Maize Streak Virus: Single and Gemini Capsid Architecture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production and Purification
2.2. Verification of Virus Purity and Integrity
2.2.1. Negative Stain Electron Microscopy (EM)
2.2.2. SDS-PAGE
2.3. Cryo-EM
2.3.1. Data Collection
2.3.2. Single-Particle Reconstruction
2.3.3. Model Building
2.3.4. Structure-Based Sequence Alignment and Phylogeny
3. Results
3.1. Characterization and Structure Determination
3.2. Single-Head T = 1 Capsid Structure
3.2.1. Capsid and CP–CP Interaction
3.2.2. DNA-Binding Pocket
3.3. Gemini Capsid Structure
3.3.1. Capsid and CP–CP Interactions
3.3.2. CP–Genome Interactions
3.3.3. Conservation of Geminivirus Structure
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, R.A.C. Global Plant Virus Disease Pandemics and Epidemics. Plants 2021, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.R.; Macedo, M.A.; Maliano, M.R.; Soto-Aguilar, M.; Souza, J.O.; Briddon, R.W.; Kenyon, L.; Rivera Bustamante, R.F.; Zerbini, F.M.; Adkins, S.; et al. World Management of Geminiviruses. Annu. Rev. Phytopathol. 2018, 56, 637–677. [Google Scholar] [CrossRef] [PubMed]
- Ertunc, F. Chapter 46—Emerging Plant Viruses. In Emerging and Reemerging Viral Pathogens; Ennaji, M.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 1041–1062. [Google Scholar]
- Guevara-Rivera, E.A.; Rodríguez-Negrete, E.A.; Lozano-Durán, R.; Bejarano, E.R.; Torres-Calderón, A.M.; Arce-Leal, Á.P.; Leyva-López, N.E.; Méndez-Lozano, J. From Metagenomics to Ecogenomics: NGS-Based Approaches for Discovery of New Circular DNA Single-Stranded Viral Species. Methods Mol. Biol. 2024, 2732, 103–117. [Google Scholar] [PubMed]
- Zerbini, F.M.; Briddon, R.W.; Idris, A.; Martin, D.P.; Moriones, E.; Navas-Castillo, J.; Rivera-Bustamante, R.; Roumagnac, P.; Varsani, A. ICTV Virus Taxonomy Profile: Geminiviridae. J. Gen. Virol. 2017, 98, 131–133. [Google Scholar] [CrossRef]
- Rose, D.J.W. Epidemiology of Maize Streak Disease. Annu. Rev. Entomol. 1978, 23, 259–282. [Google Scholar] [CrossRef]
- Bosque-Pérez, N.A. Eight decades of maize streak virus research. Virus Res. 2000, 71, 107–121. [Google Scholar] [CrossRef]
- Shepherd, D.N.; Martin, D.P.; Van der Walt, E.; Dent, K.; VArsani, A.; Rybicki, E.P. Maize streak virus: An old and complex ‘emerging’ pathogen. Mol. Plant Pathol. 2010, 11, 1–12. [Google Scholar] [CrossRef]
- Fauquet, C.; Fargette, D. African Cassava Mosaic Virus: Etiology, Epidemiology, and Control. Plant Dis. 1990, 74, 404–411. [Google Scholar] [CrossRef]
- Saeed, S.T.; Samad, A. Emerging threats of begomoviruses to the cultivation of medicinal and aromatic crops and their management strategies. Virus Dis. 2017, 28, 1–17. [Google Scholar] [CrossRef]
- Bosque-Pérez, N.A.; Buddenhagen, I.W. Biology of Cicadulina leafhoppers and epidemiology of maize streak virus disease in West Africa. S. Afr. J. Plant Soil. 1999, 16, 50–55. [Google Scholar] [CrossRef]
- Beam, K.; Ascencio-Ibáñez, J.T. Geminivirus Resistance: A Minireview. Front. Plant Sci. 2020, 11, 1131. [Google Scholar] [CrossRef] [PubMed]
- Casado, C.G.; Javier Ortiz, G.; Padron, E.; Bean, S.J.; McKenna, R.; Agbandje-McKenna, M.; Boulton, M.I. Isolation and characterization of subgenomic DNAs encapsidated in “single” T = 1 isometric particles of Maize streak virus. Virology 2004, 323, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Lazarowitz, S.G. Infectivity and complete nucleotide sequence of the genome of a South African isolate of maize streak virus. Nucleic Acids Res. 1988, 16, 229–249. [Google Scholar] [CrossRef] [PubMed]
- Lazarowitz, S.G.; Pinder, A.J.; Damsteegt, V.D.; Rogers, S.G. Maize streak virus genes essential for systemic spread and symptom development. EMBO J. 1989, 8, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Lazarowitz, S.G.; Beachy, R.N. Viral Movement Proteins as Probes for Intracellular and Intercellular Trafficking in Plants. Plant Cell 1999, 11, 535–548. [Google Scholar] [CrossRef]
- Zhang, W.; Olson, N.H.; Baker, T.S.; Faulkner, L.; Agbandje-McKenna, M.; Boulton, M.I.; Davies, J.W.; McKenna, R. Structure of the Maize streak virus geminate particle. Virology 2001, 279, 471–477. [Google Scholar] [CrossRef]
- Böttcher, B.; Unseld, S.; Ceulemans, H.; Russell, R.B.; Jeske, H. Geminate structures of African cassava mosaic virus. J. Virol. 2004, 78, 6758–6765. [Google Scholar] [CrossRef]
- Hesketh, E.L.; Saunders, K.; Fisher, C.; Potze, J.; Stanley, J.; Lomonossoff, G.P.; Ranson, N.A. The 3.3 A structure of a plant geminivirus using cryo-EM. Nat. Commun. 2018, 9, 2369. [Google Scholar] [CrossRef]
- Hipp, K.; Schafer, B.; Kepp, G.; Jeske, H. Properties of African Cassava Mosaic Virus Capsid Protein Expressed in Fission Yeast. Viruses 2016, 8, 190. [Google Scholar] [CrossRef]
- Fiallo-Olivé, E.; Lett, J.M.; Martin, D.P.; Roumagnac, P.; Varsani, A.; Zerbini, F.M.; Navas-Castillo, J. ICTV Virus Taxonomy Profile: Geminiviridae 2021. J. Gen. Virol. 2021, 102, 001696. [Google Scholar] [CrossRef]
- Boulton, M.I.; Steinkellner, H.; Donson, J.; Markham, P.G.; King, D.I.; Davies, J.W. Mutational analysis of the virion-sense genes of maize streak virus. J. Gen. Virol. 1989, 70 Pt 9, 2309–2323. [Google Scholar] [CrossRef] [PubMed]
- Morais, I.J.; Inoue-Nagata, A.K.; Nakasu, E.Y.T. Construction of Geminivirus Infectious Clones for Agroinoculation into Plants. Methods Mol. Biol. 2024, 2724, 47–64. [Google Scholar] [PubMed]
- Bennett, A.; Rodriguez, D.; Lister, S.; Boulton, M.; McKenna, R.; Agbandje-McKenna, M. Assembly and disassembly intermediates of maize streak geminivirus. Virology 2018, 525, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.Q.; Palovcak, E.; Armache, J.P.; Verba, K.A.; Cheng, Y.; Agard, D.A. MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 2017, 14, 331–332. [Google Scholar] [CrossRef]
- Grant, T.; Rohou, A.; Grigorieff, N. cisTEM, user-friendly software for single-particle image processing. eLife 2018, 7, e35383. [Google Scholar] [CrossRef]
- Rohou, A.; Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 2015, 192, 216–221. [Google Scholar] [CrossRef]
- Sigworth, F.J. Classical detection theory and the cryo-EM particle selection problem. J. Struct. Biol. 2004, 145, 111–122. [Google Scholar] [CrossRef]
- Scheres, S.H.; Valle, M.; Nuñez, R.; Sorzano, C.O.; Marabini, R.; Herman, G.T.; Carazo, J.M. Maximum-likelihood multi-reference refinement for electron microscopy images. J. Mol. Biol. 2005, 348, 139–149. [Google Scholar] [CrossRef]
- Grigorieff, N. Frealign: An Exploratory Tool for Single-Particle Cryo-EM. Methods Enzym. 2016, 579, 191–226. [Google Scholar]
- Zivanov, J.; Nakane, T.; Forsberg, B.O.; Kimanius, D.; Hagen, W.J.; Lindahl, E.; Scheres, S.H. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 2018, 7, e42166. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Gallo Cassarino, T.; Bertoni, M.; Bordoli, L.; et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014, 42, W252–W258. [Google Scholar] [CrossRef] [PubMed]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66 Pt 4, 486–501. [Google Scholar] [CrossRef] [PubMed]
- Afonine, P.V.; Poon, B.K.; Read, R.J.; Sobolev, O.V.; Terwilliger, T.C.; Urzhumtsev, A.; Adams, P.D. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 2018, 74 Pt 6, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.F.; Guindon, S.; Lefort, V.; Lescot, M.; et al. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36, W465–W469. [Google Scholar] [CrossRef]
- Guindon, S.; Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef]
- Chevenet, F.; Brun, C.; Bañuls, A.L.; Jacq, B.; Christen, R. TreeDyn: Towards dynamic graphics and annotations for analyses of trees. BMC Bioinform. 2006, 7, 439. [Google Scholar] [CrossRef]
- Zhou, X. Advances in understanding begomovirus satellites. Annu. Rev. Phytopathol. 2013, 51, 357–381. [Google Scholar] [CrossRef]
- Frischmuth, T.; Ringel, M.; Kocher, C. The size of encapsidated single-stranded DNA determines the multiplicity of African cassava mosaic virus particles. J. Gen. Virol. 2001, 82 Pt 3, 673–676. [Google Scholar] [CrossRef]
- Chapman, M.; Agbandje-McKenna, M. Atomic structure of viral particles. In Parvoviruses; Edward Arnold Publishers Ltd.: London, UK, 2006; pp. 109–123. [Google Scholar]
- Mietzsch, M.; Penzes, J.J.; Agbandje-McKenna, M. Twenty-Five Years of Structural Parvovirology. Viruses 2019, 11, 362. [Google Scholar] [CrossRef]
- Zamora, M.; Méndez-López, E.; Agirrezabala, X.; Cuesta, R.; Lavín, J.L.; Sánchez-Pina, M.A.; Aranda, M.A.; Valle, M. Potyvirus virion structure shows conserved protein fold and RNA binding site in ssRNA viruses. Sci. Adv. 2017, 3, eaao2182. [Google Scholar] [CrossRef] [PubMed]
- Hipp, K.; Grimm, C.; Jeske, H.; Bottcher, B. Near-Atomic Resolution Structure of a Plant Geminivirus Determined by Electron Cryomicroscopy. Structure 2017, 25, 1303–1309.e3. [Google Scholar] [CrossRef] [PubMed]
- Fontes, E.P.; Eagle, P.A.; Sipe, P.S.; Luckow, V.A.; Hanley-Bowdoin, L. Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J. Biol. Chem. 1994, 269, 8459–8465. [Google Scholar] [CrossRef] [PubMed]
- Hanley-Bowdoin, L.; Bejarano, E.R.; Robertson, D.; Mansoor, S. Geminiviruses: Masters at redirecting and reprogramming plant processes. Nat. Rev. Microbiol. 2013, 11, 777–788. [Google Scholar] [CrossRef]
- Twarock, R. A tiling approach to virus capsid assembly explaining a structural puzzle in virology. J. Theor. Biol. 2004, 226, 477–482. [Google Scholar] [CrossRef]
- Laufs, J.; Traut, W.; Heyraud, F.; Matzeit, V.; Rogers, S.G.; Schell, J.; Gronenborn, B. In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proc. Natl. Acad. Sci. USA 1995, 92, 3879–3883. [Google Scholar] [CrossRef]
- Bleker, S.; Sonntag, F.; Kleinschmidt, J.A. Mutational analysis of narrow pores at the fivefold symmetry axes of adeno-associated virus type 2 capsids reveals a dual role in genome packaging and activation of phospholipase A2 activity. J. Virol. 2005, 79, 2528–2540. [Google Scholar] [CrossRef]
- Agbandje-McKenna, M.; Llamas-Saiz, A.L.; Wang, F.; Tattersall, P.; Rossmann, M.G. Functional implications of the structure of the murine parvovirus, minute virus of mice. Structure 1998, 6, 1369–1381. [Google Scholar] [CrossRef]
- Suikkanen, S.; Antila, M.; Jaatinen, A.; Vihinen-Ranta, M.; Vuento, M. Release of canine parvovirus from endocytic vesicles. Virology 2003, 316, 267–280. [Google Scholar] [CrossRef]
- Liu, H.; Lucy, A.P.; Davies, J.W.; Boulton, M.I. A single amino acid change in the coat protein of Maize streak virus abolishes systemic infection, but not interaction with viral DNA or movement protein. Mol. Plant Pathol. 2001, 2, 223–228. [Google Scholar] [CrossRef]
- Noris, E.; Vaira, A.M.; Caciagli, P.; Masenga, V.; Gronenborn, B.; Accotto, G.P. Amino Acids in the Capsid Protein of Tomato Yellow Leaf Curl Virus That Are Crucial for Systemic Infection, Particle Formation, and Insect Transmission. J. Virol. 1998, 72, 10050–10057. [Google Scholar] [CrossRef] [PubMed]
- García-Arenal, F.; Zerbini, F.M. Life on the Edge: Geminiviruses at the Interface Between Crops and Wild Plant Hosts. Annu. Rev. Virol. 2019, 6, 411–433. [Google Scholar] [CrossRef] [PubMed]
- Höhnle, M.; Höfer, P.; Bedford, I.D.; Briddon, R.W.; Markham, P.G.; Frischmuth, T. Exchange of three amino acids in the coat protein results in efficient whitefly transmission of a nontransmissible Abutilon mosaic virus isolate. Virology 2001, 290, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Kheyr-Pour, A.; Bananej, K.; Dafalla, G.A.; Caciagli, P.; Noris, E.; Ahoonmanesh, A.; Lecoq, H.; Gronenborn, B. Watermelon chlorotic stunt virus from the Sudan and Iran: Sequence Comparisons and Identification of a Whitefly-Transmission Determinant. Phytopathology 2000, 90, 629–635. [Google Scholar] [CrossRef]
Single-Particle Reconstruction Parameters | ||
---|---|---|
Gemini Capsid | Single Capsid | |
PDB ID | 8UGQ | 8UH4 |
EMDB ID | 42,232 | 42,246 |
Total number of micrographs | 1408 | |
Defocus (µm) | 3.627–0.947 | |
Electron dose (e Å−2 frame−1) | 2.04 | |
Frames per micrograph | 29 | |
Pixel size (Å pixel−1) | 1.01 | |
Particles | 783,583 | 43,111 |
Resolution (Å) FSC0.143 | 3.17 | 3.72 |
Symmetry imposed | D5 | I |
Model refinement statistics | ||
Asymmetric units | ||
CP monomers | 11 | 1 |
DNA | 11 | 1 |
Map CC | 0.8169 | 0.8097 |
Map-Model-FSC0 | 3.27 | 3.8 |
FSC0.143 | 3.39 | 3.9 |
FSC0.5 | 3.70 | 4.2 |
RMSD bond (Å) | 0.003 | 0.006 |
RMSD angle (°) | 0.536 | 0.834 |
All-atom clash score | 4.11 | 5.25 |
Ramachandran% Favored | 97.8 | 97.5 |
Ramachandran% Allowed | 2.2 | 2.5 |
Ramachandran% Unfavored | 0.0 | 0.0 |
Rotamer outliers (%) | 0.0 | 0.0 |
C-β deviation (%) | 0.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bennett, A.; Hull, J.A.; Mietzsch, M.; Bhattacharya, N.; Chipman, P.; McKenna, R. Maize Streak Virus: Single and Gemini Capsid Architecture. Viruses 2024, 16, 1861. https://doi.org/10.3390/v16121861
Bennett A, Hull JA, Mietzsch M, Bhattacharya N, Chipman P, McKenna R. Maize Streak Virus: Single and Gemini Capsid Architecture. Viruses. 2024; 16(12):1861. https://doi.org/10.3390/v16121861
Chicago/Turabian StyleBennett, Antonette, Joshua A. Hull, Mario Mietzsch, Nilakshee Bhattacharya, Paul Chipman, and Robert McKenna. 2024. "Maize Streak Virus: Single and Gemini Capsid Architecture" Viruses 16, no. 12: 1861. https://doi.org/10.3390/v16121861
APA StyleBennett, A., Hull, J. A., Mietzsch, M., Bhattacharya, N., Chipman, P., & McKenna, R. (2024). Maize Streak Virus: Single and Gemini Capsid Architecture. Viruses, 16(12), 1861. https://doi.org/10.3390/v16121861