emergence of novel pandemics, as was seen in 2009 with the emergence of a swine-origin H1N1 (pdmH1N1) virus into humans, causing the first influenza pandemic of the 21st century. While the 2009 pandemic was considered to have high morbidity and low mortality, studies have linked the pdmH1N1 virus and its gene segments to increased disease in humans and animal models. Genetic components of the pdmH1N1 virus currently circulate in the swine population, reassorting with endemic swine viruses that co-circulate and occasionally spillover into humans. This is evidenced by the regular detection of variant swine IAVs in humans associated with state fairs and other intersections of humans and swine. Defining genetic changes that support species adaptation, virulence, and cross-species transmission, as well as mutations that enhance or attenuate these features, will improve our understanding of influenza biology. It aids in surveillance and virus risk assessment and guides the establishment of counter measures for emerging viruses. Here, we review the current understanding of the determinants of specific IAV phenotypes, focusing on the fitness, transmission, and virulence determinants that have been identified in swine IAVs and/or in relation to the 2009 pdmH1N1 virus. Full article
(This article belongs to the Special Issue Influenza Virus Pathogenesis and Transmission)
16 pages, 1932 KiB  
Systematic Review
The Association between CCL5/RANTES SNPs and Susceptibility to HIV-1 Infection: A Meta-Analysis
by Marcos Jessé Abrahão Silva, Rebecca Lobato Marinho, Pabllo Antonny Silva dos Santos, Carolynne Silva dos Santos, Layana Rufino Ribeiro, Yan Corrêa Rodrigues, Karla Valéria Batista Lima and Luana Nepomuceno Gondim Costa Lima
Viruses 2023, 15(9), 1958; https://doi.org/10.3390/v15091958 - 20 Sep 2023
Cited by 3 | Viewed by 1261
Abstract
Genetic polymorphisms in genes that encode natural ligands of CCR5 (the main human HIV coreceptor), such as CCL5/RANTES, can alter the levels of secretion of these peptides. This article sought to review the relationship between single nucleotide polymorphisms (SNPs) of CCL5/RANTES and [...] Read more.
Genetic polymorphisms in genes that encode natural ligands of CCR5 (the main human HIV coreceptor), such as CCL5/RANTES, can alter the levels of secretion of these peptides. This article sought to review the relationship between single nucleotide polymorphisms (SNPs) of CCL5/RANTES and HIV-1 disease susceptibility. A meta-analysis was conducted through 17 articles found from January 1999 to December 2022 in the PUBMED, Science Direct, Medline, and SciELO databases. A total of three SNPs were identified and investigated under their dominant genotypic model and through a fixed-effects model. In terms of the SNP rs2107538 (G > A), in Africa and Asia, it has a protective role (OR = 0.56; 95% CI = 0.41–0.76; p = 0.0002, and OR = 0.88; 95% CI = 0.76–1.02; p = 0.08, respectively). In terms of the SNP rs2280788 (C > G), in Europe and America, it shows a higher risk role (OR = 1.92; 95% CI = 1.06–3.47; p = 0.03, and OR = 0.94; 95% CI = 0.94–1.11; p = 0.04, respectively), but in the population of Asia, with its mutant allele, it has a protective role (OR = 0.76; 95% CI = 0.63–0.93; p = 0.007). In terms of the SNP rs2280789 (T > C), no significant associations were found. Both SNPs rs2107538 and rs2280788 have a positive transcriptional effect on the RANTES/CCL5 gene, while SNP rs2280789 causes a decrease in gene expression levels. This study suggests that there is an association between the increased expression of CCL5/RANTES and a lower risk of AIDS. Therefore, further studies are needed to arrive at a definitive conclusion, and these results may help establish scientific bases for effective HIV/AIDS control strategies. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

7 pages, 1258 KiB  
Brief Report
Successful Confirmation of Dual Genital Herpes Co-Infection with Herpes Simplex Virus 1 and Herpes Simplex Virus 2 Using Unbiased Metagenomic Next-Generation Sequencing
by Chun Kiat Lee, Sau Yoke Ng, Chean Nee Chai, Yu Feng Lim, Tiffany Jingyan Hu, Ogestelli Fabia Lee and Gabriel Yan
Viruses 2023, 15(9), 1957; https://doi.org/10.3390/v15091957 - 20 Sep 2023
Viewed by 1117
Abstract
Dual co-infection with both HSV-1 and HSV-2 is rare, with few cases reported in the literature. In this case report, we describe the successful use of unbiased metagenomic next-generation sequencing (mNGS) as a rapid and alternative method for confirming dual genital herpes co-infection. [...] Read more.
Dual co-infection with both HSV-1 and HSV-2 is rare, with few cases reported in the literature. In this case report, we describe the successful use of unbiased metagenomic next-generation sequencing (mNGS) as a rapid and alternative method for confirming dual genital herpes co-infection. Our case involves a 74-year-old woman who presented with genital lesions and initially tested positive for both HSV-1 and HSV-2 via the Luminex ARIES HSV 1&2 assay. The entire mNGS process, from nucleic acid extraction to result analysis, was completed in less than 48 h. Using mNGS, we identified mapped reads specific to either HSV-1 or HSV-2 and screened the sequences to rule out mis-genotyping by the Luminex ARIES assay. Notably, the generated sequences can reveal sequence variations within multiple gene regions, demonstrating the potential of mNGS for identifying novel HSV-1 and HSV-2 variants. Our findings suggest that mNGS can serve as a rapid and reliable alternative confirmatory method for dual genital herpes infections, providing valuable information to guide appropriate treatment options for patients. By eliminating the need for prior knowledge of causative agents, mNGS offers an unbiased approach for detecting and characterizing viral co-infections. Full article
(This article belongs to the Special Issue Applications of Next-Generation Sequencing in Virus Discovery 2.0)
Show Figures

Figure 1

27 pages, 5879 KiB  
Article
The Influenza B Virus Victoria and Yamagata Lineages Display Distinct Cell Tropism and Infection-Induced Host Gene Expression in Human Nasal Epithelial Cell Cultures
by Jo L. Wilson, Elgin Akin, Ruifeng Zhou, Anne Jedlicka, Amanda Dziedzic, Hsuan Liu, Katherine Z. J. Fenstermacher, Richard E. Rothman and Andrew Pekosz
Viruses 2023, 15(9), 1956; https://doi.org/10.3390/v15091956 - 20 Sep 2023
Cited by 1 | Viewed by 2044
Abstract
Understanding Influenza B virus infections is of critical importance in our efforts to control severe influenza and influenza-related diseases. Until 2020, two genetic lineages of influenza B virus—Yamagata and Victoria—circulated in the population. These lineages are antigenically distinct, but the differences in virus [...] Read more.
Understanding Influenza B virus infections is of critical importance in our efforts to control severe influenza and influenza-related diseases. Until 2020, two genetic lineages of influenza B virus—Yamagata and Victoria—circulated in the population. These lineages are antigenically distinct, but the differences in virus replication or the induction of host cell responses after infection have not been carefully studied. Recent IBV clinical isolates of both lineages were obtained from influenza surveillance efforts of the Johns Hopkins Center of Excellence in Influenza Research and Response and characterized in vitro. B/Victoria and B/Yamagata clinical isolates were recognized less efficiently by serum from influenza-vaccinated individuals in comparison to the vaccine strains. B/Victoria lineages formed smaller plaques on MDCK cells compared to B/Yamagata, but infectious virus production in primary human nasal epithelial cell (hNEC) cultures showed no differences. While ciliated epithelial cells were the dominant cell type infected by both lineages, B/Victoria lineages had a slight preference for MUC5AC-positive cells, and B/Yamagata lineages infected more basal cells. Finally, while both lineages induced a strong interferon response 48 h after infection of hNEC cultures, the B/Victoria lineages showed a much stronger induction of interferon-related signaling pathways compared to B/Yamagata. This demonstrates that the two influenza B virus lineages differ not only in their antigenic structure but also in their ability to induce host innate immune responses. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

15 pages, 4304 KiB  
Article
Seasonal Occurrence of African Swine Fever in Wild Boar and Domestic Pigs in EU Member States
by Lisa Rogoll, Ann-Kathrin Güttner, Katja Schulz, Hannes Bergmann, Christoph Staubach, Franz J. Conraths and Carola Sauter-Louis
Viruses 2023, 15(9), 1955; https://doi.org/10.3390/v15091955 - 20 Sep 2023
Cited by 2 | Viewed by 1247
Abstract
Since 2007, African swine fever (ASF) has spread widely within Europe and beyond. Most affected countries recorded outbreaks in domestic pigs and cases in wild boar. Outbreak data from 2014 to 2021 were used to investigate the seasonal pattern of ASF in domestic [...] Read more.
Since 2007, African swine fever (ASF) has spread widely within Europe and beyond. Most affected countries recorded outbreaks in domestic pigs and cases in wild boar. Outbreak data from 2014 to 2021 were used to investigate the seasonal pattern of ASF in domestic pigs and wild boar across affected member states of the European Union, since knowledge of seasonal patterns may provide the potential to adapt prevention, surveillance and control during times of increased risk. In domestic pigs, a yearly peak was observed in many European countries in summer (predominantly in July and August). In wild boar, the patterns showed more variability. In many countries, there was a seasonal peak of ASF occurrence in winter (predominantly in January and December), with an additional summer peak in the Baltic States (predominantly in July) and a further spring peak in Poland (predominantly in March). The observed seasonal effects may be related to the abundance and population dynamics of wild boar and to seasonality in pig farming. Moreover, ASF occurrence may also be influenced by human activities in both domestic pigs and wild boar. Full article
(This article belongs to the Special Issue Endemic and Emerging Swine Viruses 2023)
Show Figures

Figure 1

20 pages, 1292 KiB  
Review
When Bacteria and Viruses Collide: A Tale of Chlamydia trachomatis and Sexually Transmitted Viruses
by Ehsan Ghasemian, Emma Harding-Esch, David Mabey and Martin J. Holland
Viruses 2023, 15(9), 1954; https://doi.org/10.3390/v15091954 - 19 Sep 2023
Cited by 2 | Viewed by 2278
Abstract
The global incidence of sexually transmitted infections (STIs) remains high, with the World Health Organization (WHO) estimating that over 1 million people acquire STIs daily. STIs can lead to infertility, pregnancy complications, and cancers. Co-infections with multiple pathogens are prevalent among individuals with [...] Read more.
The global incidence of sexually transmitted infections (STIs) remains high, with the World Health Organization (WHO) estimating that over 1 million people acquire STIs daily. STIs can lead to infertility, pregnancy complications, and cancers. Co-infections with multiple pathogens are prevalent among individuals with an STI and can lead to heightened infectivity and more severe clinical manifestations. Chlamydia trachomatis (CT) is the most reported bacterial STI worldwide in both men and women, and several studies have demonstrated co-infection of CT with viral and other bacterial STIs. CT is a gram-negative bacterium with a unique biphasic developmental cycle including infectious extracellular elementary bodies (EBs) and metabolically active intracellular reticulate bodies (RBs). The intracellular form of this organism, RBs, has evolved mechanisms to persist for long periods within host epithelial cells in a viable but non-cultivable state. The co-infections of CT with the most frequently reported sexually transmitted viruses: human immunodeficiency virus (HIV), human papillomavirus (HPV), and herpes simplex virus (HSV) have been investigated through in vitro and in vivo studies. These research studies have made significant strides in unraveling the intricate interactions between CT, these viral STIs, and their eukaryotic host. In this review, we present an overview of the epidemiology of these co-infections, while specifically delineating the underlying mechanisms by which CT influences the transmission and infection dynamics of HIV and HSV. Furthermore, we explore the intricate relationship between CT and HPV infection, with a particular emphasis on the heightened risk of cervical cancer. By consolidating the current body of knowledge, we provide valuable insights into the complex dynamics and implications of co-infection involving CT and sexually transmitted viruses. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

12 pages, 1202 KiB  
Article
The High-Risk Human Papillomavirus Type Influences the Tissue Microenvironment in Cervical Intraepithelial Neoplasia Grade 2
by Mayumi Saito, Aarthi Rajesh, Carrie Innes, Rachael van der Griend, Peter Fitzgerald, Bryony Simcock, Peter Sykes and Merilyn Hibma
Viruses 2023, 15(9), 1953; https://doi.org/10.3390/v15091953 - 19 Sep 2023
Viewed by 1060
Abstract
High-risk, cancer-causing human papillomavirus (HPV) types are associated with cervical precancer and cancer. A high proportion of high-risk HPV precancer lesions undergo immune-mediated regression. The purpose of this study was to determine if the tissue microenvironment of HPV16 and 18 (HPV16/18) cervical intraepithelial [...] Read more.
High-risk, cancer-causing human papillomavirus (HPV) types are associated with cervical precancer and cancer. A high proportion of high-risk HPV precancer lesions undergo immune-mediated regression. The purpose of this study was to determine if the tissue microenvironment of HPV16 and 18 (HPV16/18) cervical intraepithelial neoplasia grade 2 lesions differed from other high-risk types (HPV ‘other’). Consistent with other studies, we found that progression to higher-grade disease was more frequent in HPV16/18 lesions when compared with HPV ‘other’ lesions. HPV16/18 lesions were significantly more likely to be indoleamine 2,3,-dioxygenase 1 (IDO1)-positive and were associated with reduced CD8 and FoxP3 T cells in the lesion. In the stroma, reduced Tbet- and CD32-positive cells and increased Blimp1-positive cells were significantly associated with HPV16/18 lesions when compared with HPV ‘other’ types. On analysis of the IDO1-positive tissues, lesional IDO1 was associated with significantly decreased numbers of CD4-, CD8-, and FoxP3-positive cells in the stroma compared with IDO1-negative tissues. These data suggest that IDO1 expression may impair infiltration of CD4, CD8, and FoxP3 cells into the stroma beneath the precancer lesion. Increased expression of IDO1 may contribute to immune avoidance and an increased frequency of disease progression in HPV16- and 18-positive lesions. Full article
(This article belongs to the Special Issue Immune Responses to Papillomavirus Infections)
Show Figures

Graphical abstract

12 pages, 591 KiB  
Article
Real-World Experience of the Comparative Effectiveness and Safety of Combination Therapy with Remdesivir and Monoclonal Antibodies versus Remdesivir Alone for Patients with Mild-to-Moderate COVID-19 and Immunosuppression: A Retrospective Single-Center Study in Aichi, Japan
by Jun Hirai, Nobuaki Mori, Daisuke Sakanashi, Wataru Ohashi, Yuichi Shibata, Nobuhiro Asai, Hideo Kato, Mao Hagihara and Hiroshige Mikamo
Viruses 2023, 15(9), 1952; https://doi.org/10.3390/v15091952 - 19 Sep 2023
Cited by 1 | Viewed by 1038
Abstract
The coronavirus disease (COVID-19) pandemic continues to threaten global public health. Remdesivir and monoclonal antibodies have shown promise for COVID-19 treatment of patients who are immunocompromised, including those with cancer, transplant recipients, and those with autoimmune disorder. However, the effectiveness and safety of [...] Read more.
The coronavirus disease (COVID-19) pandemic continues to threaten global public health. Remdesivir and monoclonal antibodies have shown promise for COVID-19 treatment of patients who are immunocompromised, including those with cancer, transplant recipients, and those with autoimmune disorder. However, the effectiveness and safety of this combination therapy for patients who are immunosuppressed remain unclear. We compared the efficacy and safety of combination therapy and remdesivir monotherapy for patients with mild-to-moderate COVID-19 who were immunosuppressed. Eighty-six patients treated in July 2021–March 2023 were analyzed. The combination therapy group (CTG) showed a statistically significant reduction in viral load compared with the monotherapy group (MTG) (p < 0.01). Patients in the CTG also experienced earlier resolution of fever than those in the MTG (p = 0.02), although this difference was not significant in the multivariate analysis (p = 0.21). Additionally, the CTG had significantly higher discharge rates on days 7, 14, and 28 than the MTG (p < 0.01, p < 0.01, and p = 0.04, respectively). No serious adverse events were observed with combination therapy. These findings suggest that combination therapy may improve the clinical outcomes of immunosuppressed COVID-19 patients by reducing the viral load and hastening recovery. Further studies are required to fully understand the benefits of this combination therapy for immunocompromised COVID-19 patients. Full article
(This article belongs to the Special Issue COVID-19 and Pneumonia 2.0)
Show Figures

Figure 1

32 pages, 4362 KiB  
Article
Facile Purification and Use of Tobamoviral Nanocarriers for Antibody-Mediated Display of a Two-Enzyme System
by Tim Wendlandt, Claudia Koch, Beate Britz, Anke Liedek, Nora Schmidt, Stefan Werner, Yuri Gleba, Farnoosh Vahidpour, Melanie Welden, Arshak Poghossian, Michael J. Schöning, Fabian J. Eber, Holger Jeske and Christina Wege
Viruses 2023, 15(9), 1951; https://doi.org/10.3390/v15091951 - 19 Sep 2023
Cited by 1 | Viewed by 1349
Abstract
Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol [...] Read more.
Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes. Full article
(This article belongs to the Special Issue Tobamoviruses 2023)
Show Figures

Graphical abstract

17 pages, 2712 KiB  
Article
Betapapillomaviruses in p16-Negative Vulvar Intraepithelial Lesions Associated with Squamous Cell Carcinoma
by Taja Lozar, Aysenur Keske, Racheal S. Dube Mandishora, Qiqi Yu, Adam Bailey, Jin Xu, Massimo Tommasino, Stephanie M. McGregor, Paul F. Lambert, Tarik Gheit and Megan B. Fitzpatrick
Viruses 2023, 15(9), 1950; https://doi.org/10.3390/v15091950 - 19 Sep 2023
Viewed by 958
Abstract
Approximately 40% of vulvar squamous cell carcinoma (vSCC) cases are etiologically associated with high-risk human papillomaviruses (HPVs) of the alpha genera (α-HPV) that cause other anogenital cancers; however, the etiology of α-HPV-negative vSCC is poorly understood. HPVs of the beta genera (β-HPV) are [...] Read more.
Approximately 40% of vulvar squamous cell carcinoma (vSCC) cases are etiologically associated with high-risk human papillomaviruses (HPVs) of the alpha genera (α-HPV) that cause other anogenital cancers; however, the etiology of α-HPV-negative vSCC is poorly understood. HPVs of the beta genera (β-HPV) are risk factors for cutaneous squamous cell carcinoma (cSCC) and may be related to carcinomas originating in other cutaneous sites such as the vulva. In this study, we investigate the presence of β-HPVs, with an emphasis on p16-negative squamous lesions adjacent to vSCC. We subjected 28 vulvar squamous intraepithelial lesions adjacent to vSCC for comprehensive HPV genotyping, p16 and p53 immunohistochemistry, and consensus morphology review. Selected cases were subjected to qPCR and RNA in situ hybridization. Clinical data were obtained from medical records. β-HPV DNA was detected in eight of ten p16-negative lesions and three of fourteen p16-positive high-grade squamous intraepithelial lesions. The HPV DNA loads in vulvar squamous intraepithelial lesions ranged between less than 1 HPV DNA copy per cell to more than 100 HPV DNA copies per cell. This is, to the best of our knowledge, the first report of the association of p16-negative vulvar intraepithelial squamous lesions with detection of β-HPVs. These findings expand possible etiologic mechanisms that may contribute to p16-negative lesions of the vulva. Full article
(This article belongs to the Special Issue Biomarkers for Oncogenic Viruses)
Show Figures

Figure 1

13 pages, 507 KiB  
Article
Molecular and Metagenomic Analyses Reveal High Prevalence and Complexity of Viral Infections in French-American Hybrids and North American Grapes
by Huogen Xiao and Baozhong Meng
Viruses 2023, 15(9), 1949; https://doi.org/10.3390/v15091949 - 19 Sep 2023
Viewed by 919
Abstract
French-American hybrids and North American grape species play a significant role in Canada’s grape and wine industry. Unfortunately, the occurrence of viruses and viral diseases among these locally important non-vinifera grapes remains understudied. We report here the results from a large-scale survey [...] Read more.
French-American hybrids and North American grape species play a significant role in Canada’s grape and wine industry. Unfortunately, the occurrence of viruses and viral diseases among these locally important non-vinifera grapes remains understudied. We report here the results from a large-scale survey to assess the prevalence of 14 viruses among 533 composite samples representing 2665 vines from seven French-American hybrid wine grape cultivars, two North American juice grape cultivars (Concord and Niagara), and the table grape cultivar Sovereign coronation. Based on reverse transcription polymerase chain reaction (RT-PCR) assays, ten viruses were detected. Grapevine rupestris stem pitting-associated virus, grapevine leafroll-associated virus 3, grapevine Pinot gris virus and grapevine red blotch virus were detected with the highest frequency. As expected, mixed infections were common; 62% of the samples contained two or more viruses. Overall, hybrid wine grapes were infected with more viruses and a higher prevalence of individual viruses than juice and table grapes. To validate these findings and to refine the virome of these non-European grapes, high-throughput sequencing (HTS) analyses of five composite samples representing each category of grapevine cultivars was performed. Results from HTS agreed with those from RT-PCR. Importantly, Vidal, a widely grown white-wine grape with international recognition due to its use in the award-winning icewine, is host to 14 viruses, four of which comprise multiple and distinct genetic variants. This comprehensive survey represents the most extensive examination of viruses among French-American hybrids and North American grapes to date. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

12 pages, 3211 KiB  
Article
Novel RNA-Seq Signatures Post-Methamphetamine and Oxycodone Use in a Model of HIV-Associated Neurocognitive Disorders
by Pranavi Athota, Nghi M. Nguyen, Victoria L. Schaal, Sankarasubramanian Jagadesan, Chittibabu Guda, Sowmya V. Yelamanchili and Gurudutt Pendyala
Viruses 2023, 15(9), 1948; https://doi.org/10.3390/v15091948 - 19 Sep 2023
Viewed by 1054
Abstract
In the 21st century, the effects of HIV-associated neurocognitive disorders (HAND) have been significantly reduced in individuals due to the development of antiretroviral therapies (ARTs). However, the growing epidemic of polysubstance use (PSU) has led to concern for the effects of PSU on [...] Read more.
In the 21st century, the effects of HIV-associated neurocognitive disorders (HAND) have been significantly reduced in individuals due to the development of antiretroviral therapies (ARTs). However, the growing epidemic of polysubstance use (PSU) has led to concern for the effects of PSU on HIV-seropositive individuals. To effectively treat individuals affected by HAND, it is critical to understand the biological mechanisms affected by PSU, including the identification of novel markers. To fill this important knowledge gap, we used an in vivo HIV-1 Transgenic (HIV-1 Tg) animal model to investigate the effects of the combined use of chronic methamphetamine (METH) and oxycodone (oxy). A RNA-Seq analysis on the striatum—a brain region that is primarily targeted by both HIV and drugs of abuse—identified key differentially expressed markers post-METH and oxy exposure. Furthermore, ClueGO analysis and Ingenuity Pathway Analysis (IPA) revealed crucial molecular and biological functions associated with ATP-activated adenosine receptors, neuropeptide hormone activity, and the oxytocin signaling pathway to be altered between the different treatment groups. The current study further reveals the harmful effects of chronic PSU and HIV infection that can subsequently impact neurological outcomes in polysubstance users with HAND. Full article
(This article belongs to the Special Issue HIV and Drugs of Abuse 2.0)
Show Figures

Figure 1

15 pages, 5809 KiB  
Article
High Genetic Diversity of HIV-1 and Active Transmission Clusters among Male-to-Male Sexual Contacts (MMSCs) in Zhuhai, China
by Yi Zhou, Mingting Cui, Zhongsi Hong, Shaoli Huang, Shuntai Zhou, Hang Lyu, Jiarun Li, Yixiong Lin, Huitao Huang, Weiming Tang, Caijun Sun and Wenyan Huang
Viruses 2023, 15(9), 1947; https://doi.org/10.3390/v15091947 - 18 Sep 2023
Viewed by 1107
Abstract
Monitoring genetic diversity and recent HIV infections (RHIs) is critical for understanding HIV epidemiology. Here, we report HIV-1 genetic diversity and RHIs in blood samples from 190 HIV-positive MMSCs in Zhuhai, China. MMSCs with newly reported HIV were enrolled from January 2020 to [...] Read more.
Monitoring genetic diversity and recent HIV infections (RHIs) is critical for understanding HIV epidemiology. Here, we report HIV-1 genetic diversity and RHIs in blood samples from 190 HIV-positive MMSCs in Zhuhai, China. MMSCs with newly reported HIV were enrolled from January 2020 to June 2022. A nested PCR was performed to amplify the HIV polymerase gene fragments at HXB2 positions 2604–3606. We constructed genetic transmission network at both 0.5% and 1.5% distance thresholds using the Tamura-Nei93 model. RHIs were identified using a recent infection testing algorithm (RITA) combining limiting antigen avidity enzyme immunoassay (LAg-EIA) assay with clinical data. The results revealed that 19.5% (37/190) were RHIs and 48.4% (92/190) were CRF07_BC. Two clusters were identified at a 0.5% distance threshold. Among them, one was infected with CRF07_BC for the long term, and the other was infected with CRF55_01B recently. We identified a total of 15 clusters at a 1.5% distance threshold. Among them, nine were infected with CRF07_BC subtype, and RHIs were found in 38.8% (19/49) distributed in eight genetic clusters. We identified a large active transmission cluster (n = 10) infected with a genetic variant, CRF79_0107. The multivariable logistic regression model showed that clusters were more likely to be RHIs (adjusted OR: 3.64, 95% CI: 1.51~9.01). The RHI algorithm can help to identify recent or ongoing transmission clusters where the prevention tools are mostly needed. Prompt public health measures are needed to contain the further spread of active transmission clusters. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

17 pages, 5296 KiB  
Article
Development and Implementation of a Quadruple RT-qPCR Method for the Identification of Porcine Reproductive and Respiratory Syndrome Virus Strains
by Shengnan Ruan, Wenhui Ren, Bin Yu, Xuexiang Yu, Hao Wu, Wentao Li, Yunbo Jiang and Qigai He
Viruses 2023, 15(9), 1946; https://doi.org/10.3390/v15091946 - 18 Sep 2023
Cited by 1 | Viewed by 1290
Abstract
Background: Porcine reproductive and respiratory syndrome virus (PRRSV) causes porcine reproductive and respiratory syndrome (PRRS), leading to abortion in sows and respiratory distress in breeding pigs. In China, PRRSV1 and PRRSV2 are the two circulating genotypes in swine herds, with distinct virulence. PRRSV2 [...] Read more.
Background: Porcine reproductive and respiratory syndrome virus (PRRSV) causes porcine reproductive and respiratory syndrome (PRRS), leading to abortion in sows and respiratory distress in breeding pigs. In China, PRRSV1 and PRRSV2 are the two circulating genotypes in swine herds, with distinct virulence. PRRSV2 further consists of classical (C-PRRSV2), highly pathogenic (HP-PRRSV2), and NADC30-Like (N-PRRSV2) subtypes. The diversity of PRRSV poses challenges for control and eradication, necessitating reliable detection assays for differentiating PRRSV genotypes. Methods: A new TaqMan-based RT-qPCR assay with four sets of primers and probes targeting conserved regions of the ORF7 and NSP2 genes of PRRSV was developed, optimized, and evaluated by us. Reaction conditions such as annealing temperature, primer concentration, and probe concentration were optimized for the assay. Specificity, sensitivity, repeatability, stability, limit of detection (LOD), concordance with the reference method were evaluated for the assay. Results: The assay could detect and type PRRSV1, C-PRRSV2, HP-PRRSV2, and N-PRRSV2 simultaneously with 97.33% specificity, 96.00% sensitivity, 12 copies/μL LOD, 97.00% concordance with reference assays. We applied the assay to 321 clinical samples from swine farms in China. The assay successfully detected and typed 230 PRRSV-positive samples, with 24.78% (57/230) of them further confirmed by ORF5 gene sequencing. The prevalence of PRRSV subtypes among the positive samples was as follows: C-PRRSV2 (15.22%), HP-PRRSV2 (23.48%), and N-PRRSV2 (61.30%). Two samples showed coinfection with different PRRSV subtypes. Conclusion: The quadruple RT-qPCR assay is a powerful tool for detecting and typing the currently circulating PRRSV strains in Chinese swine populations. It can assist in the surveillance of PRRSV prevalence and the implementation of prevention and control strategies. Full article
(This article belongs to the Special Issue Viral Diseases of Livestock and Diagnostics)
Show Figures

Graphical abstract

12 pages, 970 KiB  
Article
A Whole-Genome Analysis of the African Swine Fever Virus That Circulated during the First Outbreak in Vietnam in 2019 and Subsequently in 2022
by Van Phan Le, Min-Ju Ahn, Jun-Seob Kim, Min-Chul Jung, Sun-Woo Yoon, Thi Bich Ngoc Trinh, Thi Ngoc Le, Hye Kwon Kim, Jung-Ah Kang, Jong-Woo Lim, Minjoo Yeom, Woonsung Na, Xing Xie, Zhixin Feng, Daesub Song and Dae Gwin Jeong
Viruses 2023, 15(9), 1945; https://doi.org/10.3390/v15091945 - 18 Sep 2023
Viewed by 1648
Abstract
Since its initial report in Vietnam in early 2019, the African swine fever (ASF), a highly lethal and severe viral swine disease worldwide, continues to cause outbreaks in other Southeast Asian countries. This study analyzed and compared the genomic sequences of ASF viruses [...] Read more.
Since its initial report in Vietnam in early 2019, the African swine fever (ASF), a highly lethal and severe viral swine disease worldwide, continues to cause outbreaks in other Southeast Asian countries. This study analyzed and compared the genomic sequences of ASF viruses (ASFVs) during the first outbreak in Hung Yen (VN/HY/2019-ASFV1) and Quynh Phu provinces (VN/QP/2019-ASFV1) in Vietnam in 2019, and the subsequent outbreak in Hung Yen (VN/HY/2022-ASFV2) in 2022, to those of other ASFV strains. VN/HY/2019-ASFV1, VN/QP/2019-ASFV1, and VN/HY/2022-ASFV2 genomes were 189,113, 189,081, and 189,607 bp in length, encoding 196, 196, and 203 open reading frames (ORFs), respectively. VN/HY/2019-ASFV1 and VN/QP/2019-ASFV1 shared a 99.91–99.99% average nucleotide identity with genotype II strains. Variations were identified in 28 ORFs in VN/HY/2019-ASFV1 and VN/QP/2019-ASFV1 compared to 20 ASFV strains, and 16 ORFs in VN/HY/2022-ASFV2 compared to VN/HY/2019-ASFV1 and VN/QP/2019-ASFV1. Vietnamese ASFV genomes were classified as IGR II variants between the I73R and I329L genes, with two copy tandem repeats between the A179L and A137R genes. A phylogenetic analysis based on the whole genomes of 27 ASFV strains indicated that the Vietnamese ASFV strains are genetically related to Estonia 2014, ASFV-SY18, and Russia/Odintsovo_02/14. These results reveal the complete genome sequences of ASFV circulating during the first outbreak in 2019, providing important insights into understanding the evolution, transmission, and genetic variation of ASFV in Vietnam. Full article
(This article belongs to the Special Issue Porcine Viruses 2023)
Show Figures

Figure 1

14 pages, 3076 KiB  
Article
Enhanced IL-17 Producing and Maintained Cytolytic Effector Functions of Gut Mucosal CD161+CD8+ T Cells in SIV-Infected Rhesus Macaques
by Siva Thirugnanam, Edith M. Walker, Faith Schiro, Pyone P. Aye, Jay Rappaport and Namita Rout
Viruses 2023, 15(9), 1944; https://doi.org/10.3390/v15091944 - 18 Sep 2023
Viewed by 1523
Abstract
Previous studies have indicated that the loss of CD161-expressing CD4+ Th17 cells is linked to the progression of chronic HIV. These cells are significantly depleted in peripheral blood and gut mucosa of HIV-infected individuals, contributing to inflammation and disruption of the gut [...] Read more.
Previous studies have indicated that the loss of CD161-expressing CD4+ Th17 cells is linked to the progression of chronic HIV. These cells are significantly depleted in peripheral blood and gut mucosa of HIV-infected individuals, contributing to inflammation and disruption of the gut barrier. However, the impact of HIV infection on CD161-expressing CD8+ T cells remain unclear. Here, we examined the functions of peripheral blood and mucosal CD161+CD8+ T cells in the macaque model of HIV infection. In contrast to the significant loss of CD161+CD4+ T cells, CD161+CD8+ T cell frequencies were maintained in blood and gut during chronic SIV infection. Furthermore, gut CD161+CD8+ T cells displayed greater IL-17 production and maintained Th1-type and cytolytic functions, contrary to impaired IL-17 and granzyme-B production in CD161+CD4+ T cells of SIV-infected macaques. These results suggest that augmented Th17-type effector functions of CD161+CD8+ T cells during SIV infection is a likely mechanism to compensate for the sustained loss of gut mucosal Th17 cells. Targeting the cytokine and cytolytic effector functions of CD161+CD8+ T cells in the preclinical setting of chronic SIV infection with antiretroviral therapy has implications in the restoration of gut barrier disruption in persons with HIV infection. Full article
Show Figures

Figure 1

14 pages, 781 KiB  
Article
Immune Priming of Pacific Oysters (Crassostrea gigas) to Induce Resistance to Ostreid herpesvirus 1: Comparison of Infectious and Inactivated OsHV-1 with Poly I:C
by Maximilian de Kantzow, Paul M. Hick and Richard J. Whittington
Viruses 2023, 15(9), 1943; https://doi.org/10.3390/v15091943 - 17 Sep 2023
Cited by 1 | Viewed by 1391
Abstract
Pacific oyster mortality syndrome (POMS), which is caused by Ostreid herpesvirus 1 (OsHV-1), causes economic losses in Pacific oyster (Crassostrea gigas) aquaculture in many countries. Reducing the mortality in disease outbreaks requires changing the host, pathogen and environment interactions to favor [...] Read more.
Pacific oyster mortality syndrome (POMS), which is caused by Ostreid herpesvirus 1 (OsHV-1), causes economic losses in Pacific oyster (Crassostrea gigas) aquaculture in many countries. Reducing the mortality in disease outbreaks requires changing the host, pathogen and environment interactions to favor the host. Survivors of natural exposure to OsHV-1 are able to survive subsequent outbreaks. This has been replicated under laboratory conditions, suggesting the existence of an immune response. The aim of the present study is to compare the effects of prior exposure to infectious OsHV-1, heat-inactivated OsHV-1 and the chemical anti-viral immune stimulant poly I:C on mortality following exposure to virulent OsHV-1. All treatments were administered by intramuscular injection. Oysters were maintained at 18 °C for 14 days; then, the temperature was increased to 22 °C and the oysters were challenged with virulent OsHV-1. Heat-inactivated OsHV-1, infectious OsHV-1 and poly I:C all induced significant protection against mortality, with the hazard of death being 0.41, 0.18 and 0.02, respectively, compared to the controls, which had no immune priming. The replication of OsHV-1 on first exposure was not required to induce a protective response. While the underlying mechanisms for protection remain to be elucidated, conditioning for resistance to POMS by prior exposure to inactivated or infectious OsHV-1 may have practical applications in oyster farming but requires further development to optimize the dose and delivery mechanism and evaluate the duration of protection. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop