Monitoring of Respiratory Disease Patterns in a Multimicrobially Infected Pig Population Using Artificial Intelligence and Aggregate Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Farm Description
2.2. Study Design and Data Collection
2.3. Automated Cough Monitoring
2.4. Clinical Cough Monitoring
2.5. Laboratory Diagnostic Sampling
2.6. Statistical Analysis
3. Results
3.1. Cough Monitoring
3.2. Molecular Biological Examinations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McOrist, S. Defining the full costs of endemic porcine proliferative enteropathy. Vet. J. 2005, 170, 8–9. [Google Scholar] [CrossRef] [PubMed]
- McOrist, S.; Smith, S.H.; Green, L.E. Estimate of direct financial losses due to porcine proliferative enteropathy. Vet. Rec. 1997, 140, 579–581. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, P.; Rushton, J.; Wieland, B. Cost of post-weaning multi-systemic wasting syndrome and porcine circovirus type-2 subclinical infection in England—An economic disease model. Prev. Vet. Med. 2013, 110, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Renken, C.; Nathues, C.; Swam, H.; Fiebig, K.; Weiss, C.; Eddicks, M.; Ritzmann, M.; Nathues, H. Application of an economic calculator to determine the cost of porcine reproductive and respiratory syndrome at farm-level in 21 pig herds in Germany. Porcine Health Manag. 2021, 7, 3. [Google Scholar] [CrossRef]
- Boeters, M.; Garcia-Morante, B.; van Schaik, G.; Segales, J.; Rushton, J.; Steeneveld, W. The economic impact of endemic respiratory disease in pigs and related interventions—A systematic review. Porcine Health Manag. 2023, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Thacker, E.L. Immunology of the porcine respiratory disease complex. Vet. Clin. N. Am. Food Anim. Pract. 2001, 17, 551–565. [Google Scholar] [CrossRef]
- Eddicks, M.; Eddicks, L.; Stadler, J.; Hermanns, W.; Ritzmann, M. Der Porcine Respiratory Disease Complex (PRDC)–eine klinische Übersicht. Tierärztl. Praxis Ausgabe G Großtiere/Nutztiere 2021, 49, 120–132. [Google Scholar] [CrossRef]
- Harms, P.A.; Halbur, P.G.; Sorden, S.D. Three cases of porcine respiratory disease complex associated with porcine circovirus type 2 infection. J. Swine Health Prod. 2002, 10, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Chung, H.K.; Chae, C. Association of porcine circovirus 2 with porcine respiratory disease complex. Vet. J. 2003, 166, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Opriessnig, T.; Gimenez-Lirola, L.G.; Halbur, P.G. Polymicrobial respiratory disease in pigs. Anim. Health Res. Rev. 2011, 12, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Deblanc, C.; Simon, G. Involvement of swine influenza A viruses in the porcine respiratory disease complex. Virologie 2017, 21, 225–238. [Google Scholar]
- Schmidt, C.; Cibulski, S.P.; Andrade, C.P.; Teixeira, T.F.; Varela, A.P.; Scheffer, C.M.; Franco, A.C.; de Almeida, L.L.; Roehe, P.M. Swine influenza virus and association with the porcine respiratory disease complex in pig farms in southern brazil. Zoonoses Public Health 2016, 63, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Thacker, E.L.; Halbur, P.G.; Ross, R.F.; Thanawongnuwech, R.; Thacker, B.J. Mycoplasma hyopneumoniae potentiation of porcine reproductive and respiratory syndrome virus-induced pneumonia. J. Clin. Microbiol. 1999, 37, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.; Oh, S.; Lee, J.; Park, D.; Chang, H.H.; Kim, S. Automatic detection and recognition of pig wasting diseases using sound data in audio surveillance systems. Sensors 2013, 13, 12929–12942. [Google Scholar] [CrossRef]
- Pessoa, J.; Rodrigues da Costa, M.; García Manzanilla, E.; Norton, T.; McAloon, C.; Boyle, L. Managing respiratory disease in finisher pigs: Combining quantitative assessments of clinical signs and the prevalence of lung lesions at slaughter. Prev. Vet. Med. 2021, 186, 105208. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Storino, G.Y.; Ferreyra, F.S.M.; Zhang, M.; Fano, E.; Polson, D.; Wang, C.; Derscheid, R.J.; Zimmerman, J.J.; Clavijo, M.J.; et al. Cough associated with the detection of Mycoplasma hyopneumoniae DNA in clinical and environmental specimens under controlled conditions. Porcine Health Manag. 2022, 8, 6. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, H.; Qiao, Y.; Jiang, S.; Lin, H.; Sun, Q. The Research Progress of Vision-Based Artificial Intelligence in Smart Pig Farming. Sensors 2022, 22, 6541. [Google Scholar] [CrossRef] [PubMed]
- Jorquera-Chavez, M.; Fuentes, S.; Dunshea, F.R.; Warner, R.D.; Poblete, T.; Morrison, R.S.; Jongman, E.C. Remotely Sensed Imagery for Early Detection of Respiratory Disease in Pigs: A Pilot Study. Animals 2020, 10, 451. [Google Scholar] [CrossRef] [PubMed]
- Neethirajan, S. Affective State Recognition in Livestock-Artificial Intelligence Approaches. Animals 2022, 12, 759. [Google Scholar] [CrossRef] [PubMed]
- Neethirajan, S. Recent advances in wearable sensors for animal health management. Sens. Bio-Sens. Res. 2017, 12, 15–29. [Google Scholar] [CrossRef]
- Arulmozhi, E.; Bhujel, A.; Moon, B.E.; Kim, H.T. The Application of Cameras in Precision Pig Farming: An Overview for Swine-Keeping Professionals. Animals 2021, 11, 2343. [Google Scholar] [CrossRef]
- Esener, N.; Green, M.J.; Emes, R.D.; Jowett, B.; Davies, P.L.; Bradley, A.J.; Dottorini, T. Discrimination of contagious and environmental strains of Streptococcus uberis in dairy herds by means of mass spectrometry and machine-learning. Sci. Rep. 2018, 8, 17517. [Google Scholar] [CrossRef] [PubMed]
- Ezanno, P.; Picault, S.; Beaunee, G.; Bailly, X.; Munoz, F.; Duboz, R.; Monod, H.; Guegan, J.F. Research perspectives on animal health in the era of artificial intelligence. Vet. Res. 2021, 52, 40. [Google Scholar] [CrossRef] [PubMed]
- Comas, M.; Gordon, C.J.; Oliver, B.G.; Stow, N.W.; King, G.; Sharma, P.; Ammit, A.J.; Grunstein, R.R.; Phillips, C.L. A circadian based inflammatory response—implications for respiratory disease and treatment. Sleep. Sci. Pract. 2017, 1, 18. [Google Scholar] [CrossRef]
- Hernandez-Garcia, J.; Robben, N.; Magnée, D.; Eley, T.; Dennis, I.; Kayes, S.M.; Thomson, J.R.; Tucker, A.W. The use of oral fluids to monitor key pathogens in porcine respiratory disease complex. Porcine Health Manag. 2017, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, A.; Wang, C.; Prickett, J.R.; Pogranichniy, R.; Yoon, K.J.; Main, R.; Johnson, J.K.; Rademacher, C.; Hoogland, M.; Hoffmann, P.; et al. Efficient surveillance of pig populations using oral fluids. Prev. Vet. Med. 2012, 104, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Kleinmans, M.; Fiebig, K.; Tabeling, R.; Swam, H.; Duivelshof-Crienen, A.; Ritzmann, M.; Eddicks, M. Explorative Field Study on the Use of Oral Fluids for the Surveillance of Actinobacillus pleuropneumoniae Infections in Fattening Farms by an Apx-Real-Time PCR. Vet. Sci. 2022, 9, 552. [Google Scholar] [CrossRef]
- Schott, F.; Hoffmann, K.; Sarno, E.; Bangerter, P.D.; Stephan, R.; Overesch, G.; Haessig, M.; Sidler, X.; Graage, R. Evaluation of oral fluids for surveillance of foodborne and zoonotic pathogens in pig farms. J. Vet. Diagn. Investig. 2021, 33, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Deffner, P.; Maurer, R.; Cvjetkovic, V.; Sipos, W.; Krejci, R.; Ritzmann, M.; Eddicks, M. Cross-sectional study on the in-herd prevalence of Mycoplasma hyopneumoniae at different stages of pig production. Vet. Rec. 2022, 191, e1317. [Google Scholar] [CrossRef]
- Giergiel, M.; Olejnik, M.; Jabłoński, A.; Posyniak, A. The Markers of Stress in Swine Oral Fluid. J. Vet. Res. 2021, 65, 487–495. [Google Scholar] [CrossRef]
- Gajda, A.; Jablonski, A.; Gbylik-Sikorska, M.; Posyniak, A. Correlation between oral fluid and plasma oxytetracycline concentrations after intramuscular administration in pigs. J. Vet. Pharmacol. Ther. 2017, 40, e39–e44. [Google Scholar] [CrossRef] [PubMed]
- Tedeschini, E.; Pasqualini, S.; Emiliani, C.; Marini, E.; Valecchi, A.; Laoreti, C.; Ministrini, S.; Camilloni, B.; Castronari, R.; Patoia, L.; et al. Monitoring of indoor bioaerosol for the detection of SARS-CoV-2 in different hospital settings. Front. Public Health 2023, 11, 1169073. [Google Scholar] [CrossRef]
- Song, L.; Wang, C.; Jiang, G.; Ma, J.; Li, Y.; Chen, H.; Guo, J. Bioaerosol is an important transmission route of antibiotic resistance genes in pig farms. Environ. Int. 2021, 154, 106559. [Google Scholar] [CrossRef]
- Nguyen, N.T.T.; Luu, Y.T.H.; Hoang, T.D.; Nguyen, H.X.; Dao, T.D.; Bui, V.N.; Gray, G.C. An epidemiological study of Streptococcus suis prevalence among swine at industrial swine farms in Northern Vietnam. One Health 2021, 13, 100254. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.D.; Lednicky, J.A.; Torremorell, M.; Gray, G.C. The Use of Bioaerosol Sampling for Airborne Virus Surveillance in Swine Production Facilities: A Mini Review. Front. Vet. Sci. 2017, 4, 121. [Google Scholar] [CrossRef]
- Anderson, B.D.; Yondon, M.; Bailey, E.S.; Duman, E.K.; Simmons, R.A.; Greer, A.G.; Gray, G.C. Environmental bioaerosol surveillance as an early warning system for pathogen detection in North Carolina swine farms: A pilot study. Transbound. Emerg. Dis. 2021, 68, 361–367. [Google Scholar] [CrossRef]
- Prost, K.; Kloeze, H.; Mukhi, S.; Bozek, K.; Poljak, Z.; Mubareka, S. Bioaerosol and surface sampling for the surveillance of influenza A virus in swine. Transbound. Emerg. Dis. 2019, 66, 1210–1217. [Google Scholar] [CrossRef] [PubMed]
- Dee, S.; Otake, S.; Oliveira, S.; Deen, J. Evidence of long distance airborne transport of porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. Vet. Res. 2009, 40, 39. [Google Scholar] [CrossRef] [PubMed]
- Torremorell, M.; Pijoan, C.; Janni, K.; Walker, R.; Joo, H.S. Airborne transmission of Actinobacillus pleuropneumoniae and porcine reproductive and respiratory syndrome virus in nursery pigs. Am. J. Vet. Res. 1997, 58, 828–832. [Google Scholar] [CrossRef]
- Nathues, H.; Spergser, J.; Rosengarten, R.; Kreienbrock, L.; Grosse Beilage, E. Value of the clinical examination in diagnosing enzootic pneumonia in fattening pigs. Vet. J. 2012, 193, 443–447. [Google Scholar] [CrossRef]
- Prickett, J.; Simer, R.; Christopher-Hennings, J.; Yoon, K.J.; Evans, R.B.; Zimmerman, J.J. Detection of Porcine reproductive and respiratory syndrome virus infection in porcine oral fluid samples: A longitudinal study under experimental conditions. J. Vet. Diagn. Investig. 2008, 20, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Duerlinger, S.; Knecht, C.; Sawyer, S.; Balka, G.; Zaruba, M.; Ruemenapf, T.; Kraft, C.; Rathkjen, P.H.; Ladinig, A. Efficacy of a Modified Live Porcine Reproductive and Respiratory Syndrome Virus 1 (PRRSV-1) Vaccine against Experimental Infection with PRRSV AUT15-33 in Weaned Piglets. Vaccines 2022, 10, 934. [Google Scholar] [CrossRef] [PubMed]
- Ingram, D.L.; Dauncey, M.J. Circadian rhythms in the pig. Comp. Biochem. Physiol. Part A Physiol. 1985, 82, 1–5. [Google Scholar] [CrossRef]
- Polson, D.; Berckmanns, D.; Cui, Z.; Quinn, B. Determining the optimal placement and configuration of an audio-based sensor platform to enable improved detection and characterisation of clinical respiratory episodes in large growing pig airspaces and sites. In Proceedings of the European Conference on Precision Livestock Farming, Cork, Ireland, 26–29 August 2019; pp. 490–495. [Google Scholar]
- Neira, V.; Allerson, M.; Corzo, C.; Culhane, M.; Rendahl, A.; Torremorell, M. Detection of influenza A virus in aerosols of vaccinated and non-vaccinated pigs in a warm environment. PLoS ONE 2018, 13, e0197600. [Google Scholar] [CrossRef] [PubMed]
- Polson, D.; Playter, S.; Berckmans, D.; Cui, Z.; Quinn, B. Evaluation of an audio-based sensor platform to classify patterns of clinical respiratory episodes in large growing pig populations. In Proceedings of the European Conference on Precision Livestock Farming, Cork, Ireland, 26–29 August 2019; pp. 553–558. [Google Scholar]
- Biernacka, K.; Karbowiak, P.; Wrobel, P.; Chareza, T.; Czopowicz, M.; Balka, G.; Goodell, C.; Rauh, R.; Stadejek, T. Detection of porcine reproductive and respiratory syndrome virus (PRRSV) and influenza A virus (IAV) in oral fluid of pigs. Res. Vet. Sci. 2016, 109, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Kittawornrat, A.; Prickett, J.; Chittick, W.; Wang, C.; Engle, M.; Johnson, J.; Patnayak, D.; Schwartz, T.; Whitney, D.; Olsen, C.; et al. Porcine reproductive and respiratory syndrome virus (PRRSV) in serum and oral fluid samples from individual boars: Will oral fluid replace serum for PRRSV surveillance? Virus Res. 2010, 154, 170–176. [Google Scholar] [CrossRef]
- Kittawornrat, A.; Panyasing, Y.; Goodell, C.; Wang, C.; Gauger, P.; Harmon, K.; Rauh, R.; Desfresne, L.; Levis, I.; Zimmerman, J. Porcine reproductive and respiratory syndrome virus (PRRSV) surveillance using pre-weaning oral fluid samples detects circulation of wild-type PRRSV. Vet. Microbiol. 2014, 168, 331–339. [Google Scholar] [CrossRef]
- Kristensen, C.S.; Angen, O.; Andreasen, M.; Takai, H.; Nielsen, J.P.; Jorsal, S.E. Demonstration of airborne transmission of Actinobacillus pleuropneumoniae serotype 2 between simulated pig units located at close range. Vet. Microbiol. 2004, 98, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Tobias, T.J.; Bouma, A.; van den Broek, J.; van Nes, A.; Daemen, A.J.; Wagenaar, J.A.; Stegeman, J.A.; Klinkenberg, D. Transmission of Actinobacillus pleuropneumoniae among weaned piglets on endemically infected farms. Prev. Vet. Med. 2014, 117, 207–214. [Google Scholar] [CrossRef]
- Martinez-Boixaderas, N.; Garza-Moreno, L.; Sibila, M.; Segales, J. Impact of maternally derived immunity on immune responses elicited by piglet early vaccination against the most common pathogens involved in porcine respiratory disease complex. Porcine Health Manag. 2022, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, G.B.; Nielsen, J.P.; Haugegaard, J.; Leth, S.C.; Larsen, L.E.; Kristensen, C.S.; Pedersen, K.S.; Stege, H.; Hjulsager, C.K.; Houe, H. Comparison of serum pools and oral fluid samples for detection of porcine circovirus type 2 by quantitative real-time PCR in finisher pigs. Porcine Health Manag. 2018, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Fachinger, V.; Bischoff, R.; Jedidia, S.B.; Saalmueller, A.; Elbers, K. The effect of vaccination against porcine circovirus type 2 in pigs suffering from porcine respiratory disease complex. Vaccine 2008, 26, 1488–1499. [Google Scholar] [CrossRef]
- Kixmoeller, M.; Ritzmann, M.; Eddicks, M.; Saalmueller, A.; Elbers, K.; Fachinger, V. Reduction of PMWS-associated clinical signs and co-infections by vaccination against PCV2. Vaccine 2008, 26, 3443–3451. [Google Scholar] [CrossRef]
- Pieters, M.; Daniels, J.; Rovira, A. Comparison of sample types and diagnostic methods for in vivo detection of Mycoplasma hyopneumoniae during early stages of infection. Vet. Microbiol. 2017, 203, 103–109. [Google Scholar] [CrossRef]
- Roos, L.R.; Fano, E.; Homwong, N.; Payne, B.; Pieters, M. A model to investigate the optimal seeder-to-naïve ratio for successful natural Mycoplasma hyopneumoniae gilt exposure prior to entering the breeding herd. Vet. Microbiol. 2016, 184, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Otake, S.; Dee, S.; Corzo, C.; Oliveira, S.; Deen, J. Long-distance airborne transport of infectious PRRSV and Mycoplasma hyopneumoniae from a swine population infected with multiple viral variants. Vet. Microbiol. 2010, 145, 198–208. [Google Scholar] [CrossRef]
Pathogen | Name of the Used Assay | Manufacturer |
---|---|---|
PRRSV | Virotype PRRSV NA/EU | INDICAL BIOSCIENCE GmbH; Leipzig, Germany |
PCV2 | Virotype PCV2/PCV 3 | INDICAL BIOSCIENCE GmbH; Leipzig, Germany |
swIAV | Virotype Influenza A RT-PCR | INDICAL BIOSCIENCE GmbH; Leipzig, Germany |
M. hyopneumoniae | EXOone Mycoplasma hyopneumoniae | exopol; San Mateo de Gállego, Zaragoza, Spain |
A. pleuropneumoniae | EXOone Actinobacillus pleuropneumoniae | exopol; San Mateo de Gállego, Zaragoza, Spain |
B1 | B2 | Entire Study Period | |||||||
---|---|---|---|---|---|---|---|---|---|
OFs (n = 64) | AS (n = 32) | p-Value | OFs (n = 60) | AS (n = 30) | p-Value | OFs (n = 124) | AS (n = 62) | p-Value | |
PRRSV | 65.0% (52/80) | 32.5% (13/40) | <0.001 | 27.5% (22/80) | 5.0% (2/40) | 0.003 | 46.3% (74/160) | 18.8% (15/80) | <0.001 |
PCV2 | 7.5% (6/80) | 15.0% (6/40) | 0.211 | 5.0% (4/80) | 2.5% (1/40) | 0.664 | 6.3% (10/160) | 8.8% (7/80) | 0.594 |
swIAV | 45.0% (36/80) | 57.5% (23/40) | 0.246 | 36.3% (29/80) | 35.0% (14/40) | 1.00 | 40.6% (65/160) | 46.3% (37/80) | 0.410 |
APP 1 | 63.7% (51/80) | 7.5% (3/40) | <0.001 | 70.0% (56/80) | 7.5% (3/40) | <0.001 | 66.9% (107/160) | 7.5% (6/80) | <0.001 |
M. hyo 2 | 0.0% (0/64) | 0.0% (0/32) | - | 0.0% (0/60) | 0.0% (0/30) | - | 0.0% (0/124) | 0.0% (0/62) | n.d. * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eddicks, M.; Feicht, F.; Beckjunker, J.; Genzow, M.; Alonso, C.; Reese, S.; Ritzmann, M.; Stadler, J. Monitoring of Respiratory Disease Patterns in a Multimicrobially Infected Pig Population Using Artificial Intelligence and Aggregate Samples. Viruses 2024, 16, 1575. https://doi.org/10.3390/v16101575
Eddicks M, Feicht F, Beckjunker J, Genzow M, Alonso C, Reese S, Ritzmann M, Stadler J. Monitoring of Respiratory Disease Patterns in a Multimicrobially Infected Pig Population Using Artificial Intelligence and Aggregate Samples. Viruses. 2024; 16(10):1575. https://doi.org/10.3390/v16101575
Chicago/Turabian StyleEddicks, Matthias, Franziska Feicht, Jochen Beckjunker, Marika Genzow, Carmen Alonso, Sven Reese, Mathias Ritzmann, and Julia Stadler. 2024. "Monitoring of Respiratory Disease Patterns in a Multimicrobially Infected Pig Population Using Artificial Intelligence and Aggregate Samples" Viruses 16, no. 10: 1575. https://doi.org/10.3390/v16101575
APA StyleEddicks, M., Feicht, F., Beckjunker, J., Genzow, M., Alonso, C., Reese, S., Ritzmann, M., & Stadler, J. (2024). Monitoring of Respiratory Disease Patterns in a Multimicrobially Infected Pig Population Using Artificial Intelligence and Aggregate Samples. Viruses, 16(10), 1575. https://doi.org/10.3390/v16101575