The Clinical Effectiveness and Tolerability of Oseltamivir in Unvaccinated Pediatric Influenza Patients during Two Influenza Seasons after the COVID-19 Pandemic: The Impact of Comorbidities on Hospitalization for Influenza in Children
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- Metabolic and endocrine disease, such as diabetes and thyroid conditions.
- Respiratory such as viral pneumonia, bronchitis, and previous pulmonary disease.
- Gastrointestinal disease such as gastroesophageal reflux disease, irritable bowel syndrome, and dyspepsia.
- Renal disease including reno-ureteral malformations, and recurrent urinary tract infections. (See Table 3).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nair, H.; Brooks, W.A.; Katz, M.; Roca, A.; Berkley, J.A.; Madhi, S.A.; Simmerman, J.M.; Gordon, A.; Sato, M.; Howie, S.; et al. Global burden of respiratory infections due to seasonal influenza in young children: A systematic review and meta-analysis. Lancet 2011, 378, 1917–1930. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Influenza (Seasonal) Fact Sheet; sheets/detail/influenza-seasonal; World Health Organization: Geneva, Switzerland, 2023; Available online: https://www.who.int/publications/m/item/influenza-update-n--485 (accessed on 24 July 2024)sheets/detail/influenza-seasonal.
- Wei, C.J.; Crank, M.C.; Shiver, J.; Graham, B.S.; Mascola, J.R.; Nabel, G.J. Next generation influenza vaccines: Opportunities and challenges. Nat. Rev. Drug Discov. 2020, 19, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Olsen, S.J.; Winn, A.K.; Budd, A.P.; Prill, M.M.; Steel, J.; Midgley, C.M.; Kniss, K.; Burns, E.; Rowe, T.; Foust, A.; et al. Changes in Influenza and Other Respiratory Virus Activity During the COVID-19 Pandemic—United States, 2020–2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Blyth, C.C.; Richmond, P.C.; Jacoby, P.; Thornton, P.; Regan, A.; Robins, C.; Kelly, H.; Smith, D.W.; Effler, P.V. The impact of pandemic A (H1N1) pdm09 influenza and vaccine-associated adverse events on parental attitudes and influenza vaccine uptake in young children. Vaccine 2014, 32, 4075–4081. [Google Scholar] [CrossRef] [PubMed]
- Centrul National de Supraveghere si Control al Bolilor Transmisibile. COVID-19 Raport Săptămânal de Supraveghere, Date. Raportate Până la Data 14 May 2023. Available online: https://www.cnscbt.ro/index.php/informari-saptamanale/gripa/3464-informare-infectii-respiratorii-08-05-2023-14-05-2023-s-19/file (accessed on 1 March 2024).
- Miron, V.D.; Draganescu, A.C.; Sandulescu, O.; Visan, C.A.; Merisescu, M.M.; Cercel, A.S.; Pitigoi, D.; Rafila, A.; Mihaela, O.; Dorobatg, J.; et al. Pneumococcal colonization and pneumococcal disease in children with influenza: Clinical, laboratory, and epidemiological features. Rev. Chim. 2018, 69, 2749–2753. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Seasonal Influenza Vaccines; ECDC: Stockholm, Sweden; Available online: https://www.ecdc.europa.eu/en/seasonal-influenza/prevention-and-control/seasonal-influenza-vaccines (accessed on 18 August 2023).
- Chow, E.J.; Doyle, J.D.; Uyeki, T.M. Influenza virus-related critical illness: Prevention, diagnosis, treatment. Crit. Care 2019, 23, 214. [Google Scholar] [CrossRef]
- Principi, N.; Esposito, S. Severe influenza in children: Incidence and risk factors. Expert Rev. Anti-Infect. Ther. 2016, 14, 961–968. [Google Scholar] [CrossRef]
- Pneumonia Etiology Research for Child Health (PERCH) Study Group. Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: The PERCH multi-country case-control study. Lancet 2019, 394, 757–779, Erratum in Lancet 2019, 394, 736. [Google Scholar] [CrossRef]
- Jefferson, T.; Jones, M.; Doshi, P.; Spencer, E.A.; Onakpoya, I.; Heneghan, C.J. Oseltamivir for influenza in adults and children: Systematic review of clinical study reports and summary of regulatory comments. BMJ 2014, 348, g2545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- World Health Organization (WHO). Recommended Composition of Influenza Virus Vaccines for Use in the 2022–2023 Northern Hemisphere Influenza Season; WHO: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/m/item/recommended-composition-of-influenza-virus-vaccines-for-use-in-the-2022-2023-northern-hemisphere-influenza-season (accessed on 4 February 2024).
- Dobson, J.; Whitley, R.J.; Pocock, S.; Monto, A.S. Oseltamivir treatment for influenza in adults: A meta-analysis of randomised controlled trials. Lancet 2015, 385, 1729–1737. [Google Scholar] [CrossRef]
- Venkatesan, S.; Myles, P.R.; Bolton, K.J.; Muthuri, S.G.; Al Khuwaitir, T.; Anovadiya, A.P.; Azziz-Baumgartner, E.; Bajjou, T.; Bassetti, M.; Beovic, B.; et al. Neuraminidase Inhibitors and Hospital Length of Stay: A Meta-analysis of Individual Participant Data to Determine Treatment Effectiveness Among Patients Hospitalized With Nonfatal 2009 Pandemic Influenza A(H1N1) Virus Infection. J. Infect. Dis. 2020, 221, 356–366. [Google Scholar] [CrossRef]
- Ding, Q.; Lu, P.; Fan, Y.; Xia, Y.; Liu, M. The clinical characteristics of pneumonia patients coinfected with 2019 novel coronavirus and influenza virus in Wuhan, China. J. Med. Virol. 2020, 92, 1549–1555. [Google Scholar] [CrossRef]
- Merișescu, M.-M.; Luminos, M.L.; Pavelescu, C.; Jugulete, G. Clinical Features and Outcomes of the Association of Co-Infections in Children with Laboratory-Confirmed Influenza during the 2022–2023 Season: A Romanian Perspective. Viruses 2023, 15, 2035. [Google Scholar] [CrossRef]
- Dominguez-Cherit, G.; Lapinsky, S.E.; Macias, A.E.; Pinto, R.; Espinosa-Perez, L.; de la Torre, A.; Poblano-Morales, M.; Baltazar-Torres, J.A.; Bautista, E.; Martinez, A.; et al. Critically Ill patients with 2009 influenza A(H1N1) in Mexico. JAMA 2009, 302, 1880–1887. [Google Scholar] [CrossRef]
- Kumar, A.; Zarychanski, R.; Pinto, R.; Cook, D.J.; Marshall, J.; Lacroix, J.; Stelfox, T.; Bagshaw, S.; Choong, K.; Lamontagne, F.; et al. Critically ill patients with 2009 influenza A(H1N1) infection in Canada. JAMA 2009, 302, 1872–1879. [Google Scholar] [CrossRef]
- Sellers, S.A.; Hagan, R.S.; Hayden, F.G.; Fischer, W.A., 2nd. The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influenza Other Respir. Viruses 2017, 11, 372–393. [Google Scholar] [CrossRef]
- Groves, H.E.; Papenburg, J.; Mehta, K.; Bettinger, J.A.; Sadarangani, M.; Halperin, S.A.; Morris, S.K.; Bancej, C.; Burton, C.; Embree, J.; et al. The effect of the COVID-19 pandemic on influenza-related hospitalization, intensive care admission and mortality in children in Canada: A population-based study. Lancet Reg. Health Am. 2022, 7, 100132. [Google Scholar] [CrossRef]
- Ratre, Y.K.; Vishvakarma, N.K.; Bhaskar, L.V.K.S.; Verma, H.K. Dynamic Propagation and Impact of Pandemic Influenza A (2009 H1N1) in Children: A Detailed Review. Curr. Microbiol. 2020, 77, 3809–3820. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Short, K.R.; Kasper, J.; van der Aa, S.; Andeweg, A.C.; Zaaraoui-Boutahar, F.; Goeijenbier, M.; Richard, M.; Herold, S.; Becker, C.; Scott, D.P.; et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur. Respir. J. 2016, 47, 954–966. [Google Scholar] [CrossRef]
- Mondal, P.; Sinharoy, A.; Gope, S. The influence of COVID-19 on influenza and respiratory syncytial virus activities. Infect. Dis. Rep. 2022, 14, 134–141. [Google Scholar] [CrossRef]
- Huang, Q.S.; Wood, T.; Jelley, L.; Jennings, T.; Jefferies, S.; Daniells, K.; Nesdale, A.; Dowell, T.; Turner, N.; Campbell-Stokes, P.; et al. Impact of the COVID-19 nonpharmaceutical interventions on influenza and other respiratory viral infections in New Zealand. Nat. Commun. 2021, 12, 1001. [Google Scholar] [CrossRef] [PubMed]
- Funk, A.L.; Florin, T.A.; Kuppermann, N.; Tancredi, D.J.; Xie, J.; Kim, K.; Neuman, M.I.; Ambroggio, L.; Plint, A.C.; Mintegi, S.; et al. Outcomes of SARS-CoV-2–Positive Youths Tested in Emergency Departments: The Global PERN-COVID-19 Study. JAMA Netw. Open. 2022, 5, e2142322. [Google Scholar] [CrossRef] [PubMed]
- Minodier, L.; Charrel, R.N.; Ceccaldi, P.E.; van der Werf, S.; Blanchon, T.; Hanslik, T.; Falchi, A. Prevalence of gastrointestinal symptoms in patients with influenza, clinical significance, and pathophysiology of human influenza viruses in faecal samples: What do we know? Virol. J. 2015, 12, 215. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jugulete, G.; Merisescu, M.M.; Bastian, A.E.; Zurac, S.; Stoicescu, S.M.; Luminos, M.L. Severe form of A1H1 influenza in a child—Case presentation. Rom. J. Leg. Med. 2019, 26, 387–391. [Google Scholar]
- National Institute of Public Health (NIPH). National Centre for Surveillance and Control of Communicable Diseases. Available online: https://cnsisp.insp.gov.ro/ (accessed on 28 April 2023).
- Willis, G.A.; Preen, D.B.; Richmond, P.C.; Jacoby, P.; Effler, P.V.; Smith, D.W.; Robins, C.; Borland, M.L.; Levy, A.; Keil, A.D.; et al. The impact of influenza infection on young children, their family and the health care system. Influenza Other Respir Viruses 2019, 13, 18–27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kamidani, S.; Garg, S.; Rolfes, M.A.; Campbell, A.P.; Cummings, C.N.; Haston, J.C.; Openo, K.P.; Fawcett, E.; Chai, S.J.; Herlihy, R.; et al. Epidemiology, clinical characteristics, and outcomes of influenza-associated hospitalizations in U.S. children over 9 seasons following the 2009 H1N1 pandemic. Clin. Infect. Dis. 2022, 75, 1930–1939. [Google Scholar] [CrossRef]
- Jugulete, G.; Luminos, M.; Pavelescu, C.; Merișescu, M.M. Remdesivir Efficacy and Tolerability in Children with COVID-19-Associated Allergic Comorbidities such as Asthma, Allergic Rhinitis, and Atopic Dermatitis. Children 2023, 10, 810. [Google Scholar] [CrossRef]
- de Boer, G.; Braunstahl, G.-J.; Hendriks, R.; Tramper-Stranders, G. Asthma exacerbation prevalence during the COVID-19 lockdown in a moderate-severe asthma cohort. BMJ Open Respir. Res. 2021, 8, e000758. [Google Scholar] [CrossRef]
- Fitzpatrick, T.; McNally, J.D.; Stukel, T.A.; Lu, H.; Fisman, D.; Kwong, J.C.; Guttmann, A. Family and child risk factors for early-life RSV illness. Pediatrics 2021, 147, e2020029090. [Google Scholar] [CrossRef]
- Morris, D.E.; Cleary, D.W.; Clarke, S.C. Secondary bacterial infections associated with influenza pandemics. Front. Microbiol. 2017, 8, 1041. [Google Scholar] [CrossRef]
- Gawronski, O.; Briassoulis, G.; El Ghannudi, Z.; Ilia, S.; Sánchez-Martín, M.; Chiusolo, F.; Jensen, C.S.; Manning, J.C.; Valla, F.V.; Pavelescu, C.; et al. European survey on Paediatric Early Warning Systems, and other processes used to aid the recognition and response to children’s deterioration on hospital wards. Nurs. Crit. Care 2024. early view. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Thomas, P.G. Influenza virus-related critical illness: Pathophysiology and epidemiology. Crit. Care 2019, 23, 258. [Google Scholar] [CrossRef] [PubMed]
- Joseph, C.; Togawa, Y.; Shindo, N. Bacterial and viral infections associated with influenza. Influenza Other Respir Viruses 2013, 7, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Vardakas, K.Z.; Theocharis, G.; Tansarli, G.S.; Rafailidis, P.; Falagas, M.E. Impact of oseltamivir use on the reduction of complications in patients with influenza: A prospective study. Arch. Virol. 2016, 161, 2511–2518. [Google Scholar] [CrossRef] [PubMed]
- Sugaya, N.; Mitamura, K.; Yamazaki, M.; Tamura, D.; Ichikawa, M.; Kimura, K.; Kawakami, C.; Kiso, M.; Ito, M.; Hatakeyama, S.; et al. Lower clinical effectiveness of oseltamivir against influenza B contrasted with influenza A infection in children. Clin. Infect. Dis. 2007, 44, 197–202. [Google Scholar] [CrossRef]
- Spinelli, A.; Buoncristiano, M.; Kovacs, V.A.; Yngve, A.; Spiroski, I.; Obreja, G. Prevalence of severe obesity among primary school children in 21 European countries. Obes Facts 2019, 12, 244–258. [Google Scholar] [CrossRef]
- Longmore, D.K.; Miller, J.E.; Bekkering, S.; Saner, C.; Mifsud, E.; Zhu, Y.; Saffery, R.; Nichol, A.; Colditz, G.; Short, K.R.; et al. Diabetes and Overweight/Obesity Are Independent, Nonadditive Risk Factors for In-Hospital Severity of COVID-19: An International, Multicenter Retrospective Meta-analysis. Diabetes Care 2021, 44, 1281–1290. [Google Scholar] [CrossRef]
- Malosh, R.E.; Martin, E.T.; Heikkinen, T.; Brooks, W.A.; Whitley, R.J.; Monto, A.S. Efficacy and Safety of Oseltamivir in Children: Systematic Review and Individual Patient Data Meta-analysis of Randomized Controlled Trials. Clin. Infect. Dis. 2018, 66, 1492–1500. [Google Scholar] [CrossRef]
- Uyeki, T.M. Oseltamivir Treatment of Influenza in Children. Clin. Infect. Dis. 2018, 66, 1501–1503. [Google Scholar] [CrossRef]
- Mylonakis, S.C.; Mylona, E.K.; Kalligeros, M.; Shehadeh, F.; Chan, P.A.; Mylonakis, E. How Comorbidities Affect Hospitalization from Influenza in the Pediatric Population. Int. J. Environ. Res. Public Health 2022, 19, 2811. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Characteristics | Overall n (%) 1300 (100) | Influenza A(H1N1) 2022–2023 Season n (%) 608 (86.4) | Influenza A(H3N2) 2022–2023 n (%) 96(13.6) | Influenza B 2022–2023 n (%) 87(11) | Influenza A(H1N1) 2023–2024 n (%) 346 (83.4%) | Influenza A(H3N2) 2023–2024 n (%) 69(16.6%) | Influenza B 2023–2024 n (%) 94(18.4%) | p-Value |
---|---|---|---|---|---|---|---|---|
Age: years old | 0.12 | |||||||
0–1 | 161 (12.4) | 60 (9.8) | 5 (5.6) | 2 (2.7) | 39 (11.3) | 6 (8.9) | 2 (1.7) | |
2–4 | 537 (41.3) | 227 (37.3) | 27 (28.3) | 13 (14.6) | 92 (26.5) | 16 (23.6) | 12 (13.2) | |
5–14 | 338 (26) | 141 (23.2) | 34 (35.2) | 34 (38.8) | 120 (34.7) | 23 (32.8) | 42 (44.2) | |
15–18 | 264 (20,3) | 180 (29.7) | 30 (30.9) | 38 (43.9) | 95 (27.5) | 24 (34.7) | 38 (40.9) | |
Gender (%) | 0.12 | |||||||
Female | 560 (43.1) | 281 (46.2) | 44 (45.3) | 37 (42.9) | 150 (43.5) | 31 (44.3) | 40 (42.1) | |
Male | 740 (56.9) | 327 (53.8) | 52 (54.7) | 50 (57.1) | 196 (56.5) | 38 (55.7) | 54 (57.9) | |
Symptoms | ||||||||
Fever | 1222 (94%) | 600 (98.68) * | 85 (88.54) | 80 (91.95) # | 314 (90.75) | 63 (91.3) | 80 (85.1) # | 0.05 #; 0.01 * |
Cough | 1157 (89%) | 598 (98.36) * | 85 (88.54) | 47 (54.02) | 312 (90.17) | 60 (87) | 55 (58.51) | 0.13; 0.01 * |
Weakness | 832 (64%) | 342 (56.25) | 49 (51.04) | 74 (85.05) | 262 (75.72) | 27 (39.13) | 78 (83) | 0.10 |
Nasal congestion | 598 (46%) | 218 (35.86) | 53 (55.2) | 51 (58.62) | 181 (52.31) | 30 (43.48) | 65 (69.15) | 0.14 |
Sore throat | 728 (56%) | 345 (56.74) * | 44 (45.83) | 43 (49.43) | 182 (52.6) | 31 (45) | 64 (68) | 0.2; 0.005 * |
Headache | 562 (43.23%) | 189 (14.54) | 40 (41.67) | 32 (36.78) | 203 (58.67) | 42 (60.86) | 56 (59.57) | 0.3 |
Myalgia | 561 (43.15%) | 132 (21.71) * | 35 (36.46) | 80 (91.95) | 231 (66.76) | 43 (62.32) | 40 (42.55) | 0.07; 0.0011 * |
Watery eyes | 375 (28.85%) | 182 (29.93) | 23 (24) | 15 (17.24) | 102 (29.5) | 21 (30.43) | 32 (34.04) | 0.13 |
Nausea | 272 (20.92%) | 107 (17.6) | 12 (12.5) | 21 (24.14) | 80 (23.12) | 27 (70) | 25 (27) | 0.12 |
Vomiting | 677 (52.08%) | 308 (50.66) | 32 (33.33) | 42 (48.28) # | 210 (60.7) | 29 (42.03) | 56 (59.57) # | 0.01 # |
Diarrhea | 575 (44.23%) | 274 (45.07) | 21 (21.88) | 74 (85) # | 109 (31.5) | 32 (46.38) | 65 (69.15) # | 0.05 # |
Complications n (%) | ||||||||
Pneumonia | 643 (49.46) | 328 (53.95) | 56 (58.33) | 76 (87.36) | 87 (25.14) | 42 (60.86) | 54 (57.45) | |
Sinusitis | 440 (33.84) | 187 (30.76) | 46 (47.92) | 44 (50.57) | 121 (34.97) | 14 (20.29) | 28 (29.79) | |
Bronchitis | 508 (39.08) | 279 (45.89) | 35 (36.46) | 39 (44.83) | 101 (29.19) | 22 (31.88) | 32 (34.04) | |
Pharyngitis | 407 (31.31) | 126 (20.72) | 67 (69.79) | 70 (80.46) | 110 (31.79) | 25 (36.23) | 9 (9.57) | |
Acute otitis media | 417 (32.08) | 200 (32.89) | 30 (31.25) | 39 (44.83) | 98 (28.32) | 26 (30.43) | 24 (25.53) | |
Gastrointestinal disease | 649 (49.92) | 309 (50.82) | 55 (57.29) | 48 (55.17) | 180 (52.02) | 21 (30.43) | 36 (38.29) |
Median Days of | |||
---|---|---|---|
Hospitalizations (IQR) | Median Days (IQR) | p-Value | |
Comorbidities | No | Yes | |
Obesity | 4 (1–5) | 7 (5–7) | 0.001 |
Endocrine or | |||
metabolic disease | 3 (1–4) | 4 (2–6) | 0.79 |
Asthma | 4 (1–4) | 9 (8–10) | 0.02 |
Respiratory disease | 3 (2–4) | 4 (2–6) | 0.077 |
Blood disease | 2 (1–6) | 3 (2–5) | 0.78 |
Gastrointestinal | |||
disease | 4 (1–6) | 5 (1–5.5) | 0.0089 |
Eczema/ | |||
atopic dermatitis | 2 (1–3) | 3 (1–7) | 0.46 |
Renal disease | 4 (1–6) | 6 (2–7) | 0.35 |
Variables | 0–1 Years Old | 2–4 Years Old | 5–14 Years Old | 15–18 Years Old |
---|---|---|---|---|
Comorbidities | ||||
Obesity | - | 2.21 (4.23–13.32);0.5 | 2.14 (0.21–20.42); 0.01 | 12.85 (3,23–43.44); 0.03 |
Endocrine/metabolic disease (1) | - | - | 3.14 (2.456–9.012); 0.21 | - |
Asthma | - | - | 12.34 (6.54–19.03); 0.0112 | 9.67 (3.23–22.75); 0.07 |
Respiratory disease (2) | - | 14.44 (14.92–23.12); 0.11 | 2.52 (0.15–13.24); 0.10 | 12.24 (8,68–21.75); 0.123 |
Gastrointestinal disease (3) | 9.31 (4.244–15.65); 0.123 | 12.75 (5.33–13.21); 0.05 | 14.43 (12.23–32,33); 0.5 | 2.33 (6.01–12.07); 0.15 |
Renal disease (4) | - | - | 12 (2.90–22-07); 0.77 | - |
Atopic dermatitis | 1.23 (1.23–5.96);0.09 | 12.44 (8.97–19.23); 0.86 | - | 1.23 (2.12–21.05); 0.6 |
Gender Male Female | 1.44 (2.01–11.03); 0.14 10.95 (3.47–34.3); 0.12 | 15.45 (2.59–89.87); 0.03 11.24 (8.47–19.97); 0.5 | 8.63 (2.34–3.01); 0.01 6.91 (1.44–13.23); 0.12 | 15.56 (3.34–23.98); 0.9 8.77 (2.25–31.32); 0.5 |
Parameters | Influenza A (H1N1) 2022–2023 Season n (%) 608 (86.4) | Influenza A (H3N2) 2022–2023 n (%) 96 (13.6) | Influenza B 2022–2023 n (%) 87 (11) | Influenza A (H1N1) 2023–2024 n (%) 346 (83.4%) | Influenza A (H3N2) 2023–2024 n (%) 69 (16.6%) | Influenza B 2023–2024 n (%) 94 (18.4%) | p-Value |
---|---|---|---|---|---|---|---|
Treatment n (%) | |||||||
Duration of hospitalization days n (IQR) | 5 (3–6) | 4 (2–5) | 7 (1–7) | 5 (4–6) | 4 (3–5) | 6 (2–6) | 0.01 |
Oseltamivir | 402 (66.12) | 59 (61.46) | 39 (44.83) | 214 (61.85) | 17 (24.64) | 18 (19.15) | 0.001 |
Oseltamivir and dexamethasone | 124 (20.4) | 22 (22.91) | 31 (35.63) | 49 (14.16) | 29 (42.65) | 14 (14.89) | 0.11 |
Oseltamivir, dexamethasone and antibiotics | 82 (13.49) | 15 (15.63) | 27 (31.03) | 83 (24) | 41 (42.03) | 32 (34.04) | 0.001 |
Laboratory n (%) | |||||||
AST, U/L > 5× normal values | 124 (20.39) | 76 (60.32) | 38 (67.86) | 24 (6.94) | 12 (17.39) | 36 (53) | 0.05 |
ALT, U/L > 5× normal values | 136 (22.37) | 89 (92.71) | 45 (51.72) | 42 (12.14) | 43 (62.32) | 21 (22.34) | 0.01 |
Hemoglobin | 216 (35.53) | 70 (55.5) | 36 (64.3) | 22 (6.36) | 29 (42.03) | 32 (47.1) | 0.001 |
Leukocyte | 112 (18.42) | 67 (69.79) | 65 (74.71) | 24 (6.94) | 56 (81.16) | 18 (19.15) | 0.31 |
Lymphopenia | 98 (16.12) | 34 (27) | 21 (37.5) | 14 (4.05) | 17 (24.64) | 12 (17.6) | 0.32 |
Neutrophilia | 109 (17.93) | 23 (23.96) | 11 (12.64) | 32 (9.25) | 23 (33.33) | 13 (13.83) | 0.1 |
Low Thrombocyte | 98 (16.12) | 37 (29.4) | 14 (25) | 33 (9.54) | 35 (50.74) | 21 (30.9) | 0.11 |
High Prothrombin time | 123 (20.23) | 76 (60.32) | 44 (78.6) | 21 (6.07) | 29 (42.03) | 30 (44.12) | 0.23 |
LDH elevated | 234 (38.49) | 51 (40.5) | 28 (50) | 40 (11.56) | 32 (46.38) | 22 (32.35) | 0.31 |
CRP elevated | 112 (18.42) | 55 (43.65) | 32 (57.14) | 42 (12.14) | 44 (63.77) | 21 (30.88) | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jugulete, G.; Olariu, M.C.; Stanescu, R.; Luminos, M.L.; Pacurar, D.; Pavelescu, C.; Merișescu, M.-M. The Clinical Effectiveness and Tolerability of Oseltamivir in Unvaccinated Pediatric Influenza Patients during Two Influenza Seasons after the COVID-19 Pandemic: The Impact of Comorbidities on Hospitalization for Influenza in Children. Viruses 2024, 16, 1576. https://doi.org/10.3390/v16101576
Jugulete G, Olariu MC, Stanescu R, Luminos ML, Pacurar D, Pavelescu C, Merișescu M-M. The Clinical Effectiveness and Tolerability of Oseltamivir in Unvaccinated Pediatric Influenza Patients during Two Influenza Seasons after the COVID-19 Pandemic: The Impact of Comorbidities on Hospitalization for Influenza in Children. Viruses. 2024; 16(10):1576. https://doi.org/10.3390/v16101576
Chicago/Turabian StyleJugulete, Gheorghiță, Mihaela Cristina Olariu, Raluca Stanescu, Monica Luminita Luminos, Daniela Pacurar, Carmen Pavelescu, and Mădălina-Maria Merișescu. 2024. "The Clinical Effectiveness and Tolerability of Oseltamivir in Unvaccinated Pediatric Influenza Patients during Two Influenza Seasons after the COVID-19 Pandemic: The Impact of Comorbidities on Hospitalization for Influenza in Children" Viruses 16, no. 10: 1576. https://doi.org/10.3390/v16101576
APA StyleJugulete, G., Olariu, M. C., Stanescu, R., Luminos, M. L., Pacurar, D., Pavelescu, C., & Merișescu, M. -M. (2024). The Clinical Effectiveness and Tolerability of Oseltamivir in Unvaccinated Pediatric Influenza Patients during Two Influenza Seasons after the COVID-19 Pandemic: The Impact of Comorbidities on Hospitalization for Influenza in Children. Viruses, 16(10), 1576. https://doi.org/10.3390/v16101576