Patterns of HIV-1 Drug Resistance Observed Through Geospatial Analysis of Routine Diagnostic Testing in KwaZulu-Natal, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Routine Laboratory Procedures for HIV Genotyping
2.3. Interactive HIV-1 Drug Resistance Database
2.4. Statistical Analysis
2.5. Geospatial Mapping of HIV Genotypic Resistance Test Records
3. Results
3.1. Patterns of HIV-1 Drug Resistance
3.1.1. Drug Class Resistance
3.1.2. Mutations Detected in Genotypic Resistance Test Records with HIV-1 Drug Resistance
3.1.3. Genotypic Susceptibility Scores
3.2. Geospatial Analysis of HIV-1 Drug Resistance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuadros, D.F.; Huang, Q.; Musuka, G.; Dzinamarira, T.; Moyo, B.K.; Mpofu, A.; Makoni, T.; DeWolfe Miller, F.; Bershteyn, A. Moving beyond hotspots of HIV prevalence to geospatial hotspots of UNAIDS 95-95-95 targets in sub-Saharan Africa. Lancet HIV 2024, 11, e479–e488. [Google Scholar] [CrossRef] [PubMed]
- Kiepiela, P.; Manasa, J.; Moosa, M.Y.; Moodley, P.; Gordon, M.; Parikh, U.M.; Sunpath, H.; de Oliveira, T.; Ramjee, G. HIV drug resistance patterns at the epicentre of the HIV-1 epidemic in Kwazulu-Natal, South Africa 2003–2013. J. AIDS Clin. Res. 2014, 5, 1000294–1000299. [Google Scholar] [CrossRef]
- Kim, H.; Tanser, F.; Tomita, A.; Vandormael, A.; Cuadros, D.F. Beyond HIV prevalence: Identifying people living with HIV within underserved areas in South Africa. BMJ Glob. Health 2021, 6, e004089. [Google Scholar] [CrossRef] [PubMed]
- Joint United Nations Program on HIV/AIDS. The Path That Ends AIDS: UNAIDS Global AIDS Update 2023 [Internet]. 2023. Available online: https://www.unaids.org/sites/default/files/media_asset/2023-unaids-global-aids-update_en.pdf (accessed on 18 October 2024).
- Kemp, S.A.; Kamelian, K.; Cuadros, D.F.; Cheng, M.T.K.; Okango, E.; Hanekom, W.; Ndung’u, T.; Pillay, D.; Bonsall, D.; Wong, E.B.; et al. HIV transmission dynamics and population-wide drug resistance in rural South Africa. Nat. Commun. 2024, 15, 3644. [Google Scholar] [CrossRef]
- Chimukangara, B.; Lessells, R.J.; Rhee, S.-Y.; Giandhari, J.; Kharsany, A.B.M.; Naidoo, K.; Lewis, L.; Cawood, C.; Khanyile, D.; Ayalew, K.A.; et al. Trends in Pretreatment HIV-1 Drug Resistance in Antiretroviral Therapy-naive Adults in South Africa: A Pooled Sequence Analysis. eClinicalMedicine 2019, 9, 26–34. [Google Scholar] [CrossRef]
- Moyo, S.; Hunt, G.; Zuma, K.; Zungu, M.; Marinda, E.; Mabaso, M.; Kana, V.; Kalimashe, M.; Ledwaba, J.; Naidoo, I.; et al. HIV drug resistance profile in South Africa: Findings and implications from the 2017 national HIV household survey. PLoS ONE 2020, 15, e0241071. [Google Scholar] [CrossRef]
- Bertagnolio, S.; Hermans, L.; Jordan, M.R.; Avila-Rios, S.; Iwuji, C.; Derache, A.; Delaporte, E.; Wensing, A.; Aves, T.; Borhan, A.S.M.; et al. Clinical impact of pretreatment human immunodeficiency virus drug resistance in people initiating nonnucleoside reverse transcriptase inhibitor-containing antiretroviral therapy: A systematic review and meta-analysis. J. Infect. Dis. 2021, 224, 377–388. [Google Scholar] [CrossRef]
- Rhee, S.Y.; Kassaye, S.G.; Barrow, G.; Sundaramurthi, J.C.; Jordan, M.R.; Shafer, R.W. HIV-1 transmitted drug resistance surveillance: Shifting trends in study design and prevalence estimates. J. Int. AIDS Soc. 2020, 23, e25611. [Google Scholar] [CrossRef]
- Crowell, T.A.; Danboise, B.; Parikh, A.; Esber, A.; Dear, N.; Coakley, P.; Kasembeli, A.; Maswai, J.; Khamadi, S.; Bahemana, E.; et al. Pretreatment and Acquired Antiretroviral Drug Resistance Among Persons Living With HIV in Four African Countries. Clin. Infect. Dis. 2021, 73, E2311–E2322. [Google Scholar] [CrossRef]
- South African National Department of Health. 2023 ART Clinical Guidelines for the Management of HIV in Adults, Pregnancy and Breastfeeding, Adolescents, Children, Infants and Neonates [Internet]. 2023. Available online: https://knowledgehub.health.gov.za/elibrary/2023-art-clinical-guidelines-management-hiv-adults-pregnancy-and-breastfeeding-adolescents (accessed on 25 September 2024).
- Bangalee, A.; Hanley, S. Dolutegravir as first-line antiretroviral therapy in South Africa: Beware the one-size-fits-all approach. S. Afr. Med. J. 2022, 112, 787–790. [Google Scholar] [CrossRef]
- Steegen, K.; van Zyl, G.U.; Claassen, M.; Khan, A.; Pillay, M.; Govender, S.; Bester, P.A.; van Straaten, J.M.; Kana, V.; Cutler, E.; et al. Advancing HIV Drug Resistance Technologies and Strategies: Insights from South Africa’s Experience and Future Directions for Resource-Limited Settings. Diagnostics 2023, 13, 2209. [Google Scholar] [CrossRef] [PubMed]
- Siedner, M.J.; Moorhouse, M.A.; Simmons, B.; de Oliveira, T.; Lessells, R.; Giandhari, J.; Kemp, S.A.; Chimukangara, B.; Akpomiemie, G.; Serenata, C.M.; et al. Reduced efficacy of HIV-1 integrase inhibitors in patients with drug resistance mutations in reverse transcriptase. Nat. Commun. 2020, 11, 5922. [Google Scholar] [CrossRef] [PubMed]
- McCluskey, S.M.; Pepperrell, T.; Hill, A.; Venter, W.D.F.; Gupta, R.K.; Siedner, M.J. Adherence, resistance, and viral suppression on dolutegravir in sub-Saharan Africa: Implications for the TLD era. Aids 2021, 35, S127–S135. [Google Scholar] [CrossRef] [PubMed]
- Nel, J.; Wattrus, C.; Osih, R.; Meintjes, G. 2023 Southern African HIV clinicians society adult antiretroviral therapy guidelines: What’s new? S. Afr. J. HIV Med. 2023, 24, 1528. [Google Scholar] [CrossRef]
- Gounder, L.; Tomita, A.; Lessells, R.; Moodley, S.; Francois, K.L.; Khan, A.; Pillay, M.; Manyana, S.C.; Govender, S.; Govender, K.; et al. Geospatial and temporal mapping of detectable HIV-1 viral loads amid dolutegravir rollout in KwaZulu-Natal, South Africa. PLOS Glob. Public Health 2024, 4, e0003224. [Google Scholar] [CrossRef]
- Feder, A.F.; Harper, K.N.; Brumme, C.J.; Pennings, P.S. Understanding patterns of hiv multi-drug resistance through models of temporal and spatial drug heterogeneity. Elife 2021, 10, e69032. [Google Scholar] [CrossRef]
- Mpondo, B.C.T. HIV Infection in the Elderly: Arising Challenges. J. Aging Res. 2016, 2016, 453–472. [Google Scholar] [CrossRef]
- Cao, D.; Xing, H.; Feng, Y.; He, T.; Zhang, J.; Ling, J.; Chen, J.; Zhao, J. Molecular transmission network analysis reveals the challenge of HIV-1 in ageing patients in China: Elderly people play a crucial role in the transmission of subtypes and high pretreatment drug resistance in developed Eastern China, 2019–2023. Virol. J. 2024, 21, 199. [Google Scholar] [CrossRef]
- Pang, X.; He, Q.; Tang, K.; Huang, J.; Fang, N.; Xie, H.; Ma, J.; Zhu, Q.; Lan, G.; Liang, S. Drug resistance and influencing factors in HIV-1-infected individuals under antiretroviral therapy in Guangxi, China. J. Antimicrob. Chemother. 2024, 79, 1142–1152. [Google Scholar] [CrossRef]
- Peterson, M.L.; Gandhi, N.R.; Clennon, J.; Nelson, K.N.; Morris, N.; Ismail, N.; Allana, S.; Campbell, A.; Brust, J.C.; Auld, S.C.; et al. Extensively drug-resistant tuberculosis ‘hotspots’ and sociodemographic associations in Durban, South Africa. Int. J. Tuberc. Lung Dis. 2019, 23, 720–727. [Google Scholar] [CrossRef]
- Faye, L.M.; Hosu, M.C.; Vasaikar, S.; Dippenaar, A.; Oostvogels, S.; Warren, R.M.; Apalata, T. Spatial Distribution of Drug-Resistant Mycobacterium tuberculosis Infections in Rural Eastern Cape Province of South Africa. Pathogens 2023, 12, 475. [Google Scholar] [CrossRef] [PubMed]
- Sy, K.T.L.; Leavitt, S.V.; de Vos, M.; Dolby, T.; Bor, J.; Horsburgh, C.R.; Warren, R.M.; Streicher, E.M.; Jenkins, H.E.; Jacobson, K.R. Spatial heterogeneity of extensively drug resistant-tuberculosis in Western Cape Province, South Africa. Sci. Rep. 2022, 12, 10844. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.I.; Jenkins, H.E.; White, L.F.; Barnard, M.; Thomson, D.R.; Dolby, T.; Simpson, J.; Streicher, E.M.; Kleinman, M.B.; Ragan, E.J.; et al. Using routinely collected laboratory data to identify high rifampicin-resistant tuberculosis burden communities in the Western Cape Province, South Africa: A retrospective spatiotemporal analysis. PLoS Med. 2018, 15, e1002638. [Google Scholar] [CrossRef] [PubMed]
- National Health Laboratory Service. NHLS Strategic Plan: 2020–2025 [Internet]. 2020. Available online: https://www.nhls.ac.za/wp-content/uploads/2020/11/NHLS_Strategic_Plan_202025_with_ministers_sign_260320.pdf (accessed on 25 September 2024).
- Cohen, L. The Use and Impacts of a Corporate Data Warehouse: The Case of the National Health Laboratory Service. Master’s Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2018. Available online: https://wiredspace.wits.ac.za/bitstreams/dbd44d5e-6564-4634-aab3-0c6f17c2d6cf/download (accessed on 25 September 2024).
- Buchanan, A.M.; Bekker, A.; Chandasana, H.; DeMasi, R.; Lulic, Z.; Ernest, T.; Brothers, C.; Min, S.; Ruel, T.; Tan, L.K. Advancing Research and Development of Anti-infectives for Children: A Clinical Development Perspective. Int. J. Antimicrob. Agents 2024, 64, 107306. [Google Scholar] [CrossRef] [PubMed]
- Dorward, J.; Khubone, T.; Gate, K.; Ngobese, H.; Sookrajh, Y.; Mkhize, S.; Jeewa, A.; Bottomley, C.; Lewis, L.; Baisley, K.; et al. The impact of the COVID-19 lockdown on HIV care in 65 South African primary care clinics: An interrupted time series analysis. Lancet HIV 2021, 8, e158–e165. [Google Scholar] [CrossRef]
- Van Laethem, K.; Schrooten, Y.; Covens, K.; Dekeersmaeker, N.; De Munter, P.; Van Wijngaerden, E.; Van Ranst, M.; Vandamme, A.M. A genotypic assay for the amplification and sequencing of integrase from diverse HIV-1 group M subtypes. J. Virol. Methods 2008, 153, 176–181. [Google Scholar] [CrossRef]
- Manasa, J.; Danaviah, S.; Pillay, S.; Padayachee, P.; Mthiyane, H.; Mkhize, C.; Lessells, R.J.; Seebregts, C.; Rinke de Wit, T.F.; Viljoen, J.; et al. An affordable HIV-1 drug resistance monitoring method for resource limited settings. J. Vis. Exp. 2014, 85, e51242. [Google Scholar] [CrossRef]
- Shafer, R.; Rhee, S.; Tzou, P.; Tao, K.; Schapiro, J. Stanford University HIV Drug Resistance Database [Internet]. Available online: https://hivdb.stanford.edu/ (accessed on 25 September 2024).
- Gonzalez-Serna, A.; Glas, A.C.; Brumme, C.J.; Poon, A.F.Y.; De La Rosa, A.N.; Mudrikova, T.; Lima, V.D.; Wensing, A.M.J.; Harrigan, R. Genotypic susceptibility score (GSS) and CD4+ T cell recovery in HIV-1 patients with suppressed viral load. J. Antimicrob. Chemother. 2017, 72, 496–503. [Google Scholar] [CrossRef]
- QGIS.org. QGIS Geographic Information System [Internet]. Open Source Geospatial Foundation Project. 2023. Available online: http://qgis.org (accessed on 25 September 2024).
- Wensing, A.M.; Calvez, V.; Ceccherini-Silberstein, F.; Charpentier, C.; Günthard, H.F.; Paredes, R.; Shafer, R.W.; Richman, D.D. 2022 update of the drug resistance mutations in HIV-1. Top. Antivir. Med. 2022, 30, 559–574. [Google Scholar]
- Hunt, G.M.; Dokubo, E.K.; Takuva, S.; de Oliveira, T.; Ledwaba, J.; Dube, N.; Moodley, P.; Sabatier, J.; Deyde, V.; Morris, L.; et al. Rates of virological suppression and drug resistance in adult HIV-1-positive patients attending primary healthcare facilities in KwaZulu-Natal, South Africa. J. Antimicrob. Chemother. 2017, 72, 3141–3148. [Google Scholar] [CrossRef]
- Chimukangara, B.; Lessells, R.J.; Singh, L.; Grigalionyte, I.; Yende-Zuma, N.; Adams, R.; Dawood, H.; Dlamini, L.; Buthelezi, S.; Chetty, S.; et al. Acquired HIV drug resistance and virologic monitoring in a HIV hyper-endemic setting in KwaZulu-Natal Province, South Africa. AIDS Res. Ther. 2021, 18, 74. [Google Scholar] [CrossRef] [PubMed]
- Wensing, A.M.J.; van Maarseveen, N.M.; Nijhuis, M. Fifteen years of HIV Protease Inhibitors: Raising the barrier to resistance. Antiviral Res. 2010, 85, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Chimukangara, B.; Lessells, R.J.; Sartorius, B.; Gounder, L.; Manyana, S.; Pillay, M.; Singh, L.; Giandhari, J.; Govender, K.; Samuel, R.; et al. HIV-1 drug resistance in adults and adolescents on protease inhibitor-based antiretroviral therapy in KwaZulu-Natal Province, South Africa. J. Glob. Antimicrob. Resist. 2022, 29, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Juta, P.M.; Jansen vanVuuren, J.M.; Mbaya, K.J. A multidisciplinary approach for people with HIV failing antiretroviral therapy in South Africa. S. Afr. J. HIV Med. 2024, 25, 1579. [Google Scholar] [CrossRef] [PubMed]
- Loosli, T.; Hossmann, S.; Ingle, S.M.; Okhai, H.; Kusejko, K.; Mouton, J.; Bellecave, P.; van Sighem, A.; Stecher, M.; d’Arminio Monforte, A.; et al. HIV-1 drug resistance in people on dolutegravir-based antiretroviral therapy: A collaborative cohort analysis. Lancet HIV 2023, 10, e733–e741. [Google Scholar] [CrossRef]
- HIV Drug Resistance: Brief Report 2024. World Health Organization: Geneva, Switzerland [Internet]. 2024. Available online: https://iris.who.int/bitstream/handle/10665/376039/9789240086319-eng.pdf?sequence=1 (accessed on 18 October 2024).
- Chu, C.; Tao, K.; Kouamou, V.; Avalos, A.; Scott, J.; Grant, P.M.; Rhee, S.Y.; McCluskey, S.M.; Jordan, M.R.; Morgan, R.L.; et al. Prevalence of Emergent Dolutegravir Resistance Mutations in People Living with HIV: A Rapid Scoping Review. Viruses 2024, 16, 399. [Google Scholar] [CrossRef]
- Tao, K.; Rhee, S.Y.; Chu, C.; Avalos, A.; Ahluwalia, A.K.; Gupta, R.K.; Jordan, M.R.; Shafer, R.W. Treatment Emergent Dolutegravir Resistance Mutations in Individuals Naïve to HIV-1 Integrase Inhibitors: A Rapid Scoping Review. Viruses 2023, 15, 1932. [Google Scholar] [CrossRef]
- Tambuyzer, L.; Vingerhoets, J.; Azijn, H.; Daems, B.; Nijs, S.; de Béthune, M.P.; Picchio, G. Characterization of genotypic and phenotypic changes in HIV-1-infected patients with virologic failure on an etravirine-containing regimen in the DUET-1 and DUET-2 clinical studies. AIDS Res. Hum. Retroviruses 2010, 26, 1197–1205. [Google Scholar] [CrossRef]
- Xu, H.T.; Colby-Germinario, S.P.; Asahchop, E.L.; Oliveira, M.; McCallum, M.; Schader, S.M.; Han, Y.; Quan, Y.; Sarafianos, S.G.; Wainberg, M.A. Effect of mutations at position E138 in HIV-1 reverse transcriptase and their interactions with the M184I mutation on defining patterns of resistance to nonnucleoside reverse transcriptase inhibitors rilpivirine and etravirine. Antimicrob. Agents Chemother. 2013, 57, 3100–3109. [Google Scholar] [CrossRef]
- Li, J.Z.; Stella, N.; Choudhary, M.C.; Javed, A.; Rodriguez, K.; Ribaudo, H.; Moosa, M.Y.; Brijkumar, J.; Pillay, S.; Sunpath, H.; et al. Impact of pre-existing drug resistance on risk of virological failure in South Africa. J. Antimicrob. Chemother. 2021, 76, 1558–1563. [Google Scholar] [CrossRef]
- Gregson, J.; Kaleebu, P.; Marconi, V.C.; van Vuuren, C.; Ndembi, N.; Hamers, R.L.; Kanki, P.; Hoffmann, C.J.; Lockman, S.; Pillay, D.; et al. Occult HIV-1 drug resistance to thymidine analogues following failure of first-line tenofovir combined with a cytosine analogue and nevirapine or efavirenz in sub Saharan Africa: A retrospective multi-centre cohort study. Lancet Infect. Dis. 2017, 17, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Brijkumar, J.; Edwards, J.A.; Johnson, B.A.; Ordonez, C.; Sunpath, H.; Lee, M.; Dudgeon, M.R.; Rautman, L.; Pillay, S.; Moodley, P.; et al. Comparing effectiveness of first-line antiretroviral therapy between peri-urban and rural clinics in KwaZulu-Natal, South Africa. HIV Med. 2022, 23, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Lippman, S.A.; Mooney, A.C.; Puren, A.; Hunt, G.; Grignon, J.S.; Prach, L.M.; Gilmore, H.J.; Truong, H.H.M.; Barnhart, S.; Liegler, T. The role of drug resistance in poor viral suppression in rural South Africa: Findings from a population-based study. BMC Infect. Dis. 2020, 20, 248. [Google Scholar] [CrossRef] [PubMed]
- Manasa, J.; Danaviah, S.; Lessells, R.; Elshareef, M.; Tanser, F.; Wilkinson, E.; Pillay, S.; Mthiyane, H.; Mwambi, H.; Pillay, D.; et al. Increasing HIV-1 drug resistance between 2010 and 2012 in adults participating in population-based HIV surveillance in Rural KwaZulu-Natal, South Africa. AIDS Res. Hum. Retroviruses 2016, 32, 763–769. [Google Scholar] [CrossRef]
- Hermans, L.E.; Steegen, K.; ter Heine, R.; Schuurman, R.; Tempelman, H.A.; Moraba, R.; van Maarseveen, E.; Nijhuis, M.; Pillay, T.; Legg-E’Silva, D.; et al. Drug level testing as a strategy to determine eligibility for drug resistance testing after failure of ART: A retrospective analysis of South African adult patients on second-line ART. J. Int. AIDS Soc. 2020, 23, e25501. [Google Scholar] [CrossRef]
- Kouamou, V.; Washaya, T.; Ndhlovu, C.E.; Manasa, J. Low Prevalence of Pre-Treatment and Acquired Drug Resistance to Dolutegravir among Treatment Naïve Individuals Initiating on Tenofovir, Lamivudine and Dolutegravir in Zimbabwe. Viruses 2023, 15, 1882. [Google Scholar] [CrossRef]
- McLaren, Z.M.; Ardington, C.; Leibbrandt, M. Distance decay and persistent health care disparities in South Africa. BMC Health Serv. Res. 2014, 14, 541. [Google Scholar] [CrossRef]
Variable | All N = 3133 (100.00%) | No HIVDR N = 398 (12.70%) | HIVDR N = 2735 (87.30%) |
---|---|---|---|
Sex | |||
Male | 1126 (35.94%) | 130 (11.55%) | 996 (88.45%) |
Female | 1982 (63.26%) | 266 (13.42%) | 1716 (86.58%) |
Unknown | 25 (0.80%) | 2 (8.00%) | 23 (92.00%) |
Age in years, median (IQR) | 39 (30–46) | 36 (22–43) | 39 (32–46) |
18–29 | 750 (23.94%) | 156 (20.80%) | 594 (79.20%) |
30–59 | 2284 (72.90%) | 237 (10.38%) | 2047 (89.62%) |
≥60 | 99 (3.16%) | 5 (5.05%) | 94 (94.95%) |
Collection year | |||
2018 | 597 (19.06%) | 75 (12.56%) | 522 (87.44%) |
2019 | 675 (21.54%) | 78 (11.56%) | 597 (88.44%) |
2020 | 763 (24.35%) | 115 (15.07%) | 648 (84.93%) |
2021 | 666 (21.26%) | 72 (10.81%) | 594 (89.19%) |
2022 a | 432 (13.79%) | 58 (13.43%) | 374 (86.57%) |
ARV drug regimen | |||
LPV/r or ATV/r -based | 2830 (90.33%) | 362 (12.79%) | 2468 (87.21%) |
DRV/r-based b | 30 (0.96%) | 1 (3.33%) | 29 (96.67%) |
DRV/r-based with RAL | 9 (0.29%) | 0 (0.00%) | 9 (100%) |
DRV/r-based with DTG | 10 (0.32%) | 1 (10.00%) | 9 (90.00%) |
RAL-based c | 5 (0.16%) | 1 (20.00%) | 4 (80.00%) |
DTG-based c | 36 (1.15%) | 7 (19.44%) | 29 (80.56%) |
NNRTI-based d | 36 (1.15%) | 5 (13.89%) | 31 (86.11%) |
Unknown | 177 (5.65%) | 21 (11.86%) | 156 (88.14%) |
HIV VL in log10 copies/mL, median (IQR) e | 4.71 (4.10–5.28) | 4.99 (4.33–5.45) | 4.66 (4.07–5.25) |
Healthcare facility type | |||
Outpatients | 2950 (94.16%) | 373 (12.64%) | 2577 (87.36%) |
Inpatients | 183 (5.84%) | 25 (13.66%) | 158 (86.34%) |
Level of urbanization f | |||
Rural subdistricts | 451 (14.40%) | 44 (9.76%) | 407 (90.24%) |
Peri-urban subdistricts | 480 (15.32%) | 55 (11.46%) | 425 (88.54%) |
Urban subdistricts | 2202 (70.28%) | 299 (13.58%) | 1903 (86.42%) |
Genotypic Susceptibility Score for Regimen | ||||
---|---|---|---|---|
Current Regimen * | N = 2934 | <2 | 2 | >2 |
TDF-based | n = 649 | |||
TDF + XTC + EFV | 20 | 17 (85%) | 0 | 3 (15%) |
TDF + XTC + boosted ATV/LPV | 574 | 255 (44.42%) | 111 (19.34%) | 208 (36.24%) |
TDF + XTC + boosted DRV | 19 | 12 (63.16%) | 4 (21.05%) | 3 (15.79%) |
TDF + XTC + RAL | 4 | 3 (75%) | 0 | 1 (25%) |
TDF + XTC + DTG | 19 | 8 (42.10%) | 2 (10.53%) | 9 (47.37%) |
TDF + XTC + RAL + boosted DRV | 6 | 3 (50%) | 0 | 3 (50%) |
TDF + XTC + DTG + boosted DRV | 6 | 1 (16.67%) | 2 (33.33%) | 3 (50%) |
TDF + XTC + DTG + boosted DRV + ETR | 1 | 0 | 0 | 1 (100%) |
AZT-based | n = 1927 | |||
AZT + XTC + boosted ATV/LPV | 1911 | 761 (39.82%) | 663 (34.69%) | 487 (25.49%) |
AZT + XTC + boosted DRV | 4 | 0 | 1 (25%) | 3 (75%) |
AZT + XTC + DTG | 10 | 4 (40%) | 2 (20%) | 4 (40%) |
AZT + XTC + DTG + boosted DRV | 1 | 0 | 0 | 1 (100%) |
AZT + XTC + DTG + boosted DRV + ETR | 1 | 0 | 0 | 1 (100%) |
TDF- and AZT-based | n = 45 | |||
AZT + XTC + boosted ATV/LPV + TDF | 37 | 4 (10.81%) | 3 (8.11%) | 30 (81.08%) |
AZT + XTC + boosted DRV + TDF | 6 | 0 | 0 | 6 (100%) |
AZT + XTC + DTG + TDF | 1 | 0 | 0 | 1 (100%) |
AZT + XTC + DTG + boosted DRV + TDF | 1 | 0 | 0 | 1 (100%) |
ABC-based | n = 313 | |||
ABC + XTC + boosted ATV/LPV | 307 | 199 (64.82%) | 3 (0.98%) | 105 (34.20%) |
ABC + XTC + DTG | 6 | 4 (66.67%) | 0 | 2 (33.33%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gounder, L.; Khan, A.; Manasa, J.; Lessells, R.; Tomita, A.; Pillay, M.; Manyana, S.C.; Govender, S.; Francois, K.-L.; Moodley, P.; et al. Patterns of HIV-1 Drug Resistance Observed Through Geospatial Analysis of Routine Diagnostic Testing in KwaZulu-Natal, South Africa. Viruses 2024, 16, 1634. https://doi.org/10.3390/v16101634
Gounder L, Khan A, Manasa J, Lessells R, Tomita A, Pillay M, Manyana SC, Govender S, Francois K-L, Moodley P, et al. Patterns of HIV-1 Drug Resistance Observed Through Geospatial Analysis of Routine Diagnostic Testing in KwaZulu-Natal, South Africa. Viruses. 2024; 16(10):1634. https://doi.org/10.3390/v16101634
Chicago/Turabian StyleGounder, Lilishia, Aabida Khan, Justen Manasa, Richard Lessells, Andrew Tomita, Melendhran Pillay, Sontaga C. Manyana, Subitha Govender, Kerri-Lee Francois, Pravi Moodley, and et al. 2024. "Patterns of HIV-1 Drug Resistance Observed Through Geospatial Analysis of Routine Diagnostic Testing in KwaZulu-Natal, South Africa" Viruses 16, no. 10: 1634. https://doi.org/10.3390/v16101634
APA StyleGounder, L., Khan, A., Manasa, J., Lessells, R., Tomita, A., Pillay, M., Manyana, S. C., Govender, S., Francois, K.-L., Moodley, P., Msomi, N., Govender, K., Parboosing, R., Moyo, S., Naidoo, K., & Chimukangara, B. (2024). Patterns of HIV-1 Drug Resistance Observed Through Geospatial Analysis of Routine Diagnostic Testing in KwaZulu-Natal, South Africa. Viruses, 16(10), 1634. https://doi.org/10.3390/v16101634