Current Progress of Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) Vaccine Development
Abstract
:1. Introduction
2. SFTSV Biology
3. Animal Models to Study Efficacy of SFTSV Vaccines
3.1. Newborn Mouse
3.2. Type I interferon Receptor (IFNAR) KO Mouse
3.3. WT Mouse Treated with IFNAR-Neutralizing Antibody (IFNAR-NAb)
3.4. Non-Human Primates (NHP)
3.5. Aged Ferret
4. Types of SFTSV Vaccines Developed to Date
4.1. Live-Attenuated Vaccine Platform
4.2. DNA Vaccine Platform
4.2.1. DNA Vaccine Encoding Gn/Gc
4.2.2. DNA Vaccine Encoding Gn/Gc and Mouse IL-12 (mIL-12)
4.3. Whole Inactivated Viral Vaccine Platform
4.4. Viral Vector Vaccine Platform
4.4.1. Recombinant Vesicular Stomatitis Virus (rVSV)-Vectored Vaccine
4.4.2. Recombinant Vaccinia Virus (rVACV)-Vectored Vaccine
4.5. Protein Subunit Vaccine Platform
4.5.1. Recombinant NSs Protein with Complete Freund’s Adjuvant (CFA)
4.5.2. Gn and Gc-Fc
4.5.3. Self-Assembling Gn Head-Ferritin Nanoparticle Vaccine
4.6. Heterologous Vaccination
4.7. mRNA Vaccine Platform
Viral Antigen | Carrier/Adjuvant | Dose | Immunization Schedule | Animal Model Used | Viral Challenge | Efficacy | Advantage | Disadvantages | Reference | |
---|---|---|---|---|---|---|---|---|---|---|
Live-attenuated vaccine | Truncation mutant of NSs | - | 4 × 106 pfu (rHB2912aaNSs) | Single immunization | Aged ferrets | 107.6 TCID50 | Full protection from BW loss, fever, serum viremia, fatality | Potent immunogenicity | Concern of reversion mutation and side effect from potentially excessive immunogenicity | [111] |
Substitution mutant of NSs | 5 × 105 pfu (rHB29NSsP102A) | |||||||||
DNA vaccine | Gn/Gc | 40 μg | Weeks 0, 3 | Aged ferrets Immunized & serum-transferred | 107.6 TCID50, 2 or 4 weeks after the last immunization | Full protection from both immunized & serum-transferred ferrets BW loss, fever, thrombocytopenia, leukopenia, viremia, and fatality | Low cost of production | Concern of genome integration Electroporator required for immunization | [112] | |
Gn/Gc, RdRp, N, and NSs | - | 4 μg | Weeks 0, 2, 4 | IFNAR KO mice | 1 × 105 ffu 2 weeks after the last immunization | 40% fatality and severe BW loss, thrombocytopenia, and viremia | [113] | |||
Gn, Gc, RdRp, N, and NSs | Mouse IL-12 | Full protection from BW loss, thrombocytopenia, serum viremia, and fatality | ||||||||
Whole inactivated vaccine | Inactivated whole virion | Al(OH)3 adjuvant | Glycoproteins of 0.25, 1, or 4 μg | Weeks 0, 2, 4 | Wild type C57BL/6 | 105 TCID50 2 weeks after the last immunization | Accelerated viral clearance (WT C57BL/6 does not develop SFTS) | Balanced B & T cell activation Replicates natural infection | Logistic difficulty of large culture of BSL-3 agent (SFTSV) | [114] |
Viral vectored vaccine | Gn/Gc | rVSV | 2 × 104 pfu | Single immunization | IFNAR KO mice | 2 × 104 ffu 30 days after the last immunization | Full protection from BW loss, viremia, and fatality | Strong induction of B and T cell & Ease of mass production | Potential risk of side effects | [118] |
Gn/Gc | rVACV (from m8 strain) | 1 × 106 pfu | Weeks 0, 2 | IFNAR KO mice | 1 × 103 and 1 × 105 TCID50 2 weeks after the last immunization | Full protection from BW loss and fatality | Reduced immunogenicity from pre-existing immunity | [124] | ||
Protein subunit vaccine | NSs | Complete Freund’s adjuvant | 100 μg | Weeks 0, 2 | Wild type C57BL/6 | 3 × 107 pfu 12 days after the last immunization | Failed to accelerate viral clearance (WT C57BL/6 does not develop SFTS) | Higher safety profile for the elderly population | Failed to provide immunity | [131] |
Gn | Human Fc & Alum adjuvant | 20 μg | Weeks 0, 2 | IFNAR KO mice | 1 × 105 ffu 2 weeks after the last immunization | 50% fatality and severe BW loss | Failed to provide sufficient immunity | [113] | ||
Gc | 100% fatality and severe BW loss | Failed to provide immunity | ||||||||
Gn (head region) | Ferritin nanoparticle & AddaVax adjuvant | 15 μg | Weeks 0, 2, 4 | Aged ferrets | 1 × 107.6 TCID50 2 weeks after the last immunization | Full protection from BW loss, fever, thrombocytopenia, leukopenia, viremia, and fatality | Cost of production | [132] | ||
Heterologous vaccine | Gn (head region & head + stem region) | rAd5 + CrPV & Al(OH)3 adjuvant | rAd5-Gn/Gn: 1 × 109 IU rAd5-Gn, then 5 μg Gn | Weeks 0, 2 | Wild type C57BL/6 injected with IFNAR-NAb and IL-10 | 1 × 105 ffu 3 weeks after the last immunization | Full protection from BW loss, splenomegaly, liver damage, and viremia | rAd5-Gn reduces cost of production | Complicated immunization protocol | [139] |
Gn/rAd5-Gn: 5 μg Gn, then 1 × 109 IU rAd5-Gn | ||||||||||
mRNA vaccine | Gn (head region) | lipid nanoparticle | 3 μg | Weeks 0, 3 | IFNAR KO mice | 2 × 104 pfu 2 weeks after the last immunization | Full protection from BW loss and fatliaty | Low cost & rapid production | Cold chain supply required | [144] |
Gn (head region) | Ferritin & lipid nanoparticle |
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yun, S.M.; Park, S.J.; Kim, Y.I.; Park, S.W.; Yu, M.A.; Kwon, H.I.; Kim, E.H.; Yu, K.M.; Jeong, H.W.; Ryou, J.; et al. Genetic and pathogenic diversity of severe fever with thrombocytopenia syndrome virus (SFTSV) in South Korea. JCI Insight 2020, 5, e129531. [Google Scholar] [CrossRef] [PubMed]
- International Committee on Taxonomy of Virus: ICTV. (ICTV), I.C.o.T.o.V. ICTV Taxonomy History: SFTS Virus. 2022. Available online: https://ictv.global/taxonomy/taxondetails?taxnode_id=202200166&taxon_name=Bandavirus%20dabieense (accessed on 19 November 2023).
- Yu, X.J.; Liang, M.F.; Zhang, S.Y.; Liu, Y.; Li, J.D.; Sun, Y.L.; Zhang, L.; Zhang, Q.F.; Popov, V.L.; Li, C.; et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N. Engl. J. Med. 2011, 364, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Casel, M.A.; Park, S.J.; Choi, Y.K. Severe fever with thrombocytopenia syndrome virus: Emerging novel phlebovirus and their control strategy. Exp. Mol. Med. 2021, 53, 713–722. [Google Scholar] [CrossRef]
- Rattanakomol, P.; Khongwichit, S.; Linsuwanon, P.; Lee, K.H.; Vongpunsawad, S.; Poovorawan, Y. Severe Fever with Thrombocytopenia Syndrome Virus Infection, Thailand, 2019–2020. Emerg. Infect. Dis. 2022, 28, 2572–2574. [Google Scholar] [CrossRef] [PubMed]
- Tran, X.C.; Yun, Y.; Van An, L.; Kim, S.H.; Thao, N.T.P.; Man, P.K.C.; Yoo, J.R.; Heo, S.T.; Cho, N.H.; Lee, K.H. Endemic Severe Fever with Thrombocytopenia Syndrome, Vietnam. Emerg. Infect. Dis. 2019, 25, 1029–1031. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.L.; Zhang, S.; Jiang, M.; Bi, Z.Q.; Liang, M.F.; Ding, S.J.; Wang, S.W.; Liu, J.Y.; Zhou, S.Q.; Zhang, X.M.; et al. A cluster of person-to-person transmission cases caused by SFTS virus in Penglai, China. Clin. Microbiol. Infect. 2015, 21, 274–279. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; He, Y.W.; Dai, Y.A.; Xiong, Y.; Zheng, H.; Zhou, D.J.; Li, J.; Sun, Q.; Luo, X.L.; Cheng, Y.L.; et al. Hemorrhagic fever caused by a novel Bunyavirus in China: Pathogenesis and correlates of fatal outcome. Clin. Infect. Dis. 2012, 54, 527–533. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Cui, N.; Lu, Q.-B.; Wo, Y.; Wang, H.-Y.; Liu, W.; Cao, W.-C. Severe fever with thrombocytopenia syndrome in children: A case report. BMC Infect. Dis. 2014, 14, 366. [Google Scholar] [CrossRef]
- Hu, L.; Kong, Q.; Liu, Y.; Li, J.; Bian, T.; Ma, X.; Ye, Y.; Li, J. Time Course of Severe Fever With Thrombocytopenia Syndrome Virus and Antibodies in Patients by Long-Term Follow-Up Study, China. Front. Microbiol. 2021, 12, 744037. [Google Scholar] [CrossRef]
- Ding, Y.P.; Liang, M.F.; Ye, J.B.; Liu, Q.H.; Xiong, C.H.; Long, B.; Lin, W.B.; Cui, N.; Zou, Z.Q.; Song, Y.L.; et al. Prognostic value of clinical and immunological markers in acute phase of SFTS virus infection. Clin. Microbiol. Infect. 2014, 20, O870–O878. [Google Scholar] [CrossRef]
- Gai, Z.-T.; Zhang, Y.; Liang, M.-F.; Jin, C.; Zhang, S.; Zhu, C.-B.; Li, C.; Li, X.-Y.; Zhang, Q.-F.; Bian, P.-F.; et al. Clinical Progress and Risk Factors for Death in Severe Fever with Thrombocytopenia Syndrome Patients. J. Infect. Dis. 2012, 206, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Jin, C.; Zhan, F.; Wang, X.; Liang, M.; Zhang, Q.; Ding, S.; Guan, X.; Huo, X.; Li, C.; et al. Host Cytokine Storm Is Associated With Disease Severity of Severe Fever With Thrombocytopenia Syndrome. J. Infect. Dis. 2012, 206, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Zhang, S.; Geng, Y.; Zhang, Y.; Wang, Y.; Yao, W.; Wen, Y.; Cui, W.; Zhou, Y.; Gu, Q.; et al. Cytokine and Chemokine Levels in Patients with Severe Fever with Thrombocytopenia Syndrome Virus. PLoS ONE 2012, 7, e41365. [Google Scholar] [CrossRef]
- Suzuki, T.; Sato, Y.; Sano, K.; Arashiro, T.; Katano, H.; Nakajima, N.; Shimojima, M.; Kataoka, M.; Takahashi, K.; Wada, Y.; et al. Severe fever with thrombocytopenia syndrome virus targets B cells in lethal human infections. J. Clin. Investig. 2020, 130, 799–812. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.Y.; Yoo, J.R.; Park, Y.; Kim, S.-H.; Heo, S.T.; Park, S.H.; Kim, M.; Kim, T.-J.; Oh, S.; Lee, M.-S.; et al. Fatal outcome of severe fever with thrombocytopenia syndrome (SFTS) and severe and critical COVID-19 is associated with the hyperproduction of IL-10 and IL-6 and the low production of TGF-β. J. Med. Virol. 2023, 95, e28894. [Google Scholar] [CrossRef]
- Yoo, J.R.; Kim, T.J.; Heo, S.T.; Hwang, K.A.; Oh, H.; Ha, T.; Ko, H.K.; Baek, S.; Kim, J.E.; Kim, J.H.; et al. IL-6 and IL-10 Levels, Rather Than Viral Load and Neutralizing Antibody Titers, Determine the Fate of Patients With Severe Fever With Thrombocytopenia Syndrome Virus Infection in South Korea. Front. Immunol. 2021, 12, 711847. [Google Scholar] [CrossRef]
- Kwon, J.S.; Kim, M.C.; Kim, J.Y.; Jeon, N.Y.; Ryu, B.H.; Hong, J.; Kim, M.J.; Chong, Y.P.; Lee, S.O.; Choi, S.H.; et al. Kinetics of viral load and cytokines in severe fever with thrombocytopenia syndrome. J. Clin. Virol. 2018, 101, 57–62. [Google Scholar] [CrossRef]
- Liu, M.M.; Lei, X.Y.; Yu, H.; Zhang, J.Z.; Yu, X.J. Correlation of cytokine level with the severity of severe fever with thrombocytopenia syndrome. Virol. J. 2017, 14, 6. [Google Scholar] [CrossRef]
- Hu, L.-F.; Wu, T.; Wang, B.; Wei, Y.-Y.; Kong, Q.-X.; Ye, Y.; Yin, H.-F.; Li, J.-B. The Regulation of Seventeen Inflammatory Mediators are Associated with Patient Outcomes in Severe Fever with Thrombocytopenia Syndrome. Sci. Rep. 2018, 8, 159. [Google Scholar] [CrossRef]
- Song, P.; Zheng, N.; Liu, Y.; Tian, C.; Wu, X.; Ma, X.; Chen, D.; Zou, X.; Wang, G.; Wang, H.; et al. Deficient humoral responses and disrupted B-cell immunity are associated with fatal SFTSV infection. Nat. Commun. 2018, 9, 3328. [Google Scholar] [CrossRef]
- Ding, S.; Niu, G.; Xu, X.; Li, J.; Zhang, X.; Yin, H.; Zhang, N.; Jiang, X.; Wang, S.; Liang, M.; et al. Age is a critical risk factor for severe fever with thrombocytopenia syndrome. PLoS ONE 2014, 9, e111736. [Google Scholar] [CrossRef]
- Panda, A.; Arjona, A.; Sapey, E.; Bai, F.; Fikrig, E.; Montgomery, R.R.; Lord, J.M.; Shaw, A.C. Human innate immunosenescence: Causes and consequences for immunity in old age. Trends Immunol. 2009, 30, 325–333. [Google Scholar] [CrossRef]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Liu, W.; Lu, Q.-B.; Cui, N.; Li, H.; Wang, L.-Y.; Liu, K.; Yang, Z.-D.; Wang, B.-J.; Wang, H.-Y.; Zhang, Y.-Y.; et al. Case-Fatality Ratio and Effectiveness of Ribavirin Therapy Among Hospitalized Patients in China Who Had Severe Fever With Thrombocytopenia Syndrome. Clin. Infect. Dis. 2013, 57, 1292–1299. [Google Scholar] [CrossRef]
- Takayama-Ito, M.; Saijo, M. Antiviral Drugs Against Severe Fever With Thrombocytopenia Syndrome Virus Infection. Front. Microbiol. 2020, 11, 150. [Google Scholar] [CrossRef]
- Shimojima, M.; Fukushi, S.; Tani, H.; Yoshikawa, T.; Fukuma, A.; Taniguchi, S.; Suda, Y.; Maeda, K.; Takahashi, T.; Morikawa, S.; et al. Effects of ribavirin on severe fever with thrombocytopenia syndrome virus in vitro. Jpn J. Infect. Dis. 2014, 67, 423–427. [Google Scholar] [CrossRef]
- Li, H.; Lu, Q.B.; Xing, B.; Zhang, S.F.; Liu, K.; Du, J.; Li, X.K.; Cui, N.; Yang, Z.D.; Wang, L.Y.; et al. Epidemiological and clinical features of laboratory-diagnosed severe fever with thrombocytopenia syndrome in China, 2011–2017: A prospective observational study. Lancet Infect. Dis. 2018, 18, 1127–1137. [Google Scholar] [CrossRef]
- Hayden, F.G.; Lenk, R.P.; Stonis, L.; Oldham-Creamer, C.; Kang, L.L.; Epstein, C. Favipiravir Treatment of Uncomplicated Influenza in Adults: Results of Two Phase 3, Randomized, Double-Blind, Placebo-Controlled Trials. J. Infect. Dis. 2022, 226, 1790–1799. [Google Scholar] [CrossRef]
- Shiraki, K.; Daikoku, T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol. Ther. 2020, 209, 107512. [Google Scholar] [CrossRef]
- Sissoko, D.; Laouenan, C.; Folkesson, E.; M’Lebing, A.B.; Beavogui, A.H.; Baize, S.; Camara, A.M.; Maes, P.; Shepherd, S.; Danel, C.; et al. Experimental Treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial): A Historically Controlled, Single-Arm Proof-of-Concept Trial in Guinea. PLoS Med. 2016, 13, e1001967. [Google Scholar] [CrossRef]
- Banyard, A.C.; Mansfield, K.L.; Wu, G.; Selden, D.; Thorne, L.; Birch, C.; Koraka, P.; Osterhaus, A.; Fooks, A.R. Re-evaluating the effect of Favipiravir treatment on rabies virus infection. Vaccine 2019, 37, 4686–4693. [Google Scholar] [CrossRef]
- Escribano-Romero, E.; Jiménez de Oya, N.; Domingo, E.; Saiz, J.C. Extinction of West Nile Virus by Favipiravir through Lethal Mutagenesis. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar] [CrossRef]
- Suemori, K.; Saijo, M.; Yamanaka, A.; Himeji, D.; Kawamura, M.; Haku, T.; Hidaka, M.; Kamikokuryo, C.; Kakihana, Y.; Azuma, T.; et al. A multicenter non-randomized, uncontrolled single arm trial for evaluation of the efficacy and the safety of the treatment with favipiravir for patients with severe fever with thrombocytopenia syndrome. PLoS Negl. Trop. Dis. 2021, 15, e0009103. [Google Scholar] [CrossRef]
- Yuan, Y.; Lu, Q.-B.; Yao, W.-S.; Zhao, J.; Zhang, X.-A.; Cui, N.; Yuan, C.; Yang, T.; Peng, X.-F.; Lv, S.-M.; et al. Clinical efficacy and safety evaluation of favipiravir in treating patients with severe fever with thrombocytopenia syndrome. eBioMedicine 2021, 72, 103591. [Google Scholar] [CrossRef]
- Tani, H.; Fukuma, A.; Fukushi, S.; Taniguchi, S.; Yoshikawa, T.; Iwata-Yoshikawa, N.; Sato, Y.; Suzuki, T.; Nagata, N.; Hasegawa, H.; et al. Efficacy of T-705 (Favipiravir) in the Treatment of Infections with Lethal Severe Fever with Thrombocytopenia Syndrome Virus. mSphere 2016, 1, 10–1128. [Google Scholar] [CrossRef]
- Yoo, J.R.; Kim, S.H.; Kim, Y.R.; Lee, K.H.; Oh, W.S.; Heo, S.T. Application of therapeutic plasma exchange in patients having severe fever with thrombocytopenia syndrome. Korean J. Intern. Med. 2019, 34, 902–909. [Google Scholar] [CrossRef]
- Park, S.Y.; Choi, W.; Chong, Y.P.; Park, S.-W.; Wang, E.B.; Lee, W.-J.; Jee, Y.; Kwon, S.-W.; Kim, S.-H. Use of Plasma Therapy for Severe Fever with Thrombocytopenia Syndrome Encephalopathy. Emerg. Infect. Dis. J. 2016, 22, 1306. [Google Scholar] [CrossRef]
- Park, I.; Kim, H.I.; Kwon, K.T. Two Treatment Cases of Severe Fever and Thrombocytopenia Syndrome with Oral Ribavirin and Plasma Exchange. Infect. Chemother. 2017, 49, 72–77. [Google Scholar] [CrossRef]
- Bae, S.; Chang, H.H.; Kim, S.W.; Kim, Y.; Wang, E.; Kim, C.K.; Choi, E.; Lim, B.; Park, S.; Chae, H.; et al. Nosocomial outbreak of severe fever with thrombocytopenia syndrome among healthcare workers in a single hospital in Daegu, Korea. Int. J. Infect. Dis. 2022, 119, 95–101. [Google Scholar] [CrossRef]
- Kim, W.Y.; Choi, W.; Park, S.W.; Wang, E.B.; Lee, W.J.; Jee, Y.; Lim, K.S.; Lee, H.J.; Kim, S.M.; Lee, S.O.; et al. Nosocomial transmission of severe fever with thrombocytopenia syndrome in Korea. Clin. Infect. Dis. 2015, 60, 1681–1683. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, C.; Cheng, C.; Zhang, G.; Yu, T.; Lawrence, K.; Li, H.; Sun, J.; Yang, Z.; Ye, L.; et al. Rapid Spread of Severe Fever with Thrombocytopenia Syndrome Virus by Parthenogenetic Asian Longhorned Ticks. Emerg. Infect. Dis. 2022, 28, 363–372. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. What You Need to Know about Asian Longhorned Ticks—A New Tick in the United States; CDC: Atlanta, GA, USA, 2023.
- Zhao, L.; Li, J.; Cui, X.; Jia, N.; Wei, J.; Xia, L.; Wang, H.; Zhou, Y.; Wang, Q.; Liu, X.; et al. Distribution of Haemaphysalis longicornis and associated pathogens: Analysis of pooled data from a China field survey and global published data. Lancet Planet. Health 2020, 4, e320–e329. [Google Scholar] [CrossRef]
- Zhuang, L.; Sun, Y.; Cui, X.M.; Tang, F.; Hu, J.G.; Wang, L.Y.; Cui, N.; Yang, Z.D.; Huang, D.D.; Zhang, X.A.; et al. Transmission of Severe Fever with Thrombocytopenia Syndrome Virus by Haemaphysalis longicornis Ticks, China. Emerg. Infect. Dis. 2018, 24, 868–871. [Google Scholar] [CrossRef]
- Hu, Y.-Y.; Zhuang, L.; Liu, K.; Sun, Y.; Dai, K.; Zhang, X.-A.; Zhang, P.-H.; Feng, Z.-C.; Li, H.; Liu, W. Role of three tick species in the maintenance and transmission of Severe Fever with Thrombocytopenia Syndrome Virus. PLoS Neglected Trop. Dis. 2020, 14, e0008368. [Google Scholar] [CrossRef]
- Kaneko, C.; Mekata, H.; Umeki, K.; Sudaryatma, P.E.; Irie, T.; Yamada, K.; Misawa, N.; Umekita, K.; Okabayashi, T. Seroprevalence of severe fever with thrombocytopenia syndrome virus in medium-sized wild mammals in Miyazaki, Japan. Ticks Tick-Borne Dis. 2023, 14, 102115. [Google Scholar] [CrossRef]
- Okada, A.; Hotta, A.; Kimura, M.; Park, E.S.; Morikawa, S.; Inoshima, Y. A retrospective survey of the seroprevalence of severe fever with thrombocytopenia syndrome virus in wild animals in Japan. Vet. Med. Sci. 2021, 7, 600–605. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, H.J.; Byun, J.W.; Lee, M.J.; Kim, N.H.; Kim, D.H.; Kang, H.E.; Nam, H.M. Molecular detection and phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in shelter dogs and cats in the Republic of Korea. Ticks Tick-Borne Dis. 2017, 8, 626–630. [Google Scholar] [CrossRef]
- Yun, Y.; Heo, S.T.; Kim, G.; Hewson, R.; Kim, H.; Park, D.; Cho, N.H.; Oh, W.S.; Ryu, S.Y.; Kwon, K.T.; et al. Phylogenetic Analysis of Severe Fever with Thrombocytopenia Syndrome Virus in South Korea and Migratory Bird Routes Between China, South Korea, and Japan. Am. J. Trop. Med. Hyg. 2015, 93, 468–474. [Google Scholar] [CrossRef]
- Wormser, G.P.; McKenna, D.; Piedmonte, N.; Vinci, V.; Egizi, A.M.; Backenson, B.; Falco, R.C. First Recognized Human Bite in the United States by the Asian Longhorned Tick, Haemaphysalis longicornis. Clin. Infect. Dis. 2020, 70, 314–316. [Google Scholar] [CrossRef]
- Jo, Y.-S.; Kang, J.-G.; Chae, J.-B.; Cho, Y.-K.; Shin, J.-H.; Jheong, W.-H.; Chae, J.-S. Prevalence of Severe Fever with Thrombocytopenia Syndrome Virus in Ticks Collected from National Parks in Korea. Vector-Borne Zoonotic Dis. 2018, 19, 284–289. [Google Scholar] [CrossRef]
- Tufts, D.M.; VanAcker, M.C.; Fernandez, M.P.; DeNicola, A.; Egizi, A.; Diuk-Wasser, M.A. Distribution, Host-Seeking Phenology, and Host and Habitat Associations of Haemaphysalis longicornis Ticks, Staten Island, New York, USA. Emerg. Infect. Dis. 2019, 25, 792–796. [Google Scholar] [CrossRef]
- Yabsley, M.J.; Thompson, A.T. Haemaphysalis longicornis (Asian longhorned tick). Trends Parasitol. 2023, 39, 305–306. [Google Scholar] [CrossRef]
- Animal and Plant Health Inspection Service, United States Department of Agriculture. National Haemaphysalis Longicornis (Asian Longhorned Tick) Situation Report; 2023. Available online: https://www.aphis.usda.gov/animal_health/animal_diseases/tick/downloads/longhorned-tick-sitrep.pdf (accessed on 19 November 2023).
- Pritt, B.S. Haemaphysalis longicornis Is in the United States and Biting Humans: Where Do We Go From Here? Clin. Infect. Dis. 2019, 70, 317–318. [Google Scholar] [CrossRef]
- Zheng, H.; Yu, Z.; Chen, Z.; Zhou, L.; Zheng, B.; Ma, H.; Liu, J. Development and biological characteristics of Haemaphysalis longicornis (Acari: Ixodidae) under field conditions. Exp. Appl. Acarol. 2011, 53, 377–388. [Google Scholar] [CrossRef]
- Annual Review of Diseases Prioritized under the Research and Development Blueprint, Informal Consultation; WHO: Geneva, Switzerland, 2018.
- National Institute of Allergy and Infectious Diseases (NIAID) Emerging Infectious Diseases/Pathogens; National Institute of Allergy and Infectious Diseases. 2018. Available online: https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens (accessed on 19 November 2023).
- Vogel, D.; Thorkelsson, S.R.; Quemin, E.R.J.; Meier, K.; Kouba, T.; Gogrefe, N.; Busch, C.; Reindl, S.; Günther, S.; Cusack, S.; et al. Structural and functional characterization of the severe fever with thrombocytopenia syndrome virus L protein. Nucleic Acids Res. 2020, 48, 5749–5765. [Google Scholar] [CrossRef]
- Halldorsson, S.; Behrens, A.J.; Harlos, K.; Huiskonen, J.T.; Elliott, R.M.; Crispin, M.; Brennan, B.; Bowden, T.A. Structure of a phleboviral envelope glycoprotein reveals a consolidated model of membrane fusion. Proc. Natl. Acad. Sci. USA 2016, 113, 7154–7159. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, Y.; Gao, F.; Jiao, Y.; Oladejo, B.O.; Chai, Y.; Bi, Y.; Lu, S.; Dong, M.; Zhang, C.; et al. Structures of phlebovirus glycoprotein Gn and identification of a neutralizing antibody epitope. Proc. Natl. Acad. Sci. USA 2017, 114, E7564–E7573. [Google Scholar] [CrossRef]
- Sun, Z.; Cheng, J.; Bai, Y.; Cao, L.; Xie, D.; Deng, F.; Zhang, X.; Rao, Z.; Lou, Z. Architecture of severe fever with thrombocytopenia syndrome virus. Protein Cell 2023, 14, 914–918. [Google Scholar] [CrossRef]
- Du, S.; Peng, R.; Xu, W.; Qu, X.; Wang, Y.; Wang, J.; Li, L.; Tian, M.; Guan, Y.; Wang, J.; et al. Cryo-EM structure of severe fever with thrombocytopenia syndrome virus. Nat. Commun. 2023, 14, 6333. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, Y.; Wang, Y.; Liu, M.; Liu, C.; Wang, W.; Liu, X.; Li, L.; Deng, F.; Wang, H.; et al. The nucleoprotein of severe fever with thrombocytopenia syndrome virus processes a stable hexameric ring to facilitate RNA encapsidation. Protein Cell 2013, 4, 445–455. [Google Scholar] [CrossRef]
- Choi, Y.; Park, S.J.; Sun, Y.; Yoo, J.S.; Pudupakam, R.S.; Foo, S.S.; Shin, W.J.; Chen, S.B.; Tsichlis, P.N.; Lee, W.J.; et al. Severe fever with thrombocytopenia syndrome phlebovirus non-structural protein activates TPL2 signalling pathway for viral immunopathogenesis. Nat. Microbiol. 2019, 4, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Jiang, Z.; Shin, W.J.; Jung, J.U. Severe Fever with Thrombocytopenia Syndrome Virus NSs Interacts with TRIM21 To Activate the p62-Keap1-Nrf2 Pathway. J. Virol. 2020, 94, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2020, 384, 403–416. [Google Scholar] [CrossRef]
- Sadoff, J.; Le Gars, M.; Shukarev, G.; Heerwegh, D.; Truyers, C.; de Groot, A.M.; Stoop, J.; Tete, S.; Van Damme, W.; Leroux-Roels, I.; et al. Interim Results of a Phase 1–2a Trial of Ad26.COV2.S Covid-19 Vaccine. N. Engl. J. Med. 2021, 384, 1824–1835. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Wei, C.-J.; Crank, M.C.; Shiver, J.; Graham, B.S.; Mascola, J.R.; Nabel, G.J. Next-generation influenza vaccines: Opportunities and challenges. Nat. Rev. Drug Discov. 2020, 19, 239–252. [Google Scholar] [CrossRef]
- Regules, J.A.; Beigel, J.H.; Paolino, K.M.; Voell, J.; Castellano, A.R.; Hu, Z.; Muñoz, P.; Moon, J.E.; Ruck, R.C.; Bennett, J.W.; et al. A Recombinant Vesicular Stomatitis Virus Ebola Vaccine. N. Engl. J. Med. 2015, 376, 330–341. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, X.; Wang, Q.; Li, J.; Lv, S.; Han, S.; Zhang, L.; Ding, H.; Wang, C.-Y.; Xiao, G.; et al. CCR2 is a host entry receptor for severe fever with thrombocytopenia syndrome virus. Sci. Adv. 2023, 9, eadg6856. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kim, J.; Ko, M.; Chun, J.Y.; Kim, H.; Kim, S.; Min, J.Y.; Park, W.B.; Oh, M.D.; Chung, J. An anti-Gn glycoprotein antibody from a convalescent patient potently inhibits the infection of severe fever with thrombocytopenia syndrome virus. PLoS Pathog. 2019, 15, e1007375. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, L.; Zhang, W.; Chi, Y.; Zeng, X.; Li, X.; Qi, X.; Jin, Q.; Zhang, X.; Huang, M.; et al. Human antibody neutralizes severe Fever with thrombocytopenia syndrome virus, an emerging hemorrhagic Fever virus. Clin. Vaccine Immunol. 2013, 20, 1426–1432. [Google Scholar] [CrossRef]
- Shimojima, M.; Sugimoto, S.; Umekita, K.; Onodera, T.; Sano, K.; Tani, H.; Takamatsu, Y.; Yoshikawa, T.; Kurosu, T.; Suzuki, T.; et al. Neutralizing mAbs against SFTS Virus Gn Protein Show Strong Therapeutic Effects in an SFTS Animal Model. Viruses 2022, 14, 1665. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Liu, L.; Wu, W.; Liu, Y.; Huang, X.; Li, C.; Liu, D.; Li, J.; Wang, S.; Li, D.; et al. Molecular evolution and genetic diversity analysis of SFTS virus based on next-generation sequencing. Biosaf. Health 2021, 3, 105–115. [Google Scholar] [CrossRef]
- Fu, Y.; Li, S.; Zhang, Z.; Man, S.; Li, X.; Zhang, W.; Zhang, C.; Cheng, X. Phylogeographic analysis of severe fever with thrombocytopenia syndrome virus from Zhoushan Islands, China: Implication for transmission across the ocean. Sci. Rep. 2016, 6, 19563. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Hu, S.; Liu, X.; Yang, J.; Liu, D.; Wu, L.; Wang, H.; Hu, Z.; Deng, F.; Shen, S. Migration, recombination, and reassortment are involved in the evolution of severe fever with thrombocytopenia syndrome bunyavirus. Infect. Genet. Evol. 2017, 47, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-W.; Zhao, L.; Luo, L.-M.; Liu, M.-M.; Sun, Y.; Su, X.; Yu, X.-j. Molecular Evolution and Spatial Transmission of Severe Fever with Thrombocytopenia Syndrome Virus Based on Complete Genome Sequences. PLoS ONE 2016, 11, e0151677. [Google Scholar] [CrossRef] [PubMed]
- Rezelj, V.V.; Mottram, T.J.; Hughes, J.; Elliott, R.M.; Kohl, A.; Brennan, B. M Segment-Based Minigenomes and Virus-Like Particle Assays as an Approach To Assess the Potential of Tick-Borne Phlebovirus Genome Reassortment. J. Virol. 2019, 93, 10–1128. [Google Scholar] [CrossRef]
- Robles, N.J.C.; Han, H.J.; Park, S.-J.; Choi, Y.K. Epidemiology of severe fever and thrombocytopenia syndrome virus infection and the need for therapeutics for the prevention. Clin. Exp. Vaccine Res. 2018, 7, 43–50. [Google Scholar] [CrossRef]
- Dai, Z.N.; Peng, X.F.; Li, J.C.; Zhao, J.; Wu, Y.X.; Yang, X.; Yang, T.; Zhang, S.F.; Dai, K.; Guan, X.G.; et al. Effect of genomic variations in severe fever with thrombocytopenia syndrome virus on the disease lethality. Emerg. Microbes Infect. 2022, 11, 1672–1682. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, J.; He, T.; Zhang, Z. Genetic variants of Dabie bandavirus: Classification and biological/clinical implications. Virol. J. 2023, 20, 68. [Google Scholar] [CrossRef]
- Zu, Z.; Lin, H.; Hu, Y.; Zheng, X.; Chen, C.; Zhao, Y.; He, N. The genetic evolution and codon usage pattern of severe fever with thrombocytopenia syndrome virus. Infect. Genet. Evol. 2022, 99, 105238. [Google Scholar] [CrossRef]
- Jin, C.; Liang, M.; Ning, J.; Gu, W.; Jiang, H.; Wu, W.; Zhang, F.; Li, C.; Zhang, Q.; Zhu, H.; et al. Pathogenesis of emerging severe fever with thrombocytopenia syndrome virus in C57/BL6 mouse model. Proc. Natl. Acad. Sci. USA 2012, 109, 10053–10058. [Google Scholar] [CrossRef] [PubMed]
- Matsuno, K.; Orba, Y.; Maede-White, K.; Scott, D.; Feldmann, F.; Liang, M.; Ebihara, H. Animal Models of Emerging Tick-Borne Phleboviruses: Determining Target Cells in a Lethal Model of SFTSV Infection. Front. Microbiol. 2017, 8, 104. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-P.; Cong, M.-L.; Li, M.-H.; Kang, Y.-J.; Feng, Y.-M.; Plyusnin, A.; Xu, J.; Zhang, Y.-Z. Infection and pathogenesis of Huaiyangshan virus (a novel tick-borne bunyavirus) in laboratory rodents. J. Gen. Virol. 2012, 93, 1288–1293. [Google Scholar] [CrossRef] [PubMed]
- Brannan, J.M.; Froude, J.W.; Prugar, L.I.; Bakken, R.R.; Zak, S.E.; Daye, S.P.; Wilhelmsen, C.E.; Dye, J.M. Interferon α/β Receptor-Deficient Mice as a Model for Ebola Virus Disease. J. Infect. Dis. 2015, 212 (Suppl. S2), S282–S294. [Google Scholar] [CrossRef]
- Lazear, H.M.; Govero, J.; Smith, A.M.; Platt, D.J.; Fernandez, E.; Miner, J.J.; Diamond, M.S. A Mouse Model of Zika Virus Pathogenesis. Cell Host Microbe 2016, 19, 720–730. [Google Scholar] [CrossRef] [PubMed]
- Zivcec, M.; Safronetz, D.; Scott, D.; Robertson, S.; Ebihara, H.; Feldmann, H. Lethal Crimean-Congo hemorrhagic fever virus infection in interferon α/β receptor knockout mice is associated with high viral loads, proinflammatory responses, and coagulopathy. J. Infect. Dis. 2013, 207, 1909–1921. [Google Scholar] [CrossRef]
- Shimada, S.; Posadas-Herrera, G.; Aoki, K.; Morita, K.; Hayasaka, D. Therapeutic effect of post-exposure treatment with antiserum on severe fever with thrombocytopenia syndrome (SFTS) in a mouse model of SFTS virus infection. Virology 2015, 482, 19–27. [Google Scholar] [CrossRef]
- Park, S.-C.; Park, J.Y.; Choi, J.Y.; Lee, S.-G.; Eo, S.K.; Oem, J.-K.; Tark, D.-S.; You, M.; Yu, D.-H.; Chae, J.-S.; et al. Pathogenicity of severe fever with thrombocytopenia syndrome virus in mice regulated in type I interferon signaling. Lab. Anim. Res. 2020, 36, 38. [Google Scholar] [CrossRef]
- Sun, J.; Min, Y.-Q.; Li, Y.; Sun, X.; Deng, F.; Wang, H.; Ning, Y.-J. Animal Model of Severe Fever with Thrombocytopenia Syndrome Virus Infection. Front. Microbiol. 2022, 12, 797189. [Google Scholar] [CrossRef]
- Wang, F. Nonhuman primate models for Epstein-Barr virus infection. Curr. Opin. Virol. 2013, 3, 233–237. [Google Scholar] [CrossRef]
- Kanekiyo, M.; Bu, W.; Joyce, M.G.; Meng, G.; Whittle, J.R.; Baxa, U.; Yamamoto, T.; Narpala, S.; Todd, J.P.; Rao, S.S.; et al. Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site. Cell 2015, 162, 1090–1100. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, G.Q.; Lifson, J.D.; Keele, B.F. Nonhuman primate models for the evaluation of HIV-1 preventive vaccine strategies: Model parameter considerations and consequences. Curr. Opin. HIV AIDS 2016, 11, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Estes, J.D.; Wong, S.W.; Brenchley, J.M. Nonhuman primate models of human viral infections. Nat. Rev. Immunol. 2018, 18, 390–404. [Google Scholar] [CrossRef] [PubMed]
- Haddock, E.; Feldmann, F.; Hawman, D.W.; Zivcec, M.; Hanley, P.W.; Saturday, G.; Scott, D.P.; Thomas, T.; Korva, M.; Avšič-Županc, T.; et al. A cynomolgus macaque model for Crimean-Congo haemorrhagic fever. Nat. Microbiol. 2018, 3, 556–562. [Google Scholar] [CrossRef]
- Carrion, R., Jr.; Patterson, J.L. Vaccines against viral hemorrhagic fevers: Non-human primate models. Hum. Vaccin. 2011, 7, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Callis, R.T.; Jahrling, P.B.; DePaoli, A. Pathology of Lassa virus infection in the rhesus monkey. Am. J. Trop. Med. Hyg. 1982, 31, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Stephen, E.L.; Jahrling, P.B. Experimental Lassa fever virus infection successfully treated with ribavirin. Lancet 1979, 1, 268–269. [Google Scholar] [CrossRef]
- Fisher-Hoch, S.P.; Platt, G.S.; Lloyd, G.; Simpson, D.I.; Neild, G.H.; Barrett, A.J. Haematological and biochemical monitoring of Ebola infection in rhesus monkeys: Implications for patient management. Lancet 1983, 2, 1055–1058. [Google Scholar] [CrossRef]
- Yanagihara, R.; Amyx, H.L.; Lee, P.W.; Asher, D.M.; Gibbs, C.J., Jr.; Gajdusek, D.C. Experimental hantavirus infection in nonhuman primates. Arch. Virol. 1988, 101, 125–130. [Google Scholar] [CrossRef]
- Jin, C.; Jiang, H.; Liang, M.; Han, Y.; Gu, W.; Zhang, F.; Zhu, H.; Wu, W.; Chen, T.; Li, C.; et al. SFTS virus infection in nonhuman primates. J. Infect. Dis. 2015, 211, 915–925. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, Y.I.; Park, A.; Kwon, H.I.; Kim, E.H.; Si, Y.J.; Song, M.S.; Lee, C.H.; Jung, K.; Shin, W.J.; et al. Ferret animal model of severe fever with thrombocytopenia syndrome phlebovirus for human lethal infection and pathogenesis. Nat. Microbiol. 2019, 4, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Vartak, A.; Sucheck, S.J. Recent Advances in Subunit Vaccine Carriers. Vaccines 2016, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Kozak, M.; Hu, J. The Integrated Consideration of Vaccine Platforms, Adjuvants, and Delivery Routes for Successful Vaccine Development. Vaccines 2023, 11, 695. [Google Scholar] [CrossRef] [PubMed]
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Brennan, B.; Rezelj, V.V.; Elliott, R.M. Mapping of Transcription Termination within the S Segment of SFTS Phlebovirus Facilitated Generation of NSs Deletant Viruses. J. Virol. 2017, 91, 10–1128. [Google Scholar] [CrossRef]
- Yu, K.M.; Park, S.J.; Yu, M.A.; Kim, Y.I.; Choi, Y.; Jung, J.U.; Brennan, B.; Choi, Y.K. Cross-genotype protection of live-attenuated vaccine candidate for severe fever with thrombocytopenia syndrome virus in a ferret model. Proc. Natl. Acad. Sci. USA 2019, 116, 26900–26908. [Google Scholar] [CrossRef]
- Kwak, J.-E.; Kim, Y.-I.; Park, S.-J.; Yu, M.-A.; Kwon, H.-I.; Eo, S.; Kim, T.-S.; Seok, J.; Choi, W.-S.; Jeong, J.H.; et al. Development of a SFTSV DNA vaccine that confers complete protection against lethal infection in ferrets. Nat. Commun. 2019, 10, 3836. [Google Scholar] [CrossRef]
- Kang, J.-G.; Jeon, K.; Choi, H.; Kim, Y.; Kim, H.-I.; Ro, H.-J.; Seo, Y.B.; Shin, J.; Chung, J.; Jeon, Y.K.; et al. Vaccination with single plasmid DNA encoding IL-12 and antigens of severe fever with thrombocytopenia syndrome virus elicits complete protection in IFNAR knockout mice. PLoS Neglected Trop. Dis. 2020, 14, e0007813. [Google Scholar] [CrossRef]
- Li, A.; Dai, X.; Chen, L.; Liu, L.; Li, C.; Liu, Y.; Wu, W.; Huang, X.; Li, J.; Wang, S.; et al. Immunogenicity and protective efficacy of an inactivated SFTS vaccine candidate in mice. Biosaf. Health 2022, 4, 45–52. [Google Scholar] [CrossRef]
- Robbins, J.A.; Tait, D.; Huang, Q.; Dubey, S.; Crumley, T.; Cote, J.; Luk, J.; Sachs, J.R.; Rutkowski, K.; Park, H.; et al. Safety and immunogenicity of intramuscular, single-dose V590 (rVSV-SARS-CoV-2 Vaccine) in healthy adults: Results from a phase 1 randomised, double-blind, placebo-controlled, dose-ranging trial. eBioMedicine 2022, 82, 104138. [Google Scholar] [CrossRef]
- Rodriguez, S.E.; Cross, R.W.; Fenton, K.A.; Bente, D.A.; Mire, C.E.; Geisbert, T.W. Vesicular Stomatitis Virus-Based Vaccine Protects Mice against Crimean-Congo Hemorrhagic Fever. Sci. Rep. 2019, 9, 7755. [Google Scholar] [CrossRef]
- Ahata, B.; Akçapınar, G.B. CCHFV vaccine development, current challenges, limitations, and future directions. Front. Immunol. 2023, 14, 1238882. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Li, D.; Wen, D.; Li, S.; Zhao, C.; Qi, Y.; Jangra, R.K.; Wu, C.; Xia, D.; Zhang, X.; et al. Single dose of a rVSV-based vaccine elicits complete protection against severe fever with thrombocytopenia syndrome virus. npj Vaccines 2019, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Duan, X.; Wang, B.; Zhu, L.; Zhang, Y.; Zhang, J.; Wang, J.; Luo, T.; Kou, C.; Liu, D.; et al. A novel tick-borne phlebovirus, closely related to severe fever with thrombocytopenia syndrome virus and Heartland virus, is a potential pathogen. Emerg. Microbes Infect. 2018, 7, 95. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Y.; Jiang, J.; Zheng, A. Two Point Mutations in the Glycoprotein of SFTSV Enhance the Propagation Recombinant Vesicular Stomatitis Virus Vectors at Assembly Step. Viruses 2023, 15, 800. [Google Scholar] [CrossRef]
- Morikawa, S.; Sakiyama, T.; Hasegawa, H.; Saijo, M.; Maeda, A.; Kurane, I.; Maeno, G.; Kimura, J.; Hirama, C.; Yoshida, T.; et al. An attenuated LC16m8 smallpox vaccine: Analysis of full-genome sequence and induction of immune protection. J. Virol. 2005, 79, 11873–11891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Dong, L.; Zhao, C.; Zheng, P.; Zhang, X.; Xu, J. Vaccinia virus-based vector against infectious diseases and tumors. Hum. Vaccin. Immunother. 2021, 17, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Koch, T.; Dahlke, C.; Fathi, A.; Kupke, A.; Krähling, V.; Okba, N.M.A.; Halwe, S.; Rohde, C.; Eickmann, M.; Volz, A.; et al. Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: An open-label, phase 1 trial. Lancet Infect. Dis. 2020, 20, 827–838. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Taniguchi, S.; Kato, H.; Iwata-Yoshikawa, N.; Tani, H.; Kurosu, T.; Fujii, H.; Omura, N.; Shibamura, M.; Watanabe, S.; et al. A highly attenuated vaccinia virus strain LC16m8-based vaccine for severe fever with thrombocytopenia syndrome. PLoS Pathog. 2021, 17, e1008859. [Google Scholar] [CrossRef]
- Costa, A.P.F.; Cobucci, R.N.O.; da Silva, J.M.; da Costa Lima, P.H.; Giraldo, P.C.; Gonçalves, A.K. Safety of Human Papillomavirus 9-Valent Vaccine: A Meta-Analysis of Randomized Trials. J. Immunol. Res. 2017, 2017, 3736201. [Google Scholar] [CrossRef]
- Cox, M.M.; Izikson, R.; Post, P.; Dunkle, L. Safety, efficacy, and immunogenicity of Flublok in the prevention of seasonal influenza in adults. Ther. Adv. Vaccines 2015, 3, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Clem, A.S. Fundamentals of vaccine immunology. J. Glob. Infect. Dis. 2011, 3, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Domnich, A.; Arata, L.; Amicizia, D.; Puig-Barbera, J.; Gasparini, R.; Panatto, D. Effectiveness of MF59-adjuvanted seasonal influenza vaccine in the elderly: A systematic review and meta-analysis. Vaccine 2017, 35, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Lal, H.; Cunningham, A.L.; Godeaux, O.; Chlibek, R.; Diez-Domingo, J.; Hwang, S.-J.; Levin, M.J.; McElhaney, J.E.; Poder, A.; Puig-Barberà, J.; et al. Efficacy of an Adjuvanted Herpes Zoster Subunit Vaccine in Older Adults. N. Engl. J. Med. 2015, 372, 2087–2096. [Google Scholar] [CrossRef] [PubMed]
- Brisse, M.; Vrba, S.M.; Kirk, N.; Liang, Y.; Ly, H. Emerging Concepts and Technologies in Vaccine Development. Front. Immunol. 2020, 11, 583077. [Google Scholar] [CrossRef]
- Liu, R.; Huang, D.D.; Bai, J.Y.; Zhuang, L.; Lu, Q.B.; Zhang, X.A.; Liu, W.; Wang, J.Y.; Cao, W.C. Immunization with recombinant SFTSV/NSs protein does not promote virus clearance in SFTSV-infected C57BL/6J mice. Viral Immunol. 2015, 28, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, E.; Kim, S.; Chung, Y.; Lai, C.J.; Cha, I.; Cho, S.D.; Choi, Y.; Dai, X.; Kim, S.; et al. Self-assembling Gn head ferritin nanoparticle vaccine provides full protection from lethal challenge of Dabie bandavirus in aged ferrets. mBio 2023, 14, e0186823. [Google Scholar] [CrossRef]
- Kim, Y.I.; Kim, D.; Yu, K.M.; Seo, H.D.; Lee, S.A.; Casel, M.A.B.; Jang, S.G.; Kim, S.; Jung, W.; Lai, C.J.; et al. Development of Spike Receptor-Binding Domain Nanoparticles as a Vaccine Candidate against SARS-CoV-2 Infection in Ferrets. mBio 2021, 12, 10–1128. [Google Scholar] [CrossRef]
- Kanekiyo, M.; Wei, C.J.; Yassine, H.M.; McTamney, P.M.; Boyington, J.C.; Whittle, J.R.; Rao, S.S.; Kong, W.P.; Wang, L.; Nabel, G.J. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 2013, 499, 102–106. [Google Scholar] [CrossRef]
- Kelly, H.G.; Tan, H.X.; Juno, J.A.; Esterbauer, R.; Ju, Y.; Jiang, W.; Wimmer, V.C.; Duckworth, B.C.; Groom, J.R.; Caruso, F.; et al. Self-assembling influenza nanoparticle vaccines drive extended germinal center activity and memory B cell maturation. JCI Insight 2020, 5, 136653. [Google Scholar] [CrossRef]
- Lawrence, T.M.; Wanjalla, C.N.; Gomme, E.A.; Wirblich, C.; Gatt, A.; Carnero, E.; García-Sastre, A.; Lyles, D.S.; McGettigan, J.P.; Schnell, M.J. Comparison of Heterologous Prime-Boost Strategies against Human Immunodeficiency Virus Type 1 Gag Using Negative Stranded RNA Viruses. PLoS ONE 2013, 8, e67123. [Google Scholar] [CrossRef]
- Betts, G.; Poyntz, H.; Stylianou, E.; Reyes-Sandoval, A.; Cottingham, M.; Hill, A.; McShane, H. Optimising immunogenicity with viral vectors: Mixing MVA and HAdV-5 expressing the mycobacterial antigen Ag85A in a single injection. PLoS ONE 2012, 7, e50447. [Google Scholar] [CrossRef]
- Teixeira, L.H.; Tararam, C.A.; Lasaro, M.O.; Camacho, A.G.A.; Ersching, J.; Leal, M.T.; Herrera, S.; Bruna-Romero, O.; Soares, I.S.; Nussenzweig, R.S.; et al. Immunogenicity of a Prime-Boost Vaccine Containing the Circumsporozoite Proteins of Plasmodium vivax in Rodents. Infect. Immun. 2014, 82, 793–807. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Jeon, K.; Hong, J.J.; Park, S.-I.; Cho, H.; Park, H.-J.; Kwak, H.W.; Park, H.-J.; Bang, Y.-J.; Lee, Y.-S.; et al. Heterologous vaccination utilizing viral vector and protein platforms confers complete protection against SFTSV. Sci. Rep. 2023, 13, 8189. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef]
- Jackson, N.A.C.; Kester, K.E.; Casimiro, D.; Gurunathan, S.; DeRosa, F. The promise of mRNA vaccines: A biotech and industrial perspective. npj Vaccines 2020, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.-N.; Zhang, R.-R.; Zhang, Y.-F.; Ji, K.; Xiong, X.-C.; Qin, Q.-S.; Gao, P.; Lu, X.-S.; Zhou, H.-Y.; Song, H.-F.; et al. Rapid development of an updated mRNA vaccine against the SARS-CoV-2 Omicron variant. Cell Res. 2022, 32, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.N.; Roni, M.A. Challenges of Storage and Stability of mRNA-Based COVID-19 Vaccines. Vaccines 2021, 9, 1033. [Google Scholar] [CrossRef]
- Kim, D.; Lai, C.-J.; Cha, I.; Kang, S.; Yang, W.-S.; Choi, Y.; Jung, J.U. SFTSV Gn-Head mRNA vaccine confers efficient protection against lethal viral challenge. J. Med. Virol. 2023, 95, e29203. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Jeon, K.; Park, S.-I.; Bang, Y.-J.; Park, H.-J.; Kwak, H.W.; Kim, D.-H.; Lee, S.-Y.; Choi, E.-J.; Cho, N.-H.; et al. mRNA vaccine encoding Gn provides protection against severe fever with thrombocytopenia syndrome virus in mice. npj Vaccines 2023, 8, 167. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Lai, C.-J.; Cha, I.; Jung, J.U. Current Progress of Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) Vaccine Development. Viruses 2024, 16, 128. https://doi.org/10.3390/v16010128
Kim D, Lai C-J, Cha I, Jung JU. Current Progress of Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) Vaccine Development. Viruses. 2024; 16(1):128. https://doi.org/10.3390/v16010128
Chicago/Turabian StyleKim, Dokyun, Chih-Jen Lai, Inho Cha, and Jae U. Jung. 2024. "Current Progress of Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) Vaccine Development" Viruses 16, no. 1: 128. https://doi.org/10.3390/v16010128
APA StyleKim, D., Lai, C.-J., Cha, I., & Jung, J. U. (2024). Current Progress of Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) Vaccine Development. Viruses, 16(1), 128. https://doi.org/10.3390/v16010128