Potential Serological Misdiagnosis of Barmah Forest Virus and Ross River Virus Diseases as Chikungunya Virus Infections in Australia: Comparison of ELISA with Neutralization Assay Results
Abstract
:1. Introduction
2. Methods
2.1. Ethical Approval
2.2. Patient Samples
2.3. Positive and Negative Control Samples
2.4. Cells and Viruses
2.5. ELISA
2.6. Micro-Neutralization Assay
2.7. Single Virus Infection and Multiple Virus Infections
3. Results
3.1. Study Population Demographics
3.2. ELISA IgG/IgM and Pathogen-Specific Nab of Postive and Negative Control Results
3.3. Pathogen-Specific ELISA IgG/IgM and Pathogen-Specific Nab Results of 42 CHIKV Samples
3.4. The Possible Diagnosis of These Samples
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, W.; Kizu, J.R.; Le Grand, L.R.; Moller, C.G.; Carthew, T.L.; Mitchell, I.R.; Gubala, A.J.; Aaskov, J.G. Localized Outbreaks of Epidemic Polyarthritis among Military Personnel Caused by Different Sublineages of Ross River Virus, Northeastern Australia, 2016–2017. Emerg. Infect. Dis. 2019, 25, 1793–801. [Google Scholar] [CrossRef]
- Silva, J.V.J., Jr.; Ludwig-Begall, L.F.; Oliveira-Filho, E.F.; Oliveira, R.A.S.; Duraes-Carvalho, R.; Lopes, T.R.R.; Silva, D.E.A.; Gil, L.H.V.G. A scoping review of Chikungunya virus infection: Epidemiology, clinical characteristics, viral co-circulation complications, and control. Acta Trop. 2018, 188, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Department of Health and Aged Care. Australian Nationally Notifiable Diseases. Available online: https://www.health.gov.au/our-work/nndss (accessed on 19 December 2023).
- Cassadou, S.; Boucau, S.; Petit-Sinturel, M.; Huc, P.; Leparc-Goffart, I.; Ledrans, M. Emergence of chikungunya fever on the French side of Saint Martin island, October to December 2013. Eurosurveillance 2014, 19, 13. [Google Scholar] [CrossRef] [PubMed]
- Staples, J.E.; Breiman, R.F.; Powers, A.M. Chikungunya fever: An epidemiological review of a re-emerging infectious disease. Clin. Infect. Dis. 2009, 49, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Horwood, P.F.; Reimer, L.J.; Dagina, R.; Susapu, M.; Bande, G.; Katusele, M.; Koimbu, G.; Jimmy, S.; Ropa, B.; Siba, P.M.; et al. Outbreak of chikungunya virus infection, Vanimo, Papua New Guinea. Emerg. Infect. Dis. 2013, 19, 1535–1538. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Pyke, A.T.; McMahon, J.; Warrilow, D. Complete Coding Sequence of a Case of Chikungunya Virus Imported into Australia. Genome Announc. 2017, 5, 19. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, E.B.; Peel, A.J.; Reid, S.A.; Jansen, C.C.; McCallum, H. The non-human reservoirs of Ross River virus: A systematic review of the evidence. Parasit. Vectors. 2018, 11, 188. [Google Scholar] [CrossRef]
- Jacups, S.P.; Whelan, P.I.; Currie, B.J. Ross River virus and Barmah Forest virus infections: A review of history, ecology, and predictive models, with implications for tropical northern Australia. Vector Borne Zoonotic Dis. 2008, 8, 283–297. [Google Scholar] [CrossRef]
- Broeckel, R.; Haese, N.; Messaoudi, I.; Streblow, D.N. Nonhuman Primate Models of Chikungunya Virus Infection and Disease (CHIKV NHP Model). Pathogens 2015, 4, 662–681. [Google Scholar] [CrossRef]
- Faddy, H.; Dunford, M.; Seed, C.; Olds, A.; Harley, D.; Dean, M.; Racloz, V.; McCarthy, S.; Smith, D.; Flower, R. Seroprevalence of Antibodies to Ross River and Barmah Forest Viruses: Possible Implications for Blood Transfusion Safety after Extreme Weather Events. Ecohealth 2015, 12, 347–353. [Google Scholar] [CrossRef]
- Kayange, N.; Hau, D.K.; Pain, K.; Mshana, S.E.; Peck, R.; Gehring, S.; Groendahl, B.; Koliopoulos, P.; Revocatus, B.; Msaki, E.B.; et al. Seroprevalence of Dengue and Chikungunya Virus Infections in Children Living in Sub-Saharan Africa: Systematic Review and Meta-Analysis. Children 2023, 10, 1662. [Google Scholar] [CrossRef] [PubMed]
- Flexman, J.P.; Smith, D.W.; Mackenzie, J.S.; Fraser, J.R.; Bass, S.P.; Hueston, L.; Lindsay, M.D.; Cunningham, A.L. A comparison of the diseases caused by Ross River virus and Barmah Forest virus. Med. J. Aust. 1998, 169, 159–163. [Google Scholar] [CrossRef]
- Velasco, J.M.; Valderama, M.T.; Lopez, M.N.; Chua, D., Jr.; Latog, R., 2nd; Roque, V., Jr.; Corpuz, J.; Klungthong, C.; Rodpradit, P.; Hussem, K.; et al. Chikungunya Virus Infections Among Patients with Dengue-Like Illness at a Tertiary Care Hospital in the Philippines, 2012–2013. Am. J. Trop Med. Hyg. 2015, 93, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
- Lertanekawattana, S.; Anantapreecha, S.; Jiraphongsa, C.; Duan-ngern, P.; Potjalongsin, S.; Wiittayabamrung, W.; Daroon, P.; Techolarn, M. Prevalence and characteristics of dengue and chikungunya infections among acute febrile patients in Nong Khai Province, Thailand. Southeast Asian J. Trop Med. Public Health 2013, 44, 780–790. [Google Scholar] [PubMed]
- Farmer, J.F.; Suhrbier, A. Interpreting paired serology for Ross River virus and Barmah Forest virus diseases. Aust. J. Gen. Pract. 2019, 48, 645–649. [Google Scholar] [CrossRef]
- De Souza, W.M.; De Lima, S.T.S.; Simoes Mello, L.M.; Candido, D.S.; Buss, L.; Whittaker, C.; Claro, I.M.; Chandradeva, N.; Granja, F.; de Jesus, R.; et al. Spatiotemporal dynamics and recurrence of chikungunya virus in Brazil: An epidemiological study. Lancet Microbe. 2023, 4, e319–e329. [Google Scholar] [CrossRef] [PubMed]
- Department of Health and Aged Care. Chikungunya Virus Infection—Surveillance Case Definition. 2023. Available online: https://wwwhealthgovau/resources/publications/chikungunya-virus-infection-surveillance-case-definition (accessed on 24 February 2023).
- Department of Health and Aged Care. Australian Department of Health Ross River Virus Infection Case Definition. Available online: https://www.health.gov.au/resources/publications/ross-river-virus-infection-surveillance-case-definition (accessed on 12 January 2024).
- Lima, M.d.R.Q.; de Lima, R.C.; de Azeredo, E.L.; dos Santos, F.B. Analysis of a Routinely Used Commercial Anti-Chikungunya IgM ELISA Reveals Cross-Reactivities with Dengue in Brazil: A New Challenge for Differential Diagnosis? Diagnostics 2021, 11, 819. [Google Scholar] [CrossRef] [PubMed]
- Sullivan Nicolaides Pathology. Arbovirus Report 2019. 2019. Available online: https://www.snp.com.au/clinicians/results-and-reporting/infectious-disease-reports/ (accessed on 27 February 2023).
- Sullivan Nicolaides Pathology. Arbovirus Reports 2022. 2022. Available online: https://www.snp.com.au/clinicians/results-and-reporting/infectious-disease-reports/ (accessed on 27 February 2023).
- Kizu, J.G.; Graham, M.; Grant, R.; McCallum, F.; McPherson, B.; Auliff, A.; Kaminiel, P.; Liu, W. Prevalence of Barmah Forest Virus, Chikungunya Virus and Ross River Virus Antibodies among Papua New Guinea Military Personnel before 2019. Viruses 2023, 15, 394. [Google Scholar] [CrossRef]
- Dengue Haemorrhagic Fever, Timor-Leste—Update. In Wkly. Epidemiol. Rec.; 2005; 80, pp. 85–86. Available online: https://www.ncbi.nlm.nih.gov/pubmed/15831054 (accessed on 24 January 2024).
- Powers, J.M.; Lyski, Z.L.; Weber, W.C.; Denton, M.; Streblow, M.M.; Mayo, A.T.; Haese, N.N.; Nix, C.D.; Rodríguez-Santiago, R.; Alvarado, L.I.; et al. Infection with chikungunya virus confers heterotypic cross-neutralizing antibodies and memory B-cells against other arthritogenic alphaviruses predominantly through the B domain of the E2 glycoprotein. PloS Negl. Trop Dis. 2023, 17, e0011154. [Google Scholar] [CrossRef]
- Eruroimmun. Anti-Chikungunya Virus ELISA (IgG) Test Instruction, EI 293A-9601 G. Euroimmun 2020. pp. 1–11. Available online: https://www.euroimmun.com/ (accessed on 24 January 2023).
- Euroimmun. Anti-Chikungunya Virus ELISA (IgM) Test Instruction. 2023. Available online: https://www.euroimmun.com/ (accessed on 24 February 2023).
- Kikuti, M.; Tauro, L.B.; Moreira, P.S.S.; Nascimento, L.C.J.; Portilho, M.M.; Soares, G.C.; Weaver, S.C.; Reis, M.G.; Kitron, U.; Ribeiro, G.S. Evaluation of two commercially available chikungunya virus IgM enzyme-linked immunoassays (ELISA) in a setting of concomitant transmission of chikungunya, dengue and Zika viruses. Int. J. Infect. Dis. 2020, 91, 38–43. [Google Scholar] [CrossRef]
- Carrillo-Hernandez, M.Y.; Ruiz-Saenz, J.; Villamizar, L.J.; Gomez-Rangel, S.Y.; Martinez-Gutierrez, M. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect. Dis. 2018, 18, 61. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Morales, A.J.; Villamil-Gomez, W.E.; Franco-Paredes, C. The arboviral burden of disease caused by co-circulation and co-infection of dengue, chikungunya and Zika in the Americas. Travel Med. Infect. Dis. 2016, 14, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Langsjoen, R.M.; Haller, S.L.; Roy, C.J.; Vinet-Oliphant, H.; Bergren, N.A.; Erasmus, J.H.; Livengood, J.A.; Powell, T.D.; Weaver, S.C.; Rossi, S.L. Chikungunya Virus Strains Show Lineage-Specific Variations in Virulence and Cross-Protective Ability in Murine and Nonhuman Primate Models. mBio 2018, 9, 2. [Google Scholar] [CrossRef]
- Prat, C.M.; Flusin, O.; Panella, A.; Tenebray, B.; Lanciotti, R.; Leparc-Goffart, I. Evaluation of commercially available serologic diagnostic tests for chikungunya virus. Emerg. Infect. Dis. 2014, 20, 2129–2132. [Google Scholar] [CrossRef] [PubMed]
- Harley, D.; Sleigh, A.; Ritchie, S. Ross River virus transmission, infection, and disease: A cross-disciplinary review. Clin. Microbiol. Rev. 2001, 14, 909–932. [Google Scholar] [CrossRef]
- Department of Health and Aged Care. Barmah Forest Virus Infection—Surveillance Case Definition. In Commun. Dis Intell.; 2023. Available online: https://www.health.gov.au/resources/publications/barmah-forest-virus-infection-surveillance-case-definition (accessed on 24 February 2023).
- Cashman, P.; Hueston, L.; Durrheim, D.; Massey, P.; Doggett, S.; Russell, R.C. Barmah Forest virus serology; implications for diagnosis and public health action. Commun. Dis. Intell. Q. Rep. 2008, 32, 263–266. [Google Scholar] [PubMed]
- Kurucz, N.; Markey, P.; Draper, A.; Melville, L.; Weir, R.; Davis, S.; Warchot, A.; Boyd, R.; Stokeld, D. Investigation into High Barmah Forest Virus Disease Case Numbers Reported in the Northern Territory, Australia in 2012–2013. Vector Borne Zoonotic Dis. 2016, 16, 110–116. [Google Scholar] [CrossRef]
- Selvey, L.A.; Donnelly, J.A.; Lindsay, M.D.; PottumarthyBoddu, S.; D’Abrera, V.C.; Smith, D.W. Ross River virus infection surveillance in the Greater Perth Metropolitan area--has there been an increase in cases in the winter months? Commun. Dis. Intell. Q. Rep. 2014, 38, E114–E122. [Google Scholar]
- Greiser-Wilke, I.M.; Moennig, V.; Kaaden, O.R.; Shope, R.E. Detection of alphaviruses in a genus-specific antigen capture enzyme immunoassay using monoclonal antibodies. J. Clin. Microbiol. 1991, 29, 131–137. [Google Scholar] [CrossRef]
- Natrajan, M.S.; Rojas, A.; Waggoner, J.J. Beyond Fever and Pain: Diagnostic Methods for Chikungunya Virus. J. Clin. Microbiol. 2019, 57, e00350–19. [Google Scholar] [CrossRef]
- Fumagalli, M.J.; de Souza, W.M.; Esposito, D.L.A.; Silva, A.; Romeiro, M.F.; Martinez, E.Z.; da Fonseca, B.A.L.; Figueiredo, L.T.M. Enzyme-linked immunosorbent assay using recombinant envelope protein 2 antigen for diagnosis of Chikungunya virus. Virol. J. 2018, 15, 112. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Kumar, P.; Mohan, T.; Verma, P.; Parida, M.M.; Hoti, S.L.; Rao, D.N. Evaluation of multiple antigenic peptides based on the Chikungunya E2 protein for improved serological diagnosis of infection. Viral Immunol. 2015, 28, 107–112. [Google Scholar] [CrossRef]
- Fumagalli, M.J.; de Souza, W.M.; Romeiro, M.F.; de Souza Costa, M.C.; Slhessarenko, R.D.; Figueiredo, L.T.M. Development of an Enzyme-Linked Immunosorbent Assay To Detect Antibodies Targeting Recombinant Envelope Protein 2 of Mayaro Virus. J. Clin. Microbiol. 2019, 57, e01892–18. [Google Scholar] [CrossRef]
- Goh, L.Y.; Kam, Y.W.; Metz, S.W.; Hobson-Peters, J.; Prow, N.A.; McCarthy, S.; Smith, D.W.; Pijlman, G.P.; Ng, L.F.P.; Hall, R.A. A sensitive epitope-blocking ELISA for the detection of Chikungunya virus-specific antibodies in patients. J. Virol. Methods 2015, 222, 55–61. [Google Scholar] [CrossRef]
- Fischer, C.; Bozza, F.; Merino Merino, X.J.; Pedroso, C.; de Oliveira Filho, E.F.; Moreira-Soto, A.; Schwalb, A.; de Lamballerie, X.; Netto, E.M.; Bozza, P.T.; et al. Robustness of Serologic Investigations for Chikungunya and Mayaro Viruses following Coemergence. mSphere 2020, 5, e00915–19. [Google Scholar] [CrossRef]
Serum No. | Anti-BFV | Anti-RRV | Anti-CHIKV | ||||||
---|---|---|---|---|---|---|---|---|---|
IgG | IgM | Nab | IgG | IgM | Nab | IgG | IgM | Nab | |
RRV-Positive 1 | - | - | 0 | + | + | 320 | + | + | 0 |
RRV-Positive 2 | - | ± | 0 | + | - | 320 | + | - | 0 |
RRV-Positive 3 | - | ± | 0 | + | - | 320 | - | - | 20 |
RRV-Positive 4 | - | + | 0 | + | + | 320 | + | - | 0 |
RRV-Positive 5 | - | - | 0 | + | + | 160 | - | + | 0 |
RRV-Positive 6 | - | - | 0 | + | - | 640 | + | - | 0 |
RRV-Positive 7 | - | - | 0 | + | - | 160 | + | ± | 10 |
RRV-Positive 8 | - | - | 0 | - | + | 10 | - | - | 10 |
RRV-Positive 9 | - | - | 0 | + | + | 320 | - | + | 10 |
RRV-Positive 10 | + | - | 0 | + | + | 320 | - | + | 10 |
RRV-Positive 11 | - | - | 0 | + | + | 20 | - | + | 10 |
RRV-Positive 12 | - | - | 0 | + | + | 80 | - | ± | 0 |
RRV-Positive 13 | - | - | 0 | + | + | 10 | - | ± | 10 |
RRV-Positive 14 | - | - | 0 | + | + | 640 | + | + | 10 |
Panbio RRV Kit IgG positive control | - | - | 0 | + | - | 320 | + | - | 10 |
BFV-positive 1 | + | - | 160 | - | - | 0 | - | - | 0 |
BFV-positive 2 | + | + | 80 | ± | + | 0 | ± | - | 0 |
BFV-positive 3 | + | - | 40 | - | - | 0 | ± | - | 0 |
BFV-positive 4 | + | - | 160 | - | - | 0 | - | - | 0 |
BFV-positive 5 | + | + | 320 | - | + | 0 | - | - | 0 |
BFV-positive 6 | + | ± | 160 | - | - | 0 | - | - | 10 |
CHIKV-positive 1 | - | - | 0 | + | - | 10 | + | - | 640 |
CHIKV-positive 2 | ± | - | 0 | + | - | 20 | + | - | 640 |
Negative 1 | - | - | 0 | - | - | 0 | - | - | 0 |
Negative 2 | - | - | 0 | - | - | 0 | - | - | 0 |
Negative 3 | - | - | 0 | - | - | 0 | - | - | 0 |
Negative 4 | - | - | 0 | - | - | 0 | - | - | 0 |
Negative 5 | - | - | 0 | - | - | 0 | - | - | 0 |
Patient ID | Age * | Anti-BFV | Anti-CHIKV | Anti-RRV | Diagnosis | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
IgG | IgM | NAb | IgG | IgM | NAb | IgG | IgM | NAb | |||
No. 1 | 56 | + | − | 40 | − | − | 160 | + | − | 640 | RRV + CHIKV (CHIKV/BFV = 4) Or RRV + BFV (RRV/CHIKV = 4) |
No. 2 | 81 | + | ± | 160 | + | − | 40 | + | − | 320 | RRV + BFV (RRV/CHIKV = 8, plus BFV+) |
No. 3 | 33 | − | − | 0 | + | + | 160 | + | + | 640 | RRV (RRV/CHIKV = 4) |
No. 4 | 57 | − | − | 0 | + | − | 320 | + | − | 320 | RRV + CHIKV (RRV/CHIKV = 1) |
No. 5 | 26 | ± | − | 0 | + | ± | 320 | + | − | 0 | CHIKV (single CHIKV Nab+) |
No. 6 | 44 | − | − | 0 | + | + | 40 | + | ± | 320 | RRV (RRV/CHIKV = 8) |
No. 7 | 65 | + | + | 640 | + | + | 40 | + | + | 160 | RRV + BFV (RRV/CHIKV = 4, plus BFV+) |
No. 8 | 39 | − | − | 0 | + | ± | 20 | + | − | 80 | RRV (RRV/CHIKV = 4) |
No. 9 | 71 | + | − | 80 | + | − | 20 | + | − | 80 | RRV + BFV (RRV/CHIKV = 4, plus BFV+) |
No. 10 | 56 | − | − | 0 | ± | − | 20 | + | − | 80 | RRV (RRV/CHIKV = 4) |
No. 11 | 72 | − | − | 0 | + | + | 80 | + | + | 320 | RRV (RRV/CHIKV = 4) |
No. 12 | 49 | − | − | 0 | + | ± | 80 | + | + | 320 | RRV (RRV/CHIKV = 4) |
No. 13 | 44 | + | − | 0 | + | − | 640 | + | − | 20 | CHIKV (CHIKV/RRV = 32) |
No. 14 | 66 | − | − | 0 | + | − | 10 | + | − | 320 | RRV (RRV/CHIKV = 32) |
No. 15 | 12 | − | − | 0 | + | ± | 10 | + | − | 320 | RRV (RRV/CHIKV = 32) |
No. 16 | 79 | + | − | 160 | + | − | 20 | + | − | 160 | RRV + BFV (RRV/CHIKV = 8, plus BFV+) |
No. 17 | 36 | − | − | 0 | + | − | 10 | + | − | 320 | RRV (RRV/CHIKV = 32) |
No. 18 | 38 | − | − | 0 | + | + | 10 | + | + | 160 | RRV (RRV/CHIKV = 16) |
No. 19 | 77 | − | − | 0 | + | − | 40 | + | + | 640 | RRV (RRV/CHIKV = 16) |
No. 20 | 71 | − | − | 0 | + | − | 40 | + | − | 640 | RRV (RRV/CHIKV = 16) |
No. 21 | 40 | − | − | 0 | + | + | 20 | + | − | 320 | RRV (RRV/CHIKV = 16) |
No. 22 | 32 | − | − | 0 | + | − | 10 | + | − | 160 | RRV (RRV/CHIKV = 16) |
No. 23 | 57 | + | − | 20 | ± | − | 0 | ± | − | 0 | BFV (single BFV+) |
No. 24 | 62 | − | − | 20 | + | − | 0 | + | − | 160 | RRV + BFV (RRV+BFV+) |
No. 25 | 39 | − | − | 0 | + | ± | 20 | + | − | 0 | CHIKV (single CHIKV+) |
No. 26 | 34 | + | − | 0 | + | − | 160 | ± | − | 0 | CHIKV (single CHIKV+) |
No. 27 | 49 | − | − | 0 | + | + | 20 | + | + | 160 | RRV (RRV/CHIKV = 8) |
No. 28 | 40 | − | − | 0 | + | ± | 40 | + | + | 640 | RRV (RRV/CHIKV = 16) |
No. 29 | 55 | − | − | 0 | + | ± | 10 | + | − | 160 | RRV (RRV/CHIKV = 16) |
No. 30 | 31 | − | − | 0 | + | − | 10 | + | ± | 160 | RRV (RRV/CHIKV = 16) |
No. 31 | 53 | − | − | 0 | + | + | 0 | + | ± | 320 | RRV (single RRV+) |
No. 32 | 48 | − | − | 0 | + | ± | 40 | − | − | 0 | CHIKV (single CHIKV+) |
No. 33 | 61 | − | − | 0 | + | − | 20 | − | − | 0 | CHIKV (single CHIKV+) |
No. 34 | 39 | − | − | 0 | + | − | 20 | + | − | 160 | RRV (RRV/CHIKV = 8) |
No. 35 | 38 | − | − | 0 | + | − | 20 | + | + | 160 | RRV (RRV/CHIKV = 8) |
No. 36 | 66 | − | 0 | + | − | 10 | + | + | 80 | RRV (RRV/CHIKV = 8) | |
No. 37 | 19 | − | − | 0 | + | + | 80 | + | + | 160 | RRV + CHIKV (RRV/CHIKV = 2) |
No. 38 | 61 | − | − | 0 | + | ± | 20 | + | + | 40 | RRV + CHIKV (RRV/CHIKV = 2) |
No. 39 | 49 | ± | − | 0 | + | − | 640 | + | − | 10 | CHIKV (CHIKV/RRV = 64) |
No. 40 | 41 | − | − | 0 | + | − | 40 | + | − | 80 | RRV + CHIKV (RRV/CHIKV = 2) |
No. 41 | 68 | − | − | 0 | + | − | 40 | + | − | 160 | RRV (RRV/CHIKV = 4) |
No. 42 | 62 | − | − | 0 | − | ± | 20 | − | − | 0 | CHIKV (Single CHIKV+) |
Anti-BFV | Anti-CHIKV | Anti-RRV | |
---|---|---|---|
IgG+ | 19%(8/42) | 90.5%(38/42) | 88.1%(37/42) * |
IgG− | 76.2%(32/42) | 4.8%(2/42) | 7.1%(3/42) |
IgG± | 4.8%(2/42) | 4.8%(2/42) | 4.8%(2/42) |
IgM+ | 2.4%(1/42) | 21.4%(9/42) | 28.6%(12/42) * |
IgM− | 95.2%(40/42) | 54.7%(23/42) | 64.3%(27/42) |
IgM± | 2.4%(1/42) | 23.8%(10/42) | 7.1%(3/42) |
IgG++IgM+ | 2.4%(1/42) | 21.4%(9/42) | 28.6%(12/42) * |
Nab+ | 16.7%(7/42) | 93.3%(39/42) | 83.3%(35/42) |
Nab− | 83.3%(35/42) | 7.1%(3/42) | 7%(7/42) |
*ELISA+Nab+ | 4.8%(6/42) | 90.5%(38/42) | 83.3%(35/42) * |
*ELISA+Nab− | 2.4%(1/42) | 4.8%(2/42) | 4.8%(2/42) |
#ELISA−Nab+ | 0%(0/42) | 4.8%(2/42) | 0%(0/42) |
#ELISA−Nab− | 83.3%(35/42) | 0%(0/42) | 11.9%(5/42) |
BFV+/CHIKV+ | BFV+/RRV+ | CHIKV+/RRV+ | BFV+/CHIKV+/RRV+ | |
---|---|---|---|---|
IgG+ | 2.4%(1/42) | 2.4%(1/42) | 71.4%(30/42) | 11.9%(5/42) |
IgM+ | 0%(0/42) | 0%(0/42) | 11.9%(5/42) | 2.4%(1/42) |
Nab+ | 0%(0/42) | 0%(0/42) | 69.1%(29/42) | 11.9%(5/42) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kizu, J.; Graham, M.; Liu, W. Potential Serological Misdiagnosis of Barmah Forest Virus and Ross River Virus Diseases as Chikungunya Virus Infections in Australia: Comparison of ELISA with Neutralization Assay Results. Viruses 2024, 16, 384. https://doi.org/10.3390/v16030384
Kizu J, Graham M, Liu W. Potential Serological Misdiagnosis of Barmah Forest Virus and Ross River Virus Diseases as Chikungunya Virus Infections in Australia: Comparison of ELISA with Neutralization Assay Results. Viruses. 2024; 16(3):384. https://doi.org/10.3390/v16030384
Chicago/Turabian StyleKizu, Joanne, Melissa Graham, and Wenjun Liu. 2024. "Potential Serological Misdiagnosis of Barmah Forest Virus and Ross River Virus Diseases as Chikungunya Virus Infections in Australia: Comparison of ELISA with Neutralization Assay Results" Viruses 16, no. 3: 384. https://doi.org/10.3390/v16030384